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Abstract- Polar codes, that have been recently introduced by Arikan, 
are one of the first codes that achieved the capacity for vast numerous 
channels and they also have low complexity in symmetric memoryless 
channels. Polar codes are constructed based on a phenomenon called 
channel polarization. This paper discusses relay channel polarization in 
order to achieve the capacity and show that if inputs of two different 
relay channels follow the Arikan polarization structure, then they will 
be categorized as good and bad relay channels. Also, it has been shown 
that the eencoding and decoding complexity for these codes is 

( log )O N N , N is the code-length , and their error probability is 
( )(2 )NO



 
like the Arikan's work, β is a number between [0,0.5]. In order to 
validate our construction of polar codes for relay channels, some 
numerical examples for this idea have been presented. Also, the 
efficiency of this construction for decode-and-forward and compress-
and-forward relaying strategies have been analyzed by using simulation 
results for finite block length in relay channels with orthogonal receiver. 

  
Index Terms- Polar code, Capacity, Channel polarization, Relay channel, Error 
probability, Complexity.  

 

I. INTRODUCTION 

    The relay channel, introduced by Van der Meulen in [1], is a communication channel with a sender 

and receiver assistant in communication by using a relay node. A memoryless relay channel is defined 

by the probability distribution ( , , )r rW Y Y X X , where X is the symbol transmitted by the source, 

rX  is the symbol transmitted by the relay, rY is the symbol received by the relay and finally Y is the 

symbol received by the destination as shown in Fig. 1. 

    The message M has been assumed to be uniformly distributed over the message set and the 

average probability of error is defined as , N is the code-length. The rate R for this  
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Figure 1. A relay channel with probability distribution ( , , )r rW Y Y X X  

 

channel is achievable if there is a sequence of (2 , )NR N  codes such that the error probability of 

infinite block length converges to 0. Generally, the capacity of the relay channel is still an open 

problem. 

    Cover and El Gamal established an outer bound on the capacity which is known as the cut-set 

bound in [2]. The cut-set bound is given by: 

( , )
max min { ( , ; ), ( ; , )}.

r
r r r r

p x x
C I X X Y I X Y Y X                                                                             (1) 

    Most of the important coding strategies for relay channels are based on two different philosophies 

of information processing at the relay: Decode-and-Forward (DF) and Compress-and-Forward (CF). 

For DF strategy, the relay recovers the message transmitted by the source and forwards some 

information about it to the destination that complements the observation obtained through the source- 

destination link. The DF lower bound is given by:  

( , )
: max min { ( , ; ), ( ; )},

r
DF r r r r

p x x
C R I X X Y I X Y X                                                                       (2) 

The above equation, (2), can be rewritten in another way. The DF rate can be expressed as follows: 

( ) ( ), ( , )
max min{ ( ; ) ( ; ), ( ; )},

r r
DF r r r r

p v p x p v x
R I X Y I V YX I V Y X                                                                    (3) 

that we define V~Unif [1:q] for some prime q. For CF strategy, the relay helps to communicate by 

sending a description of its received sequence to the receiver. This description is correlated with the 

received sequence; therefore, Wyner-Ziv coding is used to reduce the rate that is needed to 

communicate the received sequence to the receiver. The CF lower bound is given by:  

: max ( ; , , ),CF r rC R I X Y Y X 
)

                                                                                               (4) 

where the maximum is taken over pmfs condition ( ) ( ) ( , )r r r rp x p x p y x y
)

 such that 

( ; ) ( ; , )r r r rI X Y I Y Y X Y
)

, where rY
)

 is a estimation of the symbol received by the relay. 
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Recently, polar codes have been introduced by Arikan through a phenomenon called channel 

polarization and these type of codes have been shown to be one of the first kind of codes that achieve 

the capacity for binary input symmetric channels [3]-[4]. Polar codes and polarization scheme have 

been extended to various multi-terminal scenarios, such as the Multiple-Access Channels [5-7], 

Broadcast Channels [8,9], etc.  

    This paper presents polar coding scheme and channel polarization phenomenon for relay channel. 

In addition, it shows how the polar coding for the relay channel can be proposed and will explain the 

relay channel polarization by using the polarization of cut-set bound. The proposed schemes possess 

the standard properties of polar codes with regards to encoding and decoding, which can be performed 

with complexity ( .log )O N N . Also, for this scheme the block error probability is an exponential 

function of the block length, likewise ( )(2 )NO
 for any 0 0.5  . The second part of this paper 

presents some numerical examples for this constructions in order to validate our idea for analyzing the 

polar codes for relay channels. Also, the efficiency of using polar codes for DF and CF relaying by 

using simulation results in relay channels with orthogonal receiver has been analysed. 

    This paper is organized as follows: In Section II, the background on polar codes and previous 

works on relay channels with respect to polar coding are reviewed. It also contains the achieved result 

of the DF and CF strategy in general three-node relay channel using polar codes shown in this section. 

In Section III, polarization of relay channel for cut-set bound is proven. In Section IV, polar codes 

were shown to be proper for polarized relay channels with orthogonal receiver and finally, Section V 

concludes the paper. 

II. POLAR CODES AND RELAY CHANNEL 

In this section of the paper, a brief overview of the groundbreaking work of Arikan [3] on polar 

codes and channel polarization is studied and a brief part of previous works on relay channels with 

respect to polar coding are presented.  

A. Polar codes 

Polar codes are constructed based upon a phenomenon called polarization [4]. The basic 

polarization matrix is given as 2

1 0

1 1
G

 
  
 

. The Kronecker power of G is defined for any 1n f  

according to 
( 1)

2
2 ( 1) ( 1)

2 2

0n
n

n n

G
G

G G

 


   

 
  
 

. For a DMC with a binary-input output-symmetric can be 

defined as a channel splitting map ( , ) ( , )W W W W  by following [3]. The synthesized channels 

2
2:W F Y   and  2

2 2:W F F Y    which 2F  is  0,1 , are given by: 



4                                                                       Polarization of Multi-Relay Channels: A Method for DF and CF Relaying...                                   

 

 

2

2
1 1 1 1 2 2 2

{0,1}

1
( ) ( ) ( ),

2u

W y u W y u u W y u



                                                                       (5) 

2
1 1 2 1 1 2 2 2

1
( , ) ( ) ( ).

2
W y u u W y u u W y u                                                                                      (6) 

After the channel splitting to: W  and W  , which are noisier and more reliable as compared to the 

original channel W , respectively. In order to measure how good a binary-input channel is W , Arikan 

uses the Bhattacharyya parameter for a channel  W denoted by ( )Z W  and it has been defined as 

follows [3]: 

( ) ( 0) ( 1).
y Y

Z W W y W y


                                                                                                              (7) 

Channels with ( )Z W  close to zero are almost noiseless while channels with ( )Z W  close to one are 

almost pure-noisy channels [4]. Let [ ]N denote the set of positive integers less than or equal to N . 

The set of good bit-channels ( )NI W  is defined as follows for any 0 0.5  : 

( )
( )

2

2
( ) : { [ ]: ( ) }.

N
i

N NI W i N Z W
N



                                                                                                  (8)    

Then, the channel polarization theorem is exhibited by showing that the fraction of good bit-channels, 

approaches the symmetric capacity ( )I W as N goes to infinity [3]-[4]. ( )I W is the mutual 

information between the input and output of  W when input distribution has been considered to be 

uniform. Eq. (8) leads to the construction of capacity-achieving polar codes [3]. For any 0 0.5  , 

the reliability of polar codes is determined by error-probability block under the Successive 

Cancellation (SC) decoding yields: 

( ) 2( ) (2 ).
ni

e N
i A

P Z W o




                                                                                                                               (9)  

Where the set { [ ]: ( ) [0, ]}i
NA i N Z W     is characterized as follows, where 0 f .  

B. Previous works 

In polar codes introduced by Arikan, two methodologies were presented. The main idea was that the 

capacity achieving codes for a large case of channels can be constructed and also ( )i
NP approaches the 

error-free channel or a completely noisy channel when N grows. The rate of error-free channels 

approaches the channel capacity. The main purpose of the current research that proposed the polar 

codes with relay channel is to design the capacity achieving codes. The first application of polar codes 

for the relay chennels was reported in [9]-[10]. In this study, it has been shown that polar codes can 

achieve the capacity of symmetric physically degraded relay channels with binary input. Also, [11] 

developed polar code in order to achieve the capacity of DF relaying in binary symmetric relay 

channel, which is stochastically degraded with orthogonal receivers. It has been shown that polar 
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codes can achieve the capacity of binary input symmetric degraded relay channel in studies by [12]-

[13]. Also, the achievability of the two other lower bounds using polar coding techniques was shown 

in [13]. A new scheme in order to choose proper indices for sending the information bits in a 

polarized relay channel has been presented in [14]. 

In all the dicussed papers, capacity achieving is the main purpose for using polar codes. The 

capacity increases regarding to N   just in [5]-[6]-[7]. This approach shows that the capacity of 

one of the polarized channels increased while the other decreased with respect to the main channel. In 

[7], a novel method for polarization a MAC was demonstrated and it has been shown that polarization 

of a general MAC with a point-to-point channel can give a larger achievable rate region. In contrast to 

the first approach, the main idea behind the second approach was that by increasing the number of 

channels, N , the capacity region would increase and it is worth mentioning as an Information 

Theoretic point of view. In this paper, by using the second methodology via two relays, the capacity 

of one relay increases while the other decreases and the capacity region of the relay changes when the 

links are polarized. This idea is demonstrated in three scenarios in section III. 

C. DF and CF Relaying using Polar Codes 

This section discusses recent researches about DF and CF relaying using polar codes briefly. Polar 

coding schemes for DF strategy have been proposed in degraded relay channels, where 

( , )R RX X Y Y  construct a Markov chain, [10]-[13]. Under the degradation condition, the two 

polarization processes involved in the DF scheme possess a nested structure. A polar coding scheme 

for CF has been proposed in relay channels with orthogonal receiver components, where  

( ', '')Y Y Y  and ( , , ) ( ', ) ( '' )r r r rW y y x x W y y x W y x  in [11]. This scheme achieves the so-

called symmetric CF rate. The main result for this section is that for any transmission rate DFR Rp  

and any fixed rate CFR Rp , there exists a sequence of polar codes with block error probability 

( ) Pr{ }n
eP M M 

)
 under SC decoding bounded as ( )(2 )N

eP O
  for any 0 0.5   in a 

stochastically degraded relay channel with DF strategy and for a relay channel with CF strategy with 

orthogonal receiver components, respectively in [11]-[14].  

III. POLARIZATION FOR RELAY CHANNEL 

    The main idea of channel polarization is extended to relay channel in this section, in which this 

technique is described in order to polarize a given binary-input relay channel same as studied by [3], 

[5-8]. The polarization of cut-set bound is also proven. It is shown that after polarization of two relay 

channels, the capacity of one relay increases while the other decreases and the capacity region of the 

relay changes for cut-set rate.  
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    Theorem 1. (Rate polarization for two relay channels) Considering Fig.2, there are three scenarios 

to represent rate bounds of R  and R  for two relays channel after polarization as follows: 

 

1

1

1

2 2 2 2
1 1 1 1 1 1

1 2
2 2 2 2

1 1 1 1 1 1 1 2

2 2 2
1 22 2 1 1 2 1 2

{ ( ; ), ( ; )} ,( , ) (1,1)

min { ( ; ), ( ; )} ,( , ) (1,0)

,( , ) (0,1){ ( ; ), ( ; )}

r

r

r

I U V Y I U Y Y V S S

R I U V Y I U Y Y V S S

S SI U V Y V I U Y Y V



  
 

                                                    (10) 

and 

1

1

1

2 2 2 2
2 2 1 1 1 2 1 1 1

1 2
2 2 2 2

1 1 1 1 1 1 1 2

2 2 2
1 22 2 1 1 2 1 2

{ ( ; ), ( ; )} ,( , ) (1,1)

min { ( ; ), ( ; )} ,( , ) (1,0)

,( , ) (0,1){ ( ; ), ( ; )}

r

r

r

I U V Y U V I U Y Y U V S S

R I U V Y I U Y Y V S S

S SI U V Y V I U Y Y V



  
 

                                           (11) 

Binary parameter S is defined such that 1S   and 0S   are representatives of applying and not 

applying matrix 
2

G for encoding section of input bits of source and relay, respectively. 1S  represents 

the case of input bits from the source, while 2S  represents the case of input bits from the relay.  

    Proof. Let us define, two independent uses of the channel W  given in a relay channel 2W  as 

shown in Fig. 2. The cut-set bound in a channel 2W , is described by the two following quantities: 

 

1 21 2 1 2 1( , ; ) 2 ( )r rI X X X X Y Y I W                                                                                               (12) 

and 

1 2 1 21 2 1 2 2( ; , ) 2 ( ).r r r rI X X Y Y Y Y X X I W                                                                                     (13) 

Also, the cut-set bound is as follows: 

1 1 1

2 2 2 2 2 2 2
1 1 1 1min{ ( , ; ), ( ; , )}.r r rR I X X Y I X Y Y Xp ,                                                                          (14) 

As shown in Fig. 2., we have; 2 2
1 1 2X U G  and 

1

2 2
1 2rX V G . Now we get: 

1 21 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 1

1 1 1 2 2 2 1 1 1 1 1

2 ( ) ( , ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; , ) ( ) ( )

r rI W I X X X X Y Y I U U V V Y Y I U V Y Y I U V Y Y U V

I U V Y Y I U V Y Y U V I W I W 

    

  
       (15) 

and 

1 2 1 2 1 2 1 2

1 2

2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2

2 1 2 1 1 2 2 2

2 ( ) ( ; ; ) ( ; ; ) ( ; ; )

( ; ; , ) ( ) ( ).

r r r r r r r r

r r

I W I X X Y Y Y Y X X I U U Y Y Y Y V V I U Y Y Y Y V V

I U Y Y Y Y U V V I W I W 

  

  
       (16) 
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Fig. 2.  Relay channel 2W formed by combining two relay channel.  

 

As shown, 1( )I W   and 2 ( )I W   indicate proper bounds for relay channel 
1 21 1 1 2 r rU V Y Y Y Y  ; and 

1( )I W   and 2 ( )I W   also indicate proper bounds for relay channel 
1 22 2 1 2 1 1 2r rU V Y Y Y Y U V V  . Let 

channel  : r rW X X Y Y   be a relay channel with {0,1} input alphabet. We define two new relay 

channels as 2 2: r rW X X Y X     and 2 2: r r rW X X Y Y X X      , in which we have: 

1 1 2

2 2 2

2 2
1 1 1 1 1 2 1 2 2 2 2

,

1
( , , ) ( , , ) ( , )

4
r

r r r
u x v x

W y y u v W y y u u v v W y y u v

 

                                      (17) 

and 

1 1 2

2 2
1 1 1 2 2 1 1 2 1 2 2 2 2

1
( , , , , ) ( , , ) ( , )

4r r rW y y u v u v W y y u u v v W y y u v                                          (18) 

 

where W   and W   are correspond to relay channels 
1 21 1 1 2: r rW U V Y Y Y Y   and 

1 22 2 1 2 1 1 2: r rW U V Y Y Y Y U V V   , respectively. Note that W   is a bad channel and W   is a good 

channel as compared to an original channel W . Also for capacity bound, we get: 

( ) ( ) ( ); 1,2i i iI W I W I W i                                                                                                (19) 

To prove them, since 1 1( ) ( )I W I W   and 2 2( ) ( )I W I W  , then, according to (11) and (12), it 

should be ( ) ( ) ( ); 1,2i i iI W I W I W i    . Correspondingly, for R, we get: 

( ) ( ) ( )R W R W R W p p                                                                                                         (20) 

    Now, we define parameter S  such that 1S   and 0S   are representatives of to apply and not to 

apply matrix 
2

G for encoding section of input bits from the source and relay, respectively. 1S  
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represents the case relevant to the input bits from the source, while 2S  represents the case relevant to 

the input bits from the relay.  

1 2

(1,1) , 1

( , ) (1,0) , 2

(0.1) , 3

i

S S i

i


 
 

                                                                                                           (21) 

However, in this article, they are only investigated for cut-set bound: 

1

1

1

2 2 2 2
1 1 1 1 1 1

2 2 2 2
1 1 1 1 1 1

2 2 2
2 2 1 1 2 1 2

{ ( ; ), ( ; )} , 1

min { ( ; ), ( ; )} , 2

, 3{ ( ; ), ( ; )}

r

i r

r

I U V Y I U Y Y V i

R I U V Y I U Y Y V i

iI U V Y V I U Y Y V



  
 

                                                                  (22) 

and 

1

1

1

2 2 2 2
2 2 1 1 1 2 1 1 1

2 2 2 2
1 1 1 1 1 1

2 2 2
2 2 1 1 2 1 2

{ ( ; ), ( ; )} , 1

min { ( ; ), ( ; )} , 2

, 3{ ( ; ), ( ; )}

r

i r

r

I U V Y U V I U Y Y U V i

R I U V Y I U Y Y V i

iI U V Y V I U Y Y V



  
 

                                                          (23) 

    Lemma 1.  For analyzing (10-11) and (22-23), we have the following inequalities, Firstly, for  

2 2 2( ; ) [0, ) (1 ,1]I U V Y   U ,                                                                                                           (24) 

we have: 

2 2 1 2 1 1 2 2 2( ; ) ( ; )I U V Y Y U V I U V Y  p ,                                                                                                (25) 

 also for  

22 2 2( ; ) [0, ) (1 ,1]rI U Y Y V   U
                                                                                                       (26) 

we have 

1 2 22 1 2 1 1 2 2 2 2( ; ) ( ; )r r rI U Y Y Y Y U V V I U Y Y V  p
.                                                                                (27) 

   Proof. For a channel with input binary and arbitrary output alphabet   we have :{0,1}W   and 

 2 1 2 1 2 2( ; ) ( ; )I A B B A I A B  p , then 2 2( ; ) [0, ) (1 ,1]I A B   U , that 1 2 1 2, , ,A A B B  are random 

variables jointly distributed as 

1 2 1 2, , , 1 2 1 2 1 1 2 2 2

1
( , , , ) ( ) ( )

4A A B BW a a b b W b a a W b a  ;                                                                          (28) 

then there is a : ( ) 0   f , where 0 f  [7,17]. Note that this can be chosen irrespective of the 

alphabet  . Therefore, it is concluded that for any 0 f , there is 0 f  such that if  W is a binary 
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input relay channel with  1 1( ) ( )I W I W   p , then  1( ) [0, ) (1 ,1]I W   U . Similarly, if W is such 

that 2 2( ) ( )I W I W   p , then 2 ( ) [0, ) (1 ,1]I W   U . For 1i  , with considering i i iA U V  and 

i iB Y , we can conclude that 

2 2 2( ; ) [0, ) (1 ,1]I U V Y   U                                                                                                           (29) 

and  

2 2 1 2 1 1 2 2 2( ; ) ( ; )I U V Y Y U V I U V Y  p ;                                                                                                (30) 

and with define i iA U  and 
ii r i iB Y Y V can be concluded that  

22 2 2( ; ) [0, ) (1 ,1]rI U Y Y V   U                                                                                               (31) 

and  

1 2 22 1 2 1 1 2 2 2 2( ; ) ( ; )r r rI U Y Y Y Y U V V I U Y Y V  p .                                                                                (32) 

    Lemma 2.  For analyzing (10-11) and (22-23), we have, 

 1 1 1( ; ) [0, ) (1 ,1]I U V Y   U                                                                                                     (33) 

and  

1 1 1 2 1 1 1( ; ) ( ; )I U V Y Y I U V Y  p ;                                                                                                         (34) 

also  

11 1 1( ; ) [0, ) (1 ,1]rI U Y Y V   U                                                                                                         (35) 

and  

1 2 11 1 2 1 2 1 1 1( ; ) ( ; )r r rI U Y Y Y Y V V I U Y Y V  p .                                                                                      (36) 

   Proof. The proof of this lemma is similar to the proof of lemma 1. 

    Lemma 3.  For analyzing (10-11) and (22-23), we have,  

2 2 2( ; ) [0, ) (1 ,1]I U V Y   U                                                                                                    (37) 

and 

2 2 1 2 1 2 2 2( ; ) ( ; )I U V Y Y V I U V Y  p ;                                                                                                    (38) 

also 

22 2 2( ; ) [0, ) (1 ,1]rI U Y Y V   U                                                                                               (39) 

and  
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1 2 22 1 2 2 2 2 2( ; ) ( ; )r r rI U Y Y Y Y V I U Y Y V  p .                                                                                        (40) 

   Proof. The proof of this lemma is similar to the proof of lemma 1. 

    Now suppose W is a binary input relay channel, let 1{ }n nB   be an i.i.d. uniform random variable 

valued in {-,+}, with 1 1

1
Pr( ) Pr( )

2
B B      ; we defined a relay channel valued random process 

{ : 0}nW n   via, 

0 1: , : , 1nB
n nW W W W n                                                                                                      (41) 

Further, we defined random processes 1{ : 0}
n

I n   and 2{ : 0}
n

I n  such that: 

1 1 2 2: ( ), : ( ).
n nn nI I W I I W                                                                                                      (42) 

Since nW is a binary input relay channel, 1( )nI W  and 2 ( )nI W take values in [0,1]; hence the 

mentioned processes are bounded. The martingale claims follow from (15) and (16), respectively. The 

process 1 2( ( ), ( ))n nI W I W  converges almost surely, and the limit 1 2 1 2( , ) lim( ( ), ( ))n nn
I I I W I W  

 . 

Therefore, The processes 1{ ( ) : 0}nI W n   and 2{ ( ) : 0}nI W n  are the bounded martingale. 

The following theorem is presented for Bhattacharya parameter of relay channels polarized.  

    Theorem 2. Consider each relay channel with 1( ) MACI W I and 2 ( ) BCI W I , for the BC phase, 

we have: 

2

, ( ) 2 ( )

( ) ( )
BC BC

BC

BC BC

W Z W Z W
W

W Z W Z W

 

 

  


                                                                                        (43) 

also, for MAC phase of the relay channel, we have: 

2

, ( ) 2 ( )

( ) ( )
MAC MAC

MAC

MAC MAC

W Z W Z W
W

W Z W Z W

 

 

  


                                                                                  (44) 

   Proof. The proof is similar to the proof of Theorem 3 in [7]. The fact is that that for any binary input 

discrete memoryless channel W , we have ( ) ( ) 1I W Z W  , being used; in fact 2 2( ) ( ) 1I W Z W    

[4]. In polarizing mode, using [3] we get: 

2: ( ) 2 ( ) ( ) ,W Z W Z W Z W                                                                                                  (45) 

2: ( ) ( ) ;W Z W Z W                                                                                                               (46) 

and by using [5]-[8] it can be written as ( ) 2 ( )Z W Z W   and 2( ) ( )Z W Z W  . The relay channel 

is combined with two MAC and BC channels and also it can be considered as a point-to-point channel. 

Regarding [19], the following relations can written for MAC and BC phase of relay channel, 

respectively. For BC phase, we have: 
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1
2

1

( ) 2 ( ),

( ) ( ) ,
BC BC

BC

BC BC

Z W Z W W
W

Z W Z W W

 

 

  


                                                                                         (47) 

also, for MAC phase, we have: 

2
2

2

( ) 2 ( ),

( ) ( ) ,
MAC MAC

MAC

MAC MAC

Z W Z W W
W

Z W Z W W

 

 

  


                                                                                  (48) 

So, in general, we have: 

1 2( ) max{ ( ), ( )} max{2 ( ),2 ( )},BC MACZ W Z W Z W Z W Z W                                                   (49) 

and 

2 2
1 2( ) max{ ( ), ( )} max{ ( ) , ( ) }.BC MACZ W Z W Z W Z W Z W                                                    (50) 

Example 1: Let us consider that all links in Fig. 2 are binary erasure channel. According to Theorem 

1, one can find the capacity bound of polarized relay channels after polarization. For a binary erasure 

relay channel where the erasing probability between sender and relay, sender and destination, and 

relay and destination is 1 , 2  and 3  respectively, the capacity region is bounded as: 

     1 2 1 2 2 3max min{ ( ), ( )} max min{ 1 , 1 1 }R I W I W
 

                                                  (51)                       

where   and i  are coupling and erasure parameter respectively, and they are between 0 and 

1 [20]. Coupling parameter describes the proportion of information that has been sent via 

sender and it is available at the relay. 

Now, for case    1 2, 1,1S S  in Theorem 1, one can find out that after polarization the 

capacity region is bounded by two quantities R   and R   as follows:  

   2 2
1 2 1 2 1 2 2 2 3 3max min ( ), ( ) max min 1 (2 )(2 ),(1 2 ) (1 2 )R I W I W

 
                   

 
(52)                         

and 

   2 2 2
1 2 1 2 2 3max min ( ), ( ) max min 1 ( ) ,(1 ) (1 )R I W I W

 
            .                                 (53)       

The aforementioned relations were evaluted using Theorem 1 and equalities (35) and (36). In 

these relations, clearly, we have: 

2
1 2 1 2 1 2 1 21 ( )(2 )(2 ) 1 1 ( )                                                                                          (54)                         

and 

2 2 2 2
2 2 3 3 2 3 2 3(1 (2 )) (1 (2 )) (1 ) (1 ) (1 ) (1 )                                                       (55) 
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Table1.  The value of capacity for different channel parameter 

 

0.5 0.4375 1.5 0.9375 1 0.75 

 

 

Then, it can be concluded that 1 1 1( ) ( ) ( )I W I W I W   and 2 2 2( ) ( ) ( )I W I W I W   . Therfore, 

after polarization, we have: ( ) ( ) ( )R W R W R W p p . 

 

Example 2: Consider the relay channel, as shown in Fig. 2. Let  SR SD RDW W W W   , where 

1 2 3 (0.5)BEC       , for binary erasure relay channel from the basic polarization phenomenon 

and by using Theorem (3.2) in [19] and the relation that have been extracted from Example 1, we will 

have the following equalities: 

1 2 0.52
1 2 1 2( ) 1 ( )(2 )(2 ) 1 ( (2 )) ( ) 0.4375,bc bcI W I W                                    (56) 

2 3 0.52 2 2
2 2 3 3 1

( ) (1 (2 )) (1 (2 )) 2(1 2 ) ( ) 0.5,mac macI W I W   
         
               (57) 

and 

1 2 0.52 4
1 2( ) 1 ( ) 1 ( ) 0.9375,bc bcI W I W                                                              (58)     

2 3 0.52 2 2
2 3 1

( ) (1 ) (1 ) 2(1 ) ( ) 1.5mac macI W I W   
      
        .                                  (59)       

Also, always for any 1 2 3      , we have following relations: 

2 2 2 2( ) ( ) (1 2 ) (1 2 ) (1 ) (1 ) 2(1 )(1 ) 2 ( )MAC MAC MACI W I W I W                          

(60) 

and 

2 4 2 2 2( ) ( ) (1 ( (2 )) ) (1 ) 2 2 ( 2 2) 2 2 2 ( ).BC BC BCI W I W I W                               (61)    

So, it can be concluded that, values are reported in Table1,   

( ) ( ) 2 ( )MAC MAC MACI W I W I W                                                                                                         (62) 

and 

( ) ( ) 2 ( )BC BC BCI W I W I W                                                                                                               (63) 
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for any relay channel that each links are polarized; and 

min{ ( ), ( )} 1 max{ ( ), ( )}BC MAC BC MACR I W I W Z W Z W   .                                                            (64) 

Lemma 4. Let’s the channel between source and receiver be defined as SDW , and the channel between 

source and relay be defined as SRW . Then, SDA and SRA are information sets that resulted from polar 

codes of  SDW  and SRW  channels, respectively. For any two discrete SDW  and SRW  channels 

memoryless, if  SDW is degraded of  SRW , then SD SRA A . 

   Proof. The proof of this Lemma is like the proofs of Theorem 2 by [10] and Theorem 1 by [13]. 

According to Lemma 4 and polar codes construction, let us define 0m  to be the determined 

information vector at a source, and 0 SRAm u , where u  is the length of N  from the input source; 

and 
SRAu  is the determined sub-vector [ ]

SRi Au  . In addition, we define 01m  as 01 \SR SDA Am u , in where 

\SR SDA Au is the sub-vector \[ ]
SR SDi A Au   and \SR SDA A displays information set for SRW and frozen bits set 

for SDW ; also, we define 02 SDAm u , where 
SDAu is the sub-vector [ ]

SDi Au   and SDA means information 

set for SDW and SRW channels. In this schema, if no transition error occurs in SRW , then 1 01m m . 

Now, let 2m  be a new message which is sent from source for MAC phase of the relay channel. 1m
)

 

and 2m
)

 indicate estimations of 1m and 2m  messages, respectively. Theorem 3 is represented with 

attention to lemma 2 and a special case that explains it. 

    Theorem 3. For any 0.5  and sufficiently large block length of N , for case 0r   and 1r  , the 

upper bound of the error probability under SC decoding, will be: 

( )(2 ).N
eP O

                                                                                                                         (65) 

That is r  indicates the probability of the correlation between the information transition and the 

source, the complexity for this code is ( .log )O N N . 

    Proof. Let parameter E  provides the error probability of 1 2 1 2{( , ) ( , )}m m m m) )
for case 0r  , or 

0 0{( )}m m)
for case 1r  ; then we get: 

Pr( )Pr( ) Pr( )Pr( )C C
e BC BC BC BCP E E E E E E                                                                            (66) 

where BCE  is 0 0{( )}m m)
on the relay, and C

BCE  is its complementary event; then we get: 

Pr( )Pr( ) Pr( )Pr( ) Pr( ) Pr( )

Pr( ) Pr( )Pr( , ) Pr( )Pr( , )

Pr( ) Pr( ) Pr( , )

C C C
BC BC BC BC BC BC

C C C C C C
BC MAC BC BC MAC MAC BC BC MAC

C C C
BC MAC BC BC MAC

E E E E E E E E E

E E E E E E E E E E E

E E E E E E

   

  

  

                         (67) 
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MACE  represents an event 1 2 1 2{( , ) ( , )}m m m m) )
 for 0r  , or 1 1{ }m m)

 for 1r  ; also C
MACE  

represents its complementary event. From (9) and [8], it is well-known that ( )( ) (2 )N
BCP E O

 . For 

the rest of the terms in the right side of (67), Pr( )C
MAC BCE E  represents an event that 

1 2 1 2{( , ) ( , )}m m m m) )
 on the receiver when 0r  , if there is no decoding error on a relay at the end 

of the BC phase. When 1r  , Pr( )C
MAC BCE E  represents an event 1 1{ }m m)

 on the receiver, if there 

is no decoding error on the relay. The upper bound of error probability for MAC phase, which is a 

transition under SC decoding, is Pr( , )C C
BC MACE E E , and upper bound of error probability for the last 

term of (67) is ( )Pr( , ) (2 )C C N
BC MACE E E O

 . This part represents error probability for decoding 

message 0m , which has been sent to receiver in BC phase, and message 1m is successfully decoded. 

From the aforementioned, it can be concluded that ( )Pr( ) Pr( , ) (2 )C C C N
MAC BC BC MACE E E E E O

  . 

Finally, regarding to (66), (67) and the aforementioned explanations, we can write: 

( )Pr( ) (2 ).N
eP E O

                                                                                                             (68) 

   The complexity ( .log )O N N  that is related to encoding and decoding can be achieved for the 

N relay channel. 

IV. SIMULATION RESULTS 

    In this section, the proposed method has been analyzed and some simulation results are shown. 

First, the performance of polar codes for DF relaying in physically degraded relay channel, according 

to lemma 4, is shown in Fig.3. In this analysis, SRW and SDW are independent binary symmetric 

channels. Crossover probabilities for these links are equal to 0.05 and 0.15, respectively, and it has 

been considered as ( ) 0.71SRI W  , ( ) 0.53RDI W   and ( ) 0.31SDI W  . The BER performance for the 

case of a BSC as the relay-destination link is depicted. It has been observed that by increasing relay-

destination link rate, the performance of DF relaying by using polar code is increasing while by 

increasing RDR the performance is decreasing, because the relay-destination link dominates the errors. 

The destination cannot recover the additional information received by the relay that is necessary to 

decode the direct link observation; the effect of these errors becomes the bottleneck of the system.  

    Second, compres-and-forward relaying has been considered and the performance of polar codes for 

this case has been analysed. Crossover probabilities for source-relay and source-destination channels 

are independent binary symmetric channels. The BER for this case is as shown in Figure 4. In this 

case, it has been observed that increasing RDR makes polar codes to perform better for CF relaying 

and decrease the BER for fixed n  (block length) by increasing rate relay-destination link. 
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Fig. 3. Comparison of BER performance from polar codes for DF relaying for BSC with different RDR . 

 

     

 

Fig. 4. Comparison of BER performance from polar codes for CF relaying for BSC with different RDR . 
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Finally, the presented idea for polar codes in relaying channel is optimal for case N  . 

This behavior of polar codes in relay channels is the same to all constructions for finite block 

lengths of polar codes. 

V. CONCLUSION 

 
    In this paper, polar codes have been shown to be suitable for DF and CF relaying with the 

orthogonal receiver via simulation results and represent channel polarization idea for relay channel 

case. They have been described for two relays, when the links are polarized, the capacity of one relay 

increases while the other decreases and the capacity region of the relay changes. Polarization has been 

shown to improve the cut-set bound for relay channel.  
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