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Abstract- Cluster-based Wireless Sensor Network (CWSN) is a kind of 
WSNs that because of avoiding long distance communications, preserve 
the energy of nodes and so is attractive for related applications. The 
criticality of most applications of WSNs and also their unattended 
nature, makes sensor nodes often susceptible to many types of attacks. 
Based on this fact, it is clear that cluster heads (CHs) are the most 
attacked targets by attackers, and also according to their critical 
operations in CWSNs, their compromise and control by an attacker will 
disrupt the entire cluster and sometimes the entire network, so their 
security needs more attentiveness and must be ensured. In this paper, 
we introduce a hybrid Intrusion Detection System (HIDS) for securing 
CHs, to take advantages of both anomaly-based and misuse-based 
detection methods, that is high detection and low false alarm rate. Also 
by using a novel preprocessing model, significantly reduces the 
computational and memory complexities of the proposed IDS, and 
finally allows the use of the clustering algorithms for it. The simulation 
results show that the proposed IDS in comparison to existing works, 
which often have high computational and memory complexities, can be 
as an effective and lightweight IDS for securing CHs. 

  
Index Terms- Wireless Sensor Networks (WSNs), Intrusion Detection Systems 
(IDSs), Cluster-heads (CHs), data preprocessing model, clustering algorithms.  

 

I. INTRODUCTION 

Wireless Sensor Networks because of their inherent advantages such as lower cost and easier 

deployment on the environment, to play a role in a wide range of applications such as military 

surveillance [1], fire control in forest, health care [2], safety monitoring on Structures and buildings, 

and smart homes [3] are highly desirable and cost-effective. However, resource constrains, such as 

limited processing power, memory and energy are main challenge in WSN design and application [4]. 
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Given that WSNs are often used in remote and unprotected locations or where adverse operating 

conditions or even hostile operating conditions, they are highly susceptible to intrusions and security 

attacks [5]. Most of attacks try to cause a sharp decline in network performance using this weakness. 

Therefore, security in WSNs has become an important issue, especially if these networks are involved 

in critical processes. Secure WSNs have critical importance in the military (tactical) applications, so 

that a security gap in the network can weaken its own forces on the battlefield [6]. 

Also it should be noted that in any secure or less secure network, it cannot be completely prevented 

from intrusions. When attacking to a network and intrusion to it, some nodes are captured by the 

attacker and thus malicious node can identify and reveal their confidential information such as 

security keys. This will lead to the failure of the intrusion prevention operation and Jeopardize 

network security. In such a situation, the existence of an Intrusion Detection System (IDS) in the 

network by timely detecting of intrusions can prevent the disclosure of security information and the 

waste of resources. 

In the other words, by deploying IDS that is a set of tools, methods, and resources to help identify, 

assess, and report intrusions in these networks, we can keep the network efficiency at the optimum 

level by detecting timely attacks, and the protecting the network from security threats.  

One of the challenges of using IDSs in CWSNs is securing CHs. Since CHs are of great importance 

in WSNs and perform operations of cluster management, data aggregation, and data transfer to the 

base station, they are much more likely to be attacked than normal nodes, Such that the intrusion and 

control of a CH by an attacker will disrupt the entire cluster operation and in some cases the entire 

sensor network. So, in a sensor network, maintaining the security of CH nodes and in some way 

guaranteeing it is very important. On the other hand, the use of IDSs for common nodes, such as 

proposed IDS in [7], is not suitable for CH nodes, due to their high sensitivity and the need for 

security guaranty. 

The two main methods of intrusion detection are anomaly-based detection and misuse-based 

detection, which none of them alone can provide security for CH nodes. The anomaly-based intrusion 

detection method has a high detection rate, but its disadvantage is the high rate of false alarms. On the 

other hand, the misuse-based detection method has high accuracy in detecting attacks, and a low rate 

of false alarms, but unfortunately its detection rate is relatively low. Therefore, the best option for 

securing CHs is to use a hybrid intrusion detection method, which, due to its high computational 

complexity, leads to an increase in energy consumption, which makes a problem for the sensor 

network. Of course, in most cases, the CH nodes according to their respective operations have higher 

capabilities than the common nodes, which allows us to use the more effective IDSs with respect to 

high-security sensitivity of them. But as much as possible, the computational overhead and, 

consequently, energy consumption should be reduced in order to increase the lifetime of the network. 
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In this paper, we present a hybrid IDS based on data mining algorithms for securing CHs, which by 

using a novel data pre-processing model reduces the computational complexity and consumption 

memory in the IDS, and it allows us to use the data mining classification algorithms for detect 

intrusions and securing CHs in WSNs. Therefore, in the proposed system, in addition to the benefits 

of both anomaly-based detection and misuse-based detection methods, which led to a high detection 

rate and low false alarms rate, with the help of the proposed novel data pre-processing model, energy 

consumption will be at least, which is very important in WSNs.  

In order to evaluate and present the results of the proposed method, and also because of the absence 

of a real sample of the dataset for intrusion detection in WSNs, the KDDCup'99 dataset is used as the 

sample to evaluate the performance of IDSs in these networks. The simulation results show that the 

proposed IDS in comparison to existing works, which often have high computational and memory 

complexities, can be as an effective and lightweight IDS for securing CHs. 

This paper is organized as follows: In Section II, we introduce the IDSs and then the Dataset for 

IDSs are described. In Section III, a review on the most important IDSs devised for WSNs is 

presented along with the introduction of their advantages and shortcomings. Section IV describes the 

proposed IDS. In Section V, we will simulate the proposed IDS and present the related results. Finally 

in Section VI, the paper ends with a conclusion and future works. 

II. PRELIMINARIES  

In this section, IDSs are described along with their types and requirements, and then Datasets for 

IDSs are introduced. 

A. Intrusion Detection Systems 

In general, any type of unauthorized or unwanted activity in a network is called intrusion. An IDS is 

a set of tools, methods, and resources to help identify, assess, and report intrusions. IDS is not a 

single, separate unit, but rather part of an overall protection system that is installed alongside a 

network node. Intrusion is defined as any set of activities that attempt to endanger the integrity, 

confidentiality or availability of a resource, and Intrusion Prevention System (IPS) includes methods 

such as encryption, authentication, key management [8], [9], access control, secure routing, etc. is 

considered as the first line of defense against intrusions [10].  

However, it should be noted that in any secure or less secure network, IPS cannot be completely 

prevented from intrusions. Therefore, after IPSs, IDSs are considered as the second line of defense 

against attacks and intrusions. The expected operating conditions in IDS will be as follows [11], [12]: 

 Not add new flaws and weaknesses to the network. 

 Less use of network resources, and not reducing performance by imposing overhead. 

 Low False alarm rate, which is the percentage of normal activity that is detected as anomaly. 
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 High detection rate, which is the percentage of anomalies that have been properly detected. 

 Run continuously and act impalpable for the system and users (Transparency principle). 

 Should be in accordance with standards to allow for future cooperation and development. 

Each IDS has three main components [12], [13]: 

 Monitoring Section: This section is used to monitor local events and neighbors and often by 

traffic analysis and local events, controls the resources efficiency. 

 Analysis and Detection: This module is the main part of the IDS, which is dependent on the 

modeling algorithm. In this section, the behavior and activities of the network are analyzed 

and decided to declare them as an intrusion. 

 Warning section: This section is responsible for reaction against intrusion, which generates 

an alarm about the detection of an intrusion. 

IDSs are categorized into three groups based on their operation, which are described below [10], [14]: 

Anomaly-based Detection: This method is based on a statistical behavior model related to the 

normal operations of network nodes that are profiled and if there is a certain deviation from it, as an 

anomaly is detected. In the other words, this method first describes the actual features of a ‘normal 

behavior’, and then detects any activities that deviate from these behaviors as intrusions. The main 

advantage of this method is its high detection rate, but on the other hand, its disadvantage is also that 

it generated a high false alarms rate. 

Misuse-based Detection: In this method, the patterns of previously known attacks are produced 

and used as a reference for identifying future attacks. The advantage of this technique is that it can 

accurately and efficiently detect known attacks. The disadvantages are that this technique needs 

knowledge to build attack patterns and they are not able to detect novel attacks. So this method has a 

low false alarms rate, but its detection rate is also relatively low. 

Specification-based detection: This method defines a set of specifications and constraints that 

describe the correct operation of a program or protocol. Then the program execution is monitored 

according to the defined specifications and constraints. In fact, this method combines the aims of 

misuse and anomaly detection methods, that is able to detect previously known attacks at low false 

alarms rate. The disadvantage of this method is the manual setting of all specifications, which is a 

time-consuming process for users. 

B. Dataset for Intrusion Detection Systems 

Because of the absence of a real sample of the dataset for intrusion detection in WSNs, the 

KDDCup'99 dataset is used as the sample to evaluate the performance of IDSs in these networks. The 

KDDCup'99 dataset was designed by Columbia University through the simulation of intrusions and 

attacks in a military network environment at the DARPA organization in 1998 [15]. It was performed  
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TABLE I. Four classes in KDDCup'99 dataset with their description and type of attacks. 

# Class Type Description Attack Type 

1 DOS 

In DoS, an attacker tries to prevent legitimate users accessing or consume a 
service.  
Select Forward, which uses illegitimate data forwarding to make an attack, is 
known as a DoS attack. 

Smurf, Back, 
Neptune, 
Teardrop, 
Land, Pod. 

2 Probe 

In Probe attack, an attacker tries to gain information about the victim machine. 
The intention is to check vulnerability on the victim machine. e.g. Port scanning.  
The attacks of Spoofed, Altered, or Replayed Routing Information, Sinkhole, 
Sybil, Wormholes, and Acknowledgment Spoofing need to make a probe step 
before they begin to attack, so they would be classified as Probe attacks. 

Portsweep, 
Satan, 

Ipsweep, 
Nmap. 

3 R2L 

The attacker tries to gain access to the victim system by compromising the 
security via password guessing or breaking.  
Spoofed, Altered, or Replayed Routing Information, Sinkhole, Sybil, 
Wormholes, Hello Floods, and Acknowledgment Spoofing use the weakness in 
the system to make an attack, so they would be classified as R2L. 

Buffer_Overflow, 
Guess_passwd, 

Warezclient, Spy, 
Warezmaster, Phf, 
Multihop, Imap. 

4 U2R 

In U2R, an attacker has local access privilege to the victim machine and tries to 
access super users (administrators) privileges via “Buffer overflow” attack. 
Sinkhole, Wormholes, and Hello Floods are caused by inner attacks, and are 
therefore classified as U2R. 

Loadmodule, 
Perl, 

Ftp_write, 
Rootkit. 

 

in the MIT Lincoln Research Labs, and then announced on the UCI KDD Cup 1999 Archive. Each 

sample of this dataset represents a connection between two network hosts according to network 

protocols and is described by 41 features that consist of 34 types of numerical features and 7 types of 

symbolic features.  

All Features can be classified into four different classes as discussed below [16]: 

 Basic Features are the attributes of individual TCP connections. 

 Content features are the attributes within a connection suggested by the domain knowledge. 

 Traffic features are the attributes computed using a two-second time window. 

 Host features are the attributes designed to assess attacks which last for more than two seconds. 

Each sample is labeled as either a normal behavior or one specific attack. The dataset contains 23 

class labels that one is normal and the remaining 22 are different attacks that are categorized into four 

classes: DoS, Probe, R2L, and U2R. In Table I, these four classes are presented with their description 

and type of attacks [15], [17]. 

In this paper, we used kddcup.data_10_percent.gz as our sampling step in creating the training and 

testing datasets. This dataset contains 10% data in KDDCup'99 dataset, where the total number of 

sample records is 494,021. The complete statistics for this dataset are presented in Table III. 

III. RELATED WORK 

So far, many IDSs have been introduced for WSNs, but there is still competition for increasing the 

detection rate, reducing the false alarms rate and minimizing energy consumption. Considering high 
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sensitivity and the need for security guaranty in CHs, and Also disadvantages of anomaly-based 

detection and misuse-based detection, none of them alone is capable of securing CH nodes. Therefore, 

the best option for securing CHs is to use a hybrid IDS, which has been proposed in many references 

[18]-[28]. In the following, we will introduce the most important related works. 

In [18], a hybrid Intrusion Detection System is proposed for Cluster-based WSNs that detect 

malicious nodes by integrating misuse detection rules and functional reputation. The main idea of the 

proposed method is that instead of detecting attacks only at nodes level, they propose a collaborative 

and centralized design using the mutual trust assessment between all network components, in which 

each sensor node computes functional reputation values for its neighbors by observing their activities 

(transmissions and data aggregation). In order to achieve this, they have defined five functional 

reputation metrics and benefit from the high detection rate of the misuse detection method by 

applying the relevant rules. The main problem with their methodology is that only have expressed 

their energy consumption results and have not presented any discussion of the detectable types of 

attacks and their detection rates. 

In [19], an Integrated Intrusion Detection System (IIDS) is proposed in a heterogeneous Cluster-

based WSN. According to the different capabilities and probabilities of attacks on them, three 

separate IDSs are designed for the sink, CH and Sensor Node (SN). For CHs, a Hybrid IDS is 

proposed, which combines anomaly and misuse detection. They reduced the number of features using 

the SVM method to 24 features, and finally use a three-layer Back-Propagation Network (BPN) for 

classification. Their IDS, due to the low false alarms rate and also low computational complexity, can 

be used in WSNs, but the main problem is the relatively low detection rate, given the importance of 

CHs. 

In [20], a Global Hybrid IDS (GHIDS) has been proposed that to achieve the goal of high detection 

rates and low false alarms, used combination of a technique based on support vector machine (SVM) 

for detecting anomalies, with a set of signature-based detection rules to identify attacks in cluster-

based WSNs. The results of the simulations show that the proposed method is in a desirable condition 

In terms of the detection rate and the false alarm rate. But the underlying problem is the high energy 

consumption due to the use of an anomaly detection technique based on SVM, which is somewhat 

inappropriate for the sensor network.  

In [21], a similar method with [20] has been proposed, that to reduce the computational complexity 

and energy consumption, existing features reduced to 4 features. Therefore, a significant improvement 

has been created in energy consumption, but its detection rate is proportionally lower. 

In [22], [23] and [24], hybrid IDSs have been proposed that initially use a novel algorithm to feature 

selection in order to reduce the computational complexity, and then use the SVM algorithm for 

classification. In [22] uses the combination of ant colony optimization and a feature weighting SVM 

to effective feature selection that finally reduces the number of features to 25. In [23] uses GA to 
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feature selection that finally reduces the number of features to 10. In [24] also uses the intelligent 

water drops (IWD) algorithm, a nature-inspired optimization algorithm for feature selection that 

finally reduces the number of features to 9. The main problem of all three methods is the relatively 

high computational complexity due to the use of the SVM classification algorithm. 

In [25], a Modified CuttleFish Algorithm (MCFA) approach is proposed that plays a crucial role in 

intrusion detection by selecting an appropriate subset of the most relevant features from the huge 

amount of dataset. Griewank fitness function is used to calculate the fitness of the MCFA. Naïve-

Bayes classifier is also employed as a classification algorithm. 

In [26], an entropy-based feature selection to select the important features, layered fuzzy control 

language to generate fuzzy rules, and layered classifier to detect various network attacks is proposed. 

In [27], an improved many-objective optimization algorithm (I-NSGA-III) is proposed using a 

novel niche preservation procedure. It consists of a bias-selection process that selects the individual 

with the fewest selected features and a fit-selection process that selects the individual with the 

maximum sum weight of its objectives. Experimental results show that I-NSGA-III can alleviate the 

imbalance problem with higher classification accuracy for classes having fewer instances. 

In [28], a Knowledge-Based intrusion Detection Strategy (KBIDS) is proposed to detect several 

types of attacks under different network structures, that aims to create a stand-alone detection model 

from network structure for WSNs. Their proposed mechanism is based on the fact that various types 

of attacks are very likely to have various forms of density in the feature space. They collected the 

network traffic and used it as the characteristics of the behavior of random networks in the feature 

space. Then the density forms can be considered as an indicator for detecting normal and abnormal 

network behavior. The simulation results of the proposed method in [28] on the sinkhole, hello 

flooding and DoS attacks indicate the proper detection accuracy and high compatibility with the 

network structure than the existing works. 

IV. PROPOSED INTRUSION DETECTION SYSTEM 

One of the challenges of using IDSs in cluster-based WSNs is securing CHs. Since CHs are of great 

importance in WSNs and perform operations of cluster management, data aggregation, and data 

transfer to the base station, they are much more likely to be attacked than normal nodes, Such that the 

intrusion and control of a CH by an attacker will disrupt the entire cluster operation and in some cases 

the entire sensor network. So, in a sensor network, maintaining the security of CH nodes and in some 

way guaranteeing it is very important. On the other hand, the use of IDSs for common nodes, such as 

proposed IDS in [7], is not suitable for CH nodes, due to their high sensitivity and the need for 

security guaranty. Also, due to the disadvantages of anomaly-based detection and misuse-based 

detection, none alone is capable of securing CH nodes. 
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Fig. 1. Operations of proposed intrusion detection system. 

 

On the other hand, considering that energy is as a critical parameter in WSNs, and practically the 

network lifetime depends on it, a lightweight method should be used for intrusion detection in them. 

Of course, in most cases, the CH nodes have more capabilities than common nodes due to their 

respective operations. Therefore, in order to secure CHs, with respect to their high-security sensitivity, 

we can use the more efficient IDSs. 

In this section, we present a hybrid IDS based on data mining algorithms for securing CHs, which 

by using a data pre-processing model reduces the computational complexity and consumption 

memory in the IDS, and it allows us to use the data mining classification algorithms for detect 

intrusions and securing CHs in WSNs. Therefore, in the proposed system, in addition to the benefits 

of both anomaly-based detection and misuse-based detection methods, which led to a high detection 

rate and low false alarms rate, with the help of the proposed data pre-processing model, energy 

consumption will be at least, which is very important in WSNs. 

As shown in Fig. 1, the process of the proposed IDS is such that initially received packets from 

other nodes are examined by anomaly detection model. Anomaly detection model (described in 

Section IV-A) can quickly filter large numbers of normal packets and then deliver abnormal packets 

to the misuse detection model (described in Section IV-B) to identify attacks and their types there. 

Finally, packets that are not detected by a misuse detection model will also be identified at the 

decision-making step. In the following, we will describe the details of each step of the proposed IDS. 

A. Proposed Anomaly-based detection model 

The anomaly detection model is used as the first line of defense in the proposed IDS. Given that a 

large number of existing packets, in fact, only a few of them are related to attacks, and most of them 

are also related to the network normal state, so using an abnormal detection model that acts like a  

Attack  

Abnormal  Undetected  

Pass Normal Packets  Pass Normal Packets  

Delete Abnormal 
Packets  

Delete Abnormal 
Packets  

Normal  Normal  

Attack  

Misuse Detection 
 

Preprocessing 
ChiSquared Feature Selection 

PART Classification 

Anomaly Detection 
 
 

Rule based  

Decision making 
 

Election based 

Packets 



Journal of Communication Engineering, Vol. 8, No. 1, January-June 2019 9 
 

TABLE II. Rules in the anomaly detection model for attacks detection in WSNs. 

# Rule Description Detectable attacks 

1 Interval Rule Time between reception of two consecutive messages exceeds 
lower and upper limits 

Denial-of-service attacks 
Hello flood attack 

2 Retransmission rule A message should be forwarded by the middle nodes to other 
nodes. 

Sinkhole and selective 
forwarding attacks 

3 Integrity rule The original message should not be changed along the path in 
between the source and destination nodes. 

Content modification 
attack 

4 Delay rule A retransmission of a message should be done after a certain 
waiting time. Denial-of-service attacks 

5 Repetition rule Number of retransmissions of a message by a neighbor node 
exceeds limit Denial-of-service attacks 

6 Radio transmission 
range rule 

A single message should be received from neighboring nodes, 
which can be identified by the RSSI. 

Sybil, Wormhole and 
Hello flood attacks 

7 Jamming rule Number of collisions of message sent by monitor node 
exceeds expected limit Jamming attack 

 

filter, Quickly, the normal packets are passed and the abnormal packets are filtered and delivered to 

the misuse detection model to more detecting and accurately. An anomaly detection system uses a 

defined model of network normal behavior, so a packet is detected as an anomaly by the system when 

the current behavior deviates in comparison with the defined behavior. 

One of the problems with anomaly detection model is that if the current behavior and normal 

behavior patterns change in the network, then the system usually detects the normal communication as 

abnormal communication and creates the problem of erroneous classification. However, it rarely 

detects abnormal communication as normal communication. 

In order to solve the erroneous classification problem in the anomaly detection model, in the second 

line of defense, we use a misuse detection system to take delivery the detected abnormal packets by 

the anomaly detection model and, with more accurate analyzes, Their final status will be determined. 

in other words, the abnormal detection model, with the receipt a large number of packets, the 

abnormal cases that are relatively few, like a filter separates from a large number of normal ones, and 

after passing normal packets in high accurately, the abnormal cases for More accurate examination are 

delivered to misuse detection model. 

As mentioned, to create an anomaly detection model to monitor the status of data packets, normal 

behavior patterns must be created in the network, which in this paper, due to requiring the high 

performance; a rule-based analysis method is used. According to reference [29], the rules of Table II 

are considered in the rule-based method to create an anomaly detection model. 

B. Proposed misuse-based detection model 

The misuse Detection Module uses various models of known attack behavior, so we need to create a 

basic model that matches these behaviors. Because the performance in most IDSs is guaranteed 

through training data, machine learning methods are consistent with this approach. 
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Fig. 2. Steps of the proposed data pre-processing model for the dataset. 

In this section, we present a data pre-processing model for increasing the efficiency of the IDS as 

well as reducing the energy consumption, and finally, to obtain the best detection rate, different 

machine learning algorithms are examined for classification. Fig. 2 shows the steps of the proposed 

pre-processing model for the dataset. 

One of the effective factors in increasing the computational complexity and memory consumption 

in using data mining methods is the number of training samples for creating the model. Therefore, 

given the large number of samples in the dataset, it is practically impossible to use it in WSNs. So, in 

the first and second steps of the proposed model, we try to use the techniques to optimize the number 

of available samples to usability in WSNs. 

1. Remove duplicated samples: As shown in Fig. 2, in view of the data redundancy in the data set, 

we initially do the remove operation of duplicated samples. As shown in Table III, by removing the 

duplicated samples, the size of data sets decreases sharply (reduction rate 70.53%), which, in addition 

to reducing computational complexity and reducing energy consumption, causing to increased 

detection accuracy and reduced memory consumption. 

2. Random sampling: after remove duplicated samples, using random sampling of all records in the 

dataset, we sample 20,000 records as training data and 10,000 records as testing data. Given that the  
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TABLE III. Number of samples and its ratio in the KDDCup'99 dataset. 

Category 
Total data No Duplicated data Training data Testing data 

samples Ratio(%) samples Ratio(%) samples Ratio(%) samples Ratio(%) 

Normal 97278 19.69% 87832 60.33% 11079 55.40% 5549 55.49% 

Dos 391458 79.24% 54572 37.48% 6798 33.99% 3393 33.93% 

Probe 4107 0.83% 2130 1.46% 1421 7.11% 709 7.09% 

R2L 1126 0.23% 999 0.69% 667 3.33% 332 3.32% 

U2R 52 0.01% 52 0.04% 35 0.17% 17 0.17% 

TOTAL 494021 100% 145585 100% 20000 100% 10000 100% 

 

TABLE IV. 6 features with the least importance and no distinction from the KDDCup'99 dataset. 

num_failed_logins land su_attempted urgent num_outbound_cmds is_host_login 

 

sample set of Probe, U2R, and R2L attacks is very small; hence, the whole their records are sampled, 

So that two-thirds of these records are taken as training data and one-third as testing data; but other 

sample sets are selected according to their ratio from kddcup.data_10_percent.gz dataset that detailed 

in Table III. 

    Considering that a large number of features are also one of the most important factors in increasing 

the computational complexity and energy dissipation, as well as significantly increase the memory 

consumption, practically using of data mining methods in WSNs according to the computational and 

memory constraints of their nodes make it impossible. Therefore, in order to overcome this problem 

and reduce the computational complexity and energy dissipation as well as memory consumption, we 

must use techniques to reduce the number of features to the appropriate number, which is also done in 

steps 3 and 4 in the proposed model. 

3. Feature Selection (deletion of ineffective features): In order to optimize the dataset in the first 

step, with a superficial observation, it is easy to select several attributes due to the lack of a distinction 

in the dataset and to remove them from the dataset. As shown in Figure 2, this step is presented as the 

feature selection, in which 6 features with the least importance and no distinction from the dataset are 

eliminated. For example, the is_host_login and num_outbound_cmds features in the entire dataset 

records are zero and therefore do not create any distinction in the datasets. These features are 

presented in Table IV. 

4. Dimension reduction and selection of effective features: In order to further reduce the 

computational complexity and energy dissipation in the WSN nodes, we use a feature selection 

algorithm to reduce the dimension in the dataset. 
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Fig. 3. Rating of 41 features in the KDDCup'99 dataset based on the information gain ratio (IGR). 

Among the features in the dataset, they all have no deterministic effect on the output, and even 

some of them increase the classification error. In Fig. 3, the rating of 41 features in the KDDCup'99 

dataset is presented based on the information gain ratio (IGR) that sorted in a descending order. As 

seen in the figure, most of the features have an IGR under the average of the dataset (IGR average = 

0.29). In fact, only 20 features are above the average, which indicates that the original dataset is 

concentrated in a small group of values. 

The features that lead to the convergence of connection categories within a small group of values 

have very little information to describe the behavior of a node in the network. This indicates that the 

original dataset contains a series of irrelevant data for the IDS and so needs to be optimized. 

Therefore, feature selection is an important step in the optimization of the dataset that can have a 

desirable effect on the performance of the IDS. In order to select an effective set of features, we 

examined the most important methods for feature selection. In Table V, we presented the results based 

on the detection rate of different classification algorithms. 

As seen in Table V, the most reduction of features is related to the ChiSquared method with four 

selected features, which however with a high detection rate of 99.59%, has very desirable conditions 

for use in WSNs. Also, the InfoGain method with 11 features and the detection rate of 99.72, has the 

ability to use in WSNs, but due to about 3 times the selected features in comparison with the 

ChiSquared method, a higher computational overhead, and as a result, higher energy consumption 

imposes to the system. So, in this paper, we use the ChiSquared feature selection method to dimension 

reduction of the dataset. The four selected features are presented in Table VI for increasing the 

efficiency of the proposed IDS. 

5. Data normalization: In the last step, we will normalize the dataset. In reference [30], the 

normalization of features has been considered as an essential step in the data preprocessing in order to 
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TABLE V. Comparison of various Feature Selection Methods based on Detection Rate in KDDCup'99 dataset. 

 Detection Rate of Various Classifiers 

Feature Selection 
Approaches 

Selected 
Features 

Random 
Tree 

J48 
Bayes 

Net PART JRip 
Random 
Forest 

A1DE 
Decisio
n Table 

Naïve 
Bayes 

Full Features 41 99.42 99.53 96.54 99.64 99.69 99.80 99.80 99.17 86.01 

Remove ineffective Features 35 99.38 99.48 96.44 99.57 99.62 99.80 99.78 99.08 87.18 

Chi Squared 4 99.40 99.32 97.97 99.59 99.45 99.44 99.49 98.34 89.57 

One R 7 99.43 99.42 97.41 99.51 99.57 99.54 99.53 98.41 91.11 

Consistency Subset + BFS 8 99.45 99.6 97.62 99.58 99.59 99.55 99.61 99.06 82.62 

Info Gain 11 99.45 99.52 96.54 99.58 99.60 99.72 99.71 99.06 88.69 

CFS Subset + BFS 13 99.39 99.48 97.01 99.48 99.56 99.63 99.69 98.97 91.99 

Symmetrical Uncert 15 99.39 99.55 96.37 99.55 99.64 99.76 99.67 99.10 86.75 

Correlation 15 98.79 98.91 93.62 99.01 98.96 99.24 98.36 96.52 81.61 

ReliefF 15 98.54 98.72 93.91 98.78 98.66 99.01 98.62 96.75 89.97 

Gain Ratio 16 99.43 99.66 97.30 99.61 99.59 99.60 99.56 98.83 88.45 

SVM 22 99.56 99.56 96.42 99.64 99.70 99.78 99.75 99.05 84.94 

 

TABLE VI.: Selected features with ChiSquared feature selection algorithm. 

Feature # Feature Name Description 

3 service service on the destination, e.g., http, telnet,etc. 

5 src_bytes Number of data bytes from source to destination 

30 diff_srv_rate % of connections to different services 

35 dst_host_diff_srv_rate Dif_srv_rate for destination host 

 

increase the efficiency of IDSs. In this reference, four different schemes for the normalization of 

features at the preprocessing stage have been introduced in the IDSs, which have been evaluated and 

compared by various classifications on the KDDCup'99 dataset. Based on the results of simulations, 

the statistical normalization model is introduced as the best choice for a large dataset.  

Therefore, we also used statistical normalization on the dataset. The goal of statistical normalization is 

to convert derived data from any normal distribution to a standard normal distribution with mean zero 

and unit variance. Statistical normalization is defined as (1): 
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ݔ )1( = − ݒ ߪߤ  

where μ is mean and σ is its stand deviation of n values for a given feature: 

)2( 
 

ߤ = 1݊   ୀଵݒ  

ߪ  )3( =  ඩ1݊  ሺݒ − ሻଶߤ 
ୀଵ  

6. Selection of appropriate classification algorithm: In the last step, we also evaluated the 

efficiency of the available classifications on the KDDCup'99 dataset in order to select the best data 

classification algorithm in the proposed model. The results are presented in Table VII in the next 

section. 

V. SIMULATION AND RESULTS  

    In the following, the simulation results of the proposed model on the KDDCup'99 dataset and the 

evaluation of different classification algorithms are presented in Table VII. 

As shown in Table VII, the best detection rate and false alarms rate are respectively with 99.95% 

and 0.24% for the PART classification algorithm, however, the training time (0.76 seconds) and the 

test (0.025 seconds) is very low, which makes it perfect for use in WSNs. Therefore, we use the 

PART classification algorithm for the final training and test of the proposed IDS.  

PART is an algorithm for inferring rules by repeatedly generating partial decision trees, thus 

combining the two major paradigms for rule generation: creating rules from decision trees and the 

separate_and_conquer rule learning technique [31]. 

In order to evaluate the performances of the proposed IDS, and comparing with existing works, the 

following criteria are considered: 

 Detection Rate: The detection rate or the accuracy of detecting is the percentage of detected 

attacks relative to the total attacks. 

= ݁ݐܴܽ ݊݅ݐܿ݁ݐ݁ܦ )4( .ܰ ݀݁ݐܿ݁ݐ݁ܦ ݂ .ܰݏ݇ܿܽݐݐܣ ݂ ݏ݇ܿܽݐݐܣ ∗ 100% 

 False Alarm Rate: This criterion shows an incorrect alarm rate in detecting attacks. In other 

words, it determines how much of the detected attacks was not attack, and the IDS mistakenly 

detected them. 
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TABLE VII. Evaluation of different classification algorithms on the proposed model. 

Classifiers 
Algorithms 

TP Rate FP Rate Precision
F-

Measure 
ROC 
Area 

Kappa 
Statistic 

Training 
Time 

Testing 
Time 

B
ay

es
 

A1DE 99.49 0.35 99.48 99.48 99.99 99.1 0.14 0.054 

Bayes Net 97.97 1.7 98.08 98.01 99.88 96.44 0.18 0.054 

Naïve Bayes 89.57 7.51 89.66 88.94 96.04 81.52 0.04 0.111 

HMM 55.43 55.43 30.72 39.53 50.00 0.00 0.12 0.032 

F
u

nc
ti

on
 

MLP 96.81 2.37 96.78 96.77 98.76 0.9441 1048.2 0.542 

SVM 98.11 1.46 97.98 98 98.32 0.9667 21.25 8.764 

SMO 93.87 4.8 93.48 93.54 95.71 0.8913 45.97 0.098 

Logistic 94.96 3.26 94.94 94.90 97.74 0.9118 53.55 0.089 

R
u

le
s 

Decision Table 98.34 1.39 98.17 98.25 99.75 0.9708 0.94 0.035 

FURIA 99.51 0.36 99.5 99.5 99.73 0.9915 70.19 0.086 

JRip 99.45 0.42 99.44 99.44 99.63 0.9904 7 0.031 

PART 99.59 0.24 99.59 99.58 99.89 0.9923 0.76 0.025 

T
re

es
 

J48 99.32 0.42 99.31 99.31 99.63 0.9881 0.55 0.021 

Random Forest 99.44 0.33 99.43 99.43 99.97 0.9901 6.88 0.433 

Random Tree 99.4 0.32 99.39 99.39 99.57 0.9894 0.12 0.016 

REP Tree 99.09 0.56 99.07 99.06 99.7 0.984 0.22 0.017 

  

݁ݐܴܽ ݁ݒ݅ݐ݅ݏ ݁ݏ݈ܽܨ  (5) = ே. ௦ௗ௧௧ௗ ௧௧௦ே. ே ௧௦ ∗ 100%                              

 Training time: The time when the model is created based on training data samples.  

 Testing Time: The time when the created model in the training step is evaluated based on the 

testing data samples. 

 Computational complexity: This criterion determines the computations volume of the 

proposed method, which depends on the number of selected features, the number of training 

data samples, and the applied classification algorithm. This criterion has a direct relationship 

with the testing time. 
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TABLE VIII. The results of the comparison between the proposed IDS and the existing systems. 

Testing 
Time 

Training 
Time 

Computational 
False 

Alarm Rate 
Detection 

Rate 
Feature 
selected 

IDS Method # 

0.29 135.37 low 2.06 90.96 24 IIDS [19] 1 

73.45 1229 Very high 3.85 97.65 41 GHIDS [20] 2 

0.01 0.09 low 2.24 95.37 4 NHIDS [21] 3 

1.44 28.01 medium 0.004 98.38 25 ACO-SVM [22] 4 

11.69 68.84 high 0.02 97.3 10 GA-SVM [23] 5 

2.76 69.21 medium 1.41 99.41 9 IWD-IDS [24] 6 

1.74 0.84 medium 2.52 94.74 19 MCFA [25] 7 

0.08 58.55 low 0.74 99.16 25 FCL-IDS [26] 8 

1.06 30.2 medium 0.06 99.37 20 I-NSGA-III [27] 9 

3.83 84.3 medium 1.87 97.85 13 KBIDS [28] 10 

0.025 0.76 low 0.24 99.59 4 Proposed IDS 11 

 
 

 

 

In Table VIII, the results of the comparison between the proposed IDS and the existing systems are 

presented in terms of the criteria described above. All the results presented in the following are the 

average of 10 performed simulation operations. Also, for the proper comparison of the proposed 

method with existing works, the same dataset (KDDcup'99) whose details are presented in Table III, 

used to simulate all the methods. 

According to the results presented in Figures 4 through 6, the proposed system with a high detection 

rate of 99.59% and a low false alarm rate of 0. 24%, as well as a low testing time of 0.025sec (that 

indicates low computational complexity), is considered as an effective and lightweight method. 

As shown in Fig. 4, the detection rate of the proposed IDS is 99.59%, which has the highest rate 

among existing IDSs. Also, with a very low false alarm rate of 0.24%, that presented in Fig. 5, with a 

slight difference, is after [22], [23] and [27], but because of the high computational complexity of 

them, the proposed algorithm has a better condition. In addition to, the proposed IDS with a very low 

testing time of 0.025sec, that presented in Fig. 6, with a slight difference, is after [21], but because of 

the low detection rate and high false alarm rate of [21], the proposed algorithm has a better condition. 
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Fig. 4. Detection rate of proposed IDS and other IDSs 

 
Fig. 5. False alarm rate of proposed IDS and other IDSs 

 

Fig. 6. Testing time of proposed IDS and other IDSs 
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VI. CONCLUSION 

In this paper, we first introduced intrusion detection systems and then investigated various types of 

existing IDSs to securing CHs in WSNs. Then, considering the critical operation of the CHs, we 

proposed a hybrid IDS  based on data mining algorithms for their security, which, using a data 

preprocessing model. It dramatically reduces computational complexity, and memory usage in the 

IDS, and provides the possibility of using classification algorithms to intrusion detection and securing  

CHs in WSNs. The results of the simulations show that the proposed system, in comparison with the 

existing ones, in addition to low computational complexity, with a high detection rate, a low false 

alarms rate and also a low testing time, is considered as an effective and lightweight IDS for securing 

CHs in WSNs. 
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