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Abstract– Process adjustment, also known as process targeting, is one of the classical problems in the field of 

quality control and production economics. In the process adjustment problem, it is assumed that process 

parameters are variables and the aim is to determine these parameters such that certain economic criteria 

are optimally satisfied. The aim of this paper is to determine the optimal process adjustment in a two-stage 

production system with rework loops. An absorbing Markov chain model is developed in which all items are 

inspected for conformance with their specification limits. The cycle time of production process is included in 

the model for optimizing total profit of the system. Also, effects of inspection errors are investigated. 
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I. INTRODUCTION 

Quality control has become a major concern in competitive industrial environment, and industrial engineers are 

seeking to make process adjustments which will optimize production efficiency and improve product quality. In the 

process adjustment problem, it is assumed that the process or machine parameters are variable. The aim of this problem 

is to determine the process or machine parameters such that certain economic criteria are optimally satisfied. Each 

quality characteristic of the produced item should be adjusted at a special mean. During production of items in a 

production process, certain specifications limits are considered for inspection of the produced items. After production 

process, there is an inspection stage in which the items are examined. Inspection process is usually done 100% to reduce 

the amount of waste. By measuring and comparing the produced items with these specifications, the decision is made 

about accepting the item. If the value of quality characteristic is within the predetermined limits, then the item will be 

accepted and sold; otherwise, it is reworked or scrapped. If the item needs to be reworked, it is returned to production 

process and a reworking action is performed on it. For example, the item is reworked if the value of its quality 

characteristic falls above an upper specification limit and it is scrapped when the value of its quality characteristic falls 

below a lower specification limit. 

Many models have recently been presented for optimal process adjustments. Lee and Elsayed (2002) considered the 

problem of optimum process mean and inspection limits by allocating alternative variables for inspecting quality 

characteristics in one of the two stages of the process. Optimum process mean in their research was obtained through 

profit maximization with the objective functions of sale, production costs, inspection cost, and scrapping costs. Al-

sultan and Pulak (2000) presented a mathematical model for obtaining optimal adjustment point in a two-stage 

production system; they considered only lower inspection limits. Zinlong and Enriuedel (2006) obtained mean and 
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variance of process through cost function. They minimized the sum of costs, including the costs of deviation from target 

and the costs of fixed adjustments. Jinshyang et al. (2000) considered lower control limit for product adaption 

evaluation and emphasized that optimal mean was affected by production line and raw materials. They assumed that 

production cost of an item was a linear function of the raw materials used in the production. Wang et al. (2004) 

presented a method of optimal adjustment and optimal control based on integrated control. Duffuaa and Gaally (2012) 

developed a multi-objective optimization model, which included profit function and income and used Taguchi loss 

function. Shokri and Walid (2011) presented a loss model to maximize profit function for obtaining process mean in 

continuous production systems. Park et al. (2011) obtained mean and inspection limits through maximization of profit 

function using the frequent method of Gauss-seidl. Chung and Hui (2009) and Lee et al. (2007) investigated different 

aspects of optimal process adjustment problem. Duffuaa and Gaaly (2017) presented a multi-objective model for the 

process targeting problem by incorporating the measurement errors in the inspection system. They considered the 

situation in which there were two markets with different cost/price structures and used the concept of cutoff points to 

counter and reduce the impact of inspection errors. Mohammadi et al. (2018) developed a robust bi-objective mixed-

integer linear programming model for planning an inspection process used to detect nonconforming products and 

malfunctioning processors. Their objectives were the minimization of (1) internal and (2) external costs. Rezaei-Malek 

et al. (2018) presented a mixed-integer mathematical model for the integrated planning of the part quality inspection 

and preventive maintenance activities in deteriorating serial multi-stage manufacturing systems. Rasay et al. (2018) 

presented an integrated mathematical model for coordinating the decisions associated with maintenance management 

and statistical process control to optimize the profit of a series production system. Finally, Rasay et al. (2017) applied 

multivariate control charts in an integrated model of condition-based maintenance and process adjustment. 

In the current research, similar to Bowling et al. (2004), the flow of material in a discrete production process is 

modeled using absorbing Markov chain with a transition probability matrix. At each stage of production, the item is 

inspected and if it does not conform to its specifications, it is either scrapped or reworked. The reworked item will be 

inspected again; thus, we use rework loops for reworking. Similar models have been presented by Fallahnezhad and 

Niaki (2010) and Fallahnezhad and Hosseininasab (2012). 

The novelties of the presented model can be expressed as follows: most of the models in the literature optimize 

profit per item, but it is known that the adjustment of process affects the number of reworking actions performed on the 

item; therefore, it affects the time spent on production of an item. This fact is usually ignored in these types of problems 

(Bowling et al., 2004). Therefore, we try to consider the cycle time of production process as well as the cost of the 

model, and try to develop a general model for the two-stage production process. Similar models can be developed for 

multi-stage production processes. The cycle time of production is considered in profit objective function. It is the time 

between the production of two successive items, which is computed based on the time of the bottle-neck stage. 

The rest of the paper is organized as follows: we first present the notation in Section II. The model development 

comes next in Section III. Numerical demonstration of the application of the proposed methodology is given in Section 

IV. Sensitivity analysis of parameters comes in Section V. The inspection errors are investigated in Section VI. Finally, 

we conclude the paper in Section VII. 

 

II. NOTATION 

The notation is: 

iU : The upper specification limit in the 
thi stage of production, 1,2i   

iL : The lower specification limit in the 
thi stage of production, 1,2i   

ijP : The probability of going from state i to state j in a single step 

ijf : The long run probability of going from a non-absorbing state (i) to an absorbing state (j) 
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( )E PR : The expected profit per item 

( )E RV : The expected revenue per item 

( )E PC : The expected processing cost per item 

( )E SC : The expected scrapping cost per item 

( )E RC : The expected reworking cost per item 

( )E QC : The expected value of Taguchi loss function 

( )E PCO : The expected penalty cost 

SP : The selling price of an item 

TP : Total profit  

1A : Coefficient of Taguchi loss function for the first quality characteristics 

2A : Coefficient of Taguchi loss function for second quality characteristics 

1 : Target value for the first quality characteristics 

2 : Target value for the second quality characteristics 

iPC : The processing cost of the 
thi stage, 1,2i   

iSC : The scrapping cost of the 
thi stage, 1,2i   

iRC : The reworking cost of the 
thi stage, 1,2i   

PCO : The penalty cost of selling a non-conforming item 

P : The transition probability matrix 

Q : The transition probability matrix of going from a non-absorbing state to another non-absorbing state 

R : A matrix containing all probabilities of going from a non-absorbing state to another absorbing state (i.e., accepted 

or rejected item) 

I : The identity matrix  

O : A matrix with zero elements  

M: The fundamental matrix  

F : The absorption probability matrix  

1T : Operation time in the first stage per item 

2T : Operation time in the second stage per item 

C : Cycle time of production 

H : Total production time in the period of decision making 

 

III. MODEL DEVELOPMENT 

Consider a two-stage serial production system in which in each stage the items are 100% inspected. We assume that 

there is an inspection stage after each production stage in production line and rework loops are applied to the inspection 

system where the items are reworked in production line and then, inspected again. The item is then reworked, accepted, 

or scrapped. Raw materials come into the production system and finally, the finished items are produced. A Markov 

chain can represent different states of the raw materials, i.e., reworking, scrapping, and accepting. Among the states, 

some are transient and the others absorbing. A Markov chain with one or more absorbing states is known as absorbing 

Markov chain (Pillai & Chandrasekharan, 2008).  

The expected profit per item in the two-stage production system under consideration can be expressed as follows: 
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( ) [ ( ) ( ) ( ) ( ) ( )]E PR E RV E PC E SC E RC E QC      (1) 

Thus, total profit can be obtained as follows: 

( ),
H

TP E PR
C

                                                                                                                                                            (2)  

where 
H

C
 is the total number of items produced in each production period. Consider a two-stage production system 

with the following states: 

State 1: An item is being processed in the first stage of the production process; 

State 2: An item is being processed in the second stage of the production process; 

State 3: An item is accepted as the finished item; 

State 4: An item is scrapped.        

The quality characteristic of an item in the first stage follows a normal distribution with unknown mean 1  and 

standard deviation 1  and the quality characteristic of an item in the second stage follows a normal distribution with 

unknown mean 2  and standard deviation 2 . Transition probability matrix can be expressed as follows: 

1        2              3          4

1 11 12 14

2
22 23 24

3

4

0

0
,

0 0 1 0

0 0 0 1

P P P

P P P


 
 
 
 
 
 

P

 

(3) 

where 11P  and 22P  are the probabilities of reworking an item in the first and second stages, respectively, 23P  is the 

probability of accepting an item as finished product, and 14P  and 24P  are the probabilities of scrapping an item in the 

first and the second stages, respectively. 

Since the quality characteristic of an item in each stage follows a normal distribution with means 1  and 2  and 

standard deviations 1  and 2 , respectively, transition probabilities can be obtained as follows:  

1 21

1

1

1
( )

2
11 1 1 1

1

1
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P dx Ue
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

  



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1
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21 11

1

1
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2

14 1 1 1

1

1
( ),

2

xL

P e dx L





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2
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22 22

2

2

1
( )

2

23 2 2 2 2 2

2

1
( ) ( ).

2

xU

L

P e dx U L



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


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The term  1 .  is the cumulative function of the normal distribution with mean 1  and standard deviation 1 , 

and  2 .  is the cumulative function of the normal distribution with mean 2  and standard deviation 2 . Transition 

probability matrix should be rearranged in the form of 
 

  
 

Q R
P

O I
, in which, 

11 12

220

P P

P

 
  
 

Q , 
14

23 24

0 P

P P

 
  
 

R , 
0 0

0 0

 
  
 

O , 
1 0

.
0 1

 
  
 

I   (10)         

Using mathematical formulations of absorbing Markov chains, the following is obtained: 

1( ) , M I Q  (11) 

where the elements of fundamental matrix are the expected number of transitions from any non-absorbing state to 

any other non-absorbing state before absorption occurs (Bowling et al., 2004),  

12
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22

1

1 (1 )(1 )

1
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(1 )

P

P P P

P

 
   
 
 
  

M = 
11 12

22

.
0

m m

m

 
 
 

  (12)  

Also, the absorption probabilities are obtained as follows: 
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Denoting the cycle time with parameter ,C  the following is obtained: 
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12
1 11 2 22

11

, .
1

P
C Max T m T m

P

 
  

 
 (14) 

The parameter iim  represents the expected number of times that the transient state i  is occupied before absorption 

occurs and iT  is the production time in transient state i . Also, the probability of going from state 1 to state 2 for each 

item (the probability of processing each item in stage 2) is 12

111

P

P
, the expected value of operation time for each item 

in stage 1 of production is 1 11T m , and the expected value of operation time for each item in stage 2 of production is 

12
2 22

111

P
T m

P
. Considering the fact that the cycle time of a production line is equal to the maximum operation time of 

all stages, Eq. (14) is obtained.  

Also, according to Eq. (1), the following is obtained: 

12
13 11 1 22 2

11

14 12
1 24 2 1 2

11 11

( 1) ( 1)
(1 )

,

( ) ( ) ( )
1 1

P
f SP m RC m RC
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TP

P PC
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P P

 
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where 
H

C
 is the expected number of produced items and ( )E RV  is a selling price per item ( )SP  multiplied by 

the probability of accepting an item 13( ),f  

13( ) ( ).E RV SP f  (16) 

( )E PC  is the expected processing cost per item at stage 1 1( )PC  plus the expected processing cost at stage 2 

2( )PC  multiplied by the probability of processing the item in stage 2, 

12
1 2

11

( ) ( ) .
1

P
E PC PC PC

P
 


 (17) 

( )E SC  is the scrapping cost 1( )SC  per item multiplied by the probability of scrapping the item in stage 1 plus 

2( )SC  multiplied by probability of scrapping the item in stage 2 24( ),f  

14
1 24 2

11

( ) ( ) ( ).
1

P
E SC SC f SC

P
 


 (18) 
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( )E RC  is the reworking cost 1( )RC  per item multiplied by expected number of reworking actions in stage 1 

11( 1)m   plus 2RC  multiplied by expected number of reworking actions in stage 2 22( 1)m   multiplied by the 

probability of processing the item in stage 2 12

11

( ),
1

P

P
 

12
11 1 22 2

11

( ) ( 1) ( 1)( ) .
1

P
E RC m RC m RC

P
   


 (19) 

The above objective function is derived from Bowling et al. (2004) with some revision. This revision has completely 

been elaborated on by Fallahnezhad and Niaki (2010), Fallahnezhad et al. (2013), and Fallahnezhad and Ahmadi 

(2014). The cost of quality QC  is considered in the model using quadratic Taguchi loss function for each accepted 

item as follows:  

1 2

1 2

1 2

1 2

2 2

1 1 1 1 2 2 2 2

1 2

1 1 2 2

( ) ( ) ( ) ( )

,

( ) ( )

U U
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U U

L L

x f x dx x f x dx

QC A A

f x dx f x dx

 
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 

 

 

 (20) 

where the values of Taguchi loss function in the first and second stages are obtained as follows: 

  1 1 1
1 1 1

1 1 1
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U

L
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A
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



 (22) 

Since the Taguchi loss function should be considered for all sold items, ( )E QC  is the value of Taguchi loss 

function multiplied by the probability of accepting an item 13( ),f  

13( ) ( ).E QC QC f  (23) 

In the next section, a numerical application of the proposed methodology is presented. 

 

IV. NUMERICAL EXAMPLE 
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In this section, a numerical example is solved in order to illustrate the applicability of the proposed model. It is 

assumed that the production system has two operation stages and the parameters are as follows: 

1 2 1 2 1

2 1 2 1

2 1 2 1 2 1 2 1 2

$120, $25, $20, $15, $12, $10,

$17, 80 , 50 , 8

13, 12, 17, 1000, 1, 10, 15, 1.0.

SP PC PC SC SC RC

RC T s T s L

L U U H A A    

     

   

         
 

The optimal solution to the proposed models is determined by solving the related nonlinear optimization model 

using MATLAB R2015a software and applying a grid search procedure. The expected profit is maximized at 

1 210.45, 15.075    . The expected profit of production is 836.7864TP  . Fig. (1) denotes the plotted 

values of the function TP versus decision variables 1 2,  . As can be seen, the expected profit is a concave function 

of the process means. 

        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
Fig.1. The expected profit of the production system versus process means 

 

V. SENSITIVITY ANALYSIS 

A sensitivity analysis is performed to analyze the effects of changing the parameters on the optimal process mean 

and the optimal expected profit. All parameters vary in this production system and the results for the analysis of their 

effects are provided in this section. Table I shows the values of the optimal process mean and the optimal expected 

profit with the variation of parameters. 
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Table I. Behaviors of optimal mean and expected profit with the variation of parameters    

Parameter Case # Value 
1


 2


 TP
 

1SC
 

1 15 10.45 15.075 836.7864 

2 20 10.45 15.10 835.6031 

3 30 10.45 15.10 833.3699 

4 100 10.45 15.225 820.0480 

5 200 10.45 15.325 805.4858 

2SC
 

6 12 10.45 15.075 836.7864 

7 25 10.475 15.075 835.6174 

8 50 10.50 15.075 833.5409 

9 100 10.575 15.075 829.9441 

10 200 10.675 15.075 824.1023 

1RC
 

11 10 10.45 15.075 836.7864 

12 20 10.45 15.05 833.4879 

13 40 10.45 15.00 827.4512 

14 80 10.45 14.925 817.0339 

15 100 10.45 14.90 812.4350 

2RC
 

16 17 10.45 15.075 836.7864 

17 25 10.375 15.075 831.1719 

18 40 10.275 15.075 822.5729 

19 100 10.05 15.075 798.9337 

20 120 10 15.075 792.9229 

1PC
 

21 15 10.45 15.05 958.4879 

22 25 10.45 15.075 836.7864 

23 45 10.45 15.15 594.1276 

24 70 10.45 15.275 292.9010 

25 100 10.45 15.625 -60.9506 

2PC
 

26 5 10. 45 15.075 1.0156e+03 

27 20 10.45 15.075 836.7864 

28 50 10.45 15.10 479.1875 

29 90 10.45 15.275 3.6293 

30 110 10.45 17.00 -185.9810 

1A
 

1 1 10.45 15.075 836.7864 

2 5 10.45 15.075 799.0365 

3 10 10.45 15.075 751.8492 

2A
 

1 1 10.45 15.075 836.7864 

2 5 10.35 15.075 797.2527 

3 10 10.275 15.075 749.3937 
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Table I. Behaviors of optimal mean and expected profit with the variation of parameters      

Parameter Case # Value 
1


 2


 TP
 

1T
 

1 50 10.325 15.125 1.3367e+03 

2 80 10.45 15.075 836.7864 

3 110 10.45 15.075 608.5719 

2T
 

1 40 10.45 15.075 836.7864 

2 50 10.45 15.075 836.7864 

3 80 10.325 15.125 835.4216 

4 100 10.10 15.275 675.6110 

1  

1 9 10.45 15.00 823.7668 

2 10 10.45 15.075 836.7864 

3 11 10.45 15.15 826.7935 

2  

1 14 10.325 15.075 818.0380 

2 15 10.45 15.075 836.7864 

3 16 10.575 15.075 834.1747 

1  

1 1/2 10.45 15.00 897.4576 

2 1 10.45 15.075 836.7864 

3 2 10.45 15.325 510.9285 

2  

1 1/2 10.025 15.075 868.9137 

2 1 10.45 15.075 836.7864 

3 2 11.25 15.10 620.4906 

 

In Table I, it is observed that the optimal expected profit decreases as scrapping and reworking costs increase. Also, 

with increase in the value of 1SC , the optimum value of 1


 remains constant, but the optimum value of 2


 

increases and with increase in the value of 2SC , the optimum value of 2


 remains constant but the optimum value of 

1


 increases, which means that probability of scrapping in the first stage decreases. When parameters of one 

production stage change, the optimal adjustment of that stage does not substantially differ, but the optimal adjustment of 

the other production stage changes. By increasing the value of 1RC , the optimum value of 1


 remains constant, but 

the optimum value of 2


 decreases and with increase in the value of 2RC , the optimum value of 2


 remains 

constant, but the optimum value of 1


 decreases; thus, the same conclusion is drawn. Furthermore, by increasing the 

value of 1PC , the optimum value of 1


 does not change, but the optimum value of 2


 increases; as a result, the 

expected number of reworking actions in the second stage increases. Also, by increasing the value of 2PC , the 

optimum value of 1


 does not change, but the optimum value of 2


 increases; as a result, the expected number of 

reworking actions tends to increase in the second stage. 
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It is observed that with increase in the value of 1A , the optimum values of 
*

1  and 
*

2  remain constant, but the 

optimum value of 
*TP  decreases. When 2A  increases, 

*

2  does not change, but 
*

1  and 
*TP  decrease. Also, by 

increasing the value of 1T , the optimum value of 
*

1  increases, but the values of 
*

2  and 
*TP  decrease. This result 

implies that the expected number of reworking actions in the first stage increases; therefore, the cycle time of 

production may increase. Moreover, when 2T  increases, 
*

1  and 
*TP  decrease, but 

*

2  increases. This result implies 

that the expected number of reworking actions decreases and the cycle time of production may decrease due to higher 

processing time in the first stage. Furthermore, the optimum value of 
*

2  increases as 1  increases, but 
*

1  remains 

constant and the optimum value of 
*

1  increases as 2  increases, but 
*

2  remains constant. Also, as 1  increases, the 

optimum value of 
*

1  remains constant, but
*

2  increases and 
*TP decreases. By increasing 2 , the optimum values of 

*

2  and 
*

1  increase and the optimum value of 
*TP  decreases. Since increasing the standard deviation results in 

increase in the scrapping cost, the optimal process mean increases in order to decrease the effect of large scrapping costs 

(considering price of one sold item). In general, it is seen that when parameters of one production stage change, the 

optimal adjustment of that stage does not substantially differ, but the optimal adjustment of the other production stage 

completely changes in most of the cases, denoting that the optimal adjustments of two production stages are completely 

dependent on each other. 

 

VI. INSPECTION ERROR 

There are two types of inspection error in the sampling plan; the first type is classifying a conforming item as non-

conforming and the second type is classifying a non-conforming item as conforming. Therefore, the inspector rejects 

some conforming items and accepts some non-conforming. Assume that   is the probability of the first type of error 

and   is the probability of the second type of error. If ijP  denotes the probability of going from state i to state j in this 

case, we have 

12 1 1 1 1 1 12 14(1 ) ( ) ( ) (1 ) ,P P L X U P X L P P              (24)  

14 1 1 1 1 1 14 12(1 ) ( ) ( ) (1 ) .P P X L P L X U P P              (25) 

Also, the following is obtained: 

11 12 14 111 .P P P P       (26) 

On the same basis, the following is obtained: 

23 2 2 2 2 2 23 24(1 ) ( ) ( ) (1 ) ,P P L X U P X L P P              (27) 

24` 2 2 2 2 2 24 23(1 ) ( ) ( ) (1 ) .P P X L P L X U P P              (28) 

Therefore, 

22 22.P P   (29) 
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Now, we can derive the Markov chain of production process in this case as follows: 

11 12

220

P P

P

  
   

Q , 
24

23 24

0 P

P P

 
    

R , 
0 0

0 0

 
  
 

O , 
1 0

.
0 1

 
  
 

I   (30)                                                          

Now, we can evaluate the objective function in Eq. (13) and determine the optimal process adjustment under the 

presence of inspection errors. Table II presents a sensitivity analysis of the values of inspection errors. 

Table II. Behaviors of optimal mean and expected profit with the variation of inspection errors 

Inspection errors Case # Inspection errors ( , )   
1


 2


 TP
 

( , )   

1 (0,0) 10.45 15.075 836.7864 

2 (0.05,0.1) 10.40 15.05 698.5106 

3 (0.05,0.2) 10.375 15.025 702.5705 

4 (0.1,0.1) 10.40 15.075 563.3825 

5 (0.1,0.2) 10.375 15.05 567.1774 

6 (0.1,0.3) 10.325 15.00 571.3197 

7 (0.3,0.1) 10.35 15.20 93.7542 
           

It is observed in Table II that by increasing the value of  , the optimum values of 
*

1  and 
*

2  decrease, but the 

optimum value of 
*TP  increases. The total profit increases by ignoring the cost of non-conforming items sold in the 

market. Also, with increase in  , the optimum values of 
*

1  and 
*TP  decrease, but 

*

2  increases. Considering the 

first type of error in the model results in decrease in the total profit of the system as it is expected. We have modified 

the state of Markov chain in order to consider penalty cost of selling non-conforming items in the market. The new 

states are as follows: 

State 1: An item is being processed in the first stage of the production process 

State 2: An item is being processed in the second stage of the production process 

State 3: An item is accepted as finished item 

State 4: An item is scrapped 

State 5: A conforming item is sold in the market 

 

Transition probability matrix can be expressed as follows: 

   

11 12 14

22 23 24 25

,

0 0

0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

P P P

P P P P

 
 
 
 

  
 
  
 

P
 

(31) 

where, 
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12 1 1 1 1 1

15

14 1 1 1 1 1

11 1 1

23 2 2 2

25 2 2

24 2 2 2 2 2

22 2 2

(1 ) ( ) ( ),

0,

(1 ) ( ) ( ) ( ),

( ),

(1 ) ( ),

( ),

(1 ) ( ) ( ) ( ),

( ).

P P L X U P X L

P

P P X L P L X U

P P X U

P P L X U

P P X L

P P X L P L X U

P P X U

 

 





 

     



     

 

   

 

     

 

 

  (32) 

Transition probability matrix in the form of 
 

  
 

Q R
P

O I
 can be expressed as follows: 

11 12

220

P P

P

 
  
 

Q

, 

14

23 24 25

0 0P

P P P

 
  
 

R

, 

0 0

0 0

0 0

 
 

  
 
 

O , 

1 0 0

0 1 0 .

0 0 1

 
 

  
 
 

I      (33) 

Thus, the following is obtained: 

12

11 11 22

22

1

1 (1 )(1 )

1
0

(1 )

P

P P P

P

 
   
 
 
  

M = 
11 12

22

,
0

m m

m

 
 
 

  (34)                                                                         

12 23 12 2514 22 12 24

11 22 11 22 11 22 13 14 15

23 24 2523 2524

22 22 22

(1 )

(1 )(1 ) (1 )(1 ) (1 )(1 )
.

(1 ) (1 ) (1 )

P P P PP P P P

P P P P P P f f f

f f fP PP

P P P

  
              
   
 

   

F M R

 

Now, Eq. (1) can be modified as follows: 

( ) [ ( ) ( ) ( ) ( ) ( ) ( )].E PR E RV E PC E SC E RC E QC E PCO     
 (35)

 

If PCO denotes penalty cost of selling a non-conforming item, according to Eq. (35), the following is obtained: 

12
13 11 1 22 2

11

14 12
1 24 2 1 2 15

11 11

( 1) ( 1)
(1 )

.

( ) ( ) ( )
1 1

P
f SP m RC m RC

PH
TP

P PC
SC f SC PC PC E QC f PCO

P P

 
    

 
 
        

 (36) 



38                    M. S. Fallah Nezhad , S. Ayeen , F. Zahmatkesh Saredorahi and H. Rasay ......... Optimal Process Adjustment …           

 

Now, we can evaluate the objective function in Eq. (36) and determine the optimal process adjustment under the 

presence of inspection errors. Table III denotes a sensitivity analysis of the values of inspection errors 

Table III. Effect of penalty cost on optimal mean and expected profit with the variation of inspection errors 

PCO  Case # Inspection errors 
( , ) 

 1


 2


 TP
 

50 

1 (0,0) 10.45 15.075 836.7864 

2 (0.05,0.1) 10.45 15.10 694.8661 

3 (0.05,0.2) 10.45 15.10 694.1502 

4 (0.1,0.1) 10.425 15.125 561.3574 

100 

1 (0,0) 10.45 15.075 836.7864 

2 (0.05,0.1) 10.45 15.10 693.2311 

3 (0.05,0.2) 10.47 15.05 692.1504 

4 (0.1,0.1) 10.45 15.10 559.8103 
         

It is observed in Table III that by increasing the value of  , the optimal adjustment does not change in the case of 

50PCO  , but in the case of 100PCO  , the value of 
*

1  increases and the value of 
*

2  decreases. Also, the 

value of 
*TP  decreases as it is expected. Moreover, by increasing the value of  , the optimal adjustment does not 

change in the case of 100PCO  , but in the case of 50PCO  , the value of 
*

1  decreases and the value of 
*

2  

increases. Also, the value of 
*TP  decreases as it is expected. 

 It is obvious that considering the penalty cost of selling non-conforming items in the market leads to decrease 

in the total profit; thus, the total profit reported in Table III will be less than that in Table II. If the producer is 

responsible for non-conforming items sold in the market and exposed to the penalty cost of selling non-conforming 

items, the model with penalty cost is recommended. Otherwise, this model is not recommended. 

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

In this paper, an absorbing Markov chain model with reworking loops was developed to determine the optimal 

process means for maximizing the expected profit of two-stage production systems in which all items were inspected to 

be classified as accepted, scrapped, or reworked. Also, performance of the proposed methodology under inspection 

errors was investigated. Numerical examples were provided to illustrate the applicability of the proposed model. In 

general, it was seen that when parameters of one production stage changed, the optimal adjustment of that stage did not 

substantially differ, but the optimal adjustment of the other production stage completely changed in most of the cases, 

denoting that the optimal adjustments of two production stages were completely dependent on each other. Moreover, 

the effect of inspection errors was analyzed and it was concluded that presence of inspection errors would affect the 

optimal adjustment. 

As a future research direction, in cases with high inspection costs, the proposed model can be extended by 

considering the sampling plans instead of 100 % inspection policy and assuming that the standard deviation of the 

quality characteristic is unknown. In this condition, t distribution should be employed for evaluating the required 

probabilities. Another extension of this research is considering multi-stage production process rather than the two-stage 

problem. Another aspect that deserves further attention is considering the inherent uncertainty of the concerned 

parameters. 
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