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Abstract- Tracking a target which is sensed by a collection of randomly 
deployed, limited-capacity, and short-ranged sensors is a tricky problem 
and, yet applicable to the empirical world. In this paper, this challenge 
has been addressed by introducing a nested algorithm to track a 
maneuvering target entering the sensor field. In the proposed nested 
algorithm, different modules are to fulfil different functions, including 
sensor selection, adaptive maneuver parameter estimation, and target 
trajectory extraction. To that end, proposed algorithm combines the 
auxiliary particle filter with the Liu and West filter and applies them for 
the first time in the wireless sensor network. Its performance is 
compared to one of the most common approaches for this kind of 
problem and the results show the superiority of proposed method in 
terms of the estimation accuracy. The simulation study also involves 
evaluating the proposed algorithm based on the scalability criterion and 
the results are promising since the reduction by 40 percent in the 
number of active sensors leads to, respectively, 18.2 and 14.3 percent 
increments in the RMSE of position and velocity estimates. 
  

Index Terms- Wireless Sensor Network, Tracking, Posterior Cramer-Rao Lower 
Bound, Auxiliary Particle Filter, Adaptive Parameter Estimation 

 

I.   INTRODUCTION 

In recent years, much attention has been paid to the use of WSN in target  positioning & tracking. 

Common networks are mostly based on radar networks, but the advantages and excellence of WSN 

such as the possibility of sampling within the scope of the operation, lacking  line of sight, LOS, low 

cost and low interference have made these systems more effective on the operational field [1]. 

Tracking a target in a wireless sensor network is one of the research topics that have been gaining 

interest in recent years [2-5]. The most important in target tracking in a wireless sensor network is to 
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estimate the position and direction of the target using observed measurements. This estimate is used to 

determine the next header and to wake up sensor nodes that are effective in target tracking. Given that 

the transmitted radiation pattern of the nodes are quasi-spherical and practically it is only possible to 

estimate the distance from the received signal level. The distance detection method from a single node 

is limited to this method and  the prediction of the signal direction is not possible. In many articles, 

Authors assume that the sensor node can extract the target position [6-8]. But, it is possible to 

estimate the locations of targets by a WSN. Another issue that is important, apart from the 

discussion of sensor specifications, is the type of target being tracked by wireless sensor networks. If 

the target can have radiating pattern, it is named an active target. The target with no radiation is 

referred to as passive target. 

Several papers and research articles have been conducted in the field of tracking the passive objects. 

 Wenjun Tang et al. [7] have been working on a consensus-based distributed particle filter in a 

sparse wireless sensor network. The main objective of their paper is to provide an optimal way to 

limit the consensus average error in sparse WSN. In their method, the information is weighted by 

local particle filters and finally, a consensus of these sensors is considered as the optimal output. 

In order to compensate for the sub-optimality of the EKF tracking method, Wang, Xingbo et al.[9] 

provide an algorithm based on the combination of the ML method and the standard Kalman filter. In 

their paper, the ML method is used to estimate the initial location of the target and to eliminate 

nonlinear effects in the range based measurements by using the standard Kalman filter algorithm to 

estimate a target trajectory. Then, this paper compares the tracking error using the proposed method 

with the developed Kalman filter in the simulation result section. 

In [10], Bajelan and  Bakhshi introduced a centralized cluster-based method considering network 

energy consumption. In their method, information of the current state of nodes (including the 

remaining energy of nodes, the distance to sink, and between head-clusters) are considered to select 

the optimal head-clusters for target tracking. 

Ziyia Jia et al.[11] have tried to provide a distributed algorithm to obtain target path in a binary 

network with the same distributed sensors. In this paper, the estimation of the moving target velocity 

(in purely progressive motion) is determined by the time the target is detected by each sensor of the 

network. In this method, target tracking is based on the sensing node tracking, which involves several 

problems, such as fading and Multipath, so this method can be used in high density nodes. 

In [12], Atieh Mohammadian Keshavarz and their colleagues have presented a method for 3D 

tracking of a maneuvering target in WSN with  additive and multiplicative noise in observation 

equation. In this method, a sensor cluster is selected based on the Posterior Cramer-Rao Lower Band, 

PCRLB, and then object tracking is performed using the measurements, obtained from the selected 

sensors, which are then exploited to execute the Interacting Multi Mode Particle Filter, IMMPF. 
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Nevertheless, contributions made by this paper may be visualized through the following three point 

which many references, such as [6, 13-17], have left out of consideration: 

1) All consensus-based methods, such as the Kalman filter and its nonlinear extensions, require the 

initial positioning of the target. As mentioned, each sensor node alone cannot extract the target 

location without the help of its neighbors. In many of these articles, it is assumed that each node can 

estimate the position of the target, which is not based on the limitations of the present article. 

2) In practice, considering the limited battery and computational power, it is not possible to 

implement average consensus filters in each sensor node (based on the state-vector combination 

method). 

3) In many references, the Kalman tracker filter has been developed (or it has been used together 

with other methods) [6], [14], [15], [18], [19], [20], [21], [22]. In many cases, the  multi mode particle 

filter has been used [11-14], [23],[24], [25],[26]. These two methods are the most used tracking filters 

in wireless sensor networks. The methods for tracking a maneuvering target used in these articles are 

restricted on the availability of  the transition probability matrix. In other words, the performance of the 

tracking algorithm is significantly dependent on this matrix and, if poorly designed, the operation of 

the algorithm is heavily influenced [14]. On the other hand, the availibility of the transition 

probability matrix is usually not a realistic expectation in many applications. 

This paper contribution to fix these problems, is a proposed hybrid method for tracking the target 

with unknown maneuvers in WSN. This method, which is called DCAPET1 hereafter, combines 

dynamic clustering based on PCRLB, Multi-lateration and a new average consensus tracking 

algorithm consist of auxiliary particle filter with adaptive parameter estimation called the Liu and 

West filter. 

In this method, after sensor selection and forming a PCRLB-based dynamic cluster in the context of 

the target, by using the Multilateration method, the initial position of the target is extracted from the 

object observation and the result is sent to the data integration center, Fig. 1. 

At this center, with the implementation of proposed tracking algorithm the future position and 

trajectory of the target are foreseen. The corresponding new dynamic cluster is determined to awaken 

the nodes that the target moves towards them. This cycle will be repeated until the end of the tracking 

mission, Fig. 2. 

The content of this article is organized as follows. In Section II, the WSN architecture and target 

dynamics are introduced. In the third section, the formation of the dynamic cluster and the selection of 

active sensors are described. In Section IV, the target observation and positioning model (which is 

used as input for the tracker filter) is expressed and in the section V, The auxiliary particle filter and 

 

                                                      
1 Dynamic Clustering Adaptive Parameter Estimation Tracking 
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Fig. 2. DCAPET Block Diagram 

 

adaptive parameter estimation method is first intuduced and then, with a combination of these two 

methods, a hybrid algorithm will be presented for tracking the target with unknown maneuvers. 

 In the section VI, the accuracy of the proposed hybrid method in the estimation of both the position 

and velocity of a moving target is evaluated . Furthermore, the scalability of the proposed method in 

the tracking of the target with high percentage of dropping in the number of active sensors is 

investigated and the results are presented. Finally, conclusion remarks are given in Sections VII. 

II.   PROBLEM FORMULATION  

Before proceeding to the problem statement, it is important to give a remark about the notation. The 

conversation analytic notation system will be used in this paper is as follows. Vector quantities are 

shown in lower case bold, an example being the state vector,	࢞. Matrices are shown as bold and upper 

case, such as the covariance matrix,	࡯. 

   A.  Network Architecture 

In WSN, sensors are usually distributed randomly in a uniform distribution in the enviroment. 

Based on the principle of WSN, the geographic location of the sensors is determined at the beginning 

of the network configuration, and the position of each sensor in the network is determined. 

Start 
PCRLB-Based 

Dynamic Clustering 

Multilateration-based 

Initial Positioning 

Proposed 

tracking algorithm 

Determine the new head 

cluster 

Stop 

Fig. 1. The proposed tracking method scheme

YES NO 
Object exit from 

network range 
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B.  Target Dynamic and measurement’s equation  

The state equations are expressed in the following general form: 

Vectors ࢜௞~ࣨሺ0,  ࡽ and ࡾ ሻ are white Gaussian noise zero mean withࡽ,௞~ࣨሺ0࢝ ሻ andࡾ

covariance matrices. The coordinate’s vector of the target ࢞௞ is ቂݔ௧ሺ݇ሻ	, ௫ݒ
௧ሺ݇ሻ, ,௧ሺ݇ሻݕ ௬௧ሺ݇ሻቃݒ

்
 and the 

matrices Q, G, F, and R can be time dependent. In this equation "m" is the "mode" of target. The 

mode is varying based on the target accelerations. The jth element ݖ௝ሺ݇ሻ is derived from the nonlinear 

vector mapping ௝݄ሺ࢞௞	ሻin terms of the ࢞௞vector as ቀ൫ݔ௧ሺ݇ሻ െ ௝ݔ
௦൯
ଶ
൅ ൫ݕ௧ሺ݇ሻ െ ௝ݕ

௦൯
ଶ
ቁ
ଵ/ଶ

. 

As a result, jth element of the vector of observations ࢠ௞, which means that ݖ௝	 is the equivalent of 

the received signal from the jth sensor, and it is modeled as follows 

where ࢜௝ሺ݇ሻ is the noise of the received observations in the ݆th sensor at time ݇. To get enough 

observations for tracking, at least, the top 3 sensors are selected based on the PCRLB benchmark to 

estimate the target position [27]. 

III.   SENSOR SELECTION AND DYNAMICS CLUSTERING 

 

One of the major challenges facing the WSN is experiencing a very high communication load as all 

sensors need to send and receive the network information to and from a sink or a base. This network 

information includes sensor observations as well as the basecommands or processed results returning 

to sensors on-demand Given the bandwidth and power constraints, the size of transmitted 

observations should be minimal. Particularly, as the network information communication widely 

shares the main part of network energy depletion . As shown in [13], the power consumption level per 

each transmitted byte is 10 times  greater than per  byte calculation. These values are 400 nJ for each 

byte of transmission and 40 nJ for each byte of calculations in this reference. 

As a result, devising an effecive strategy to reduce the overal network communcation will prolong 

the life span of the network. One of the most promising tools to meet this demand is to select only a 

subset of sensors which have a major impact on the target trajectory estimation accuracy and let other 

sensors sleep. Up to now, various methods have been proposed for selecting a subset of sensor for 

target motion estimation, such as the use of information derived from the covariance matrix of the 

௞ାଵ࢞ ൌ ௞࢞ࡲ ൅ ࡳ ൈ ሺࢇሺ݉ሻ ൅ ௞ሻ࢝
௞ࢠ ൌ ݄ሺ࢞௞ሻ ൅ ௞࢜

 
(1) 

௝ሺ݇ሻݖ ൌ ௝݄ሺ࢞௞ሻ ൅  ௝ሺ݇ሻ (2)ݒ
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estimated error or the trace of the covariance matrix on its determinant, which is called the GDOP2. 

Recently, Husam, and Havens have also used the GDOP measure to select sensors which are moving 

[28].The covariance matrix may be derived from different estimation algorithms such as the Kalman 

filter developed in [29] or the information filter in [30]. In addition to the use of information derived 

from the various estimation algorithms, another approach independent of the type of estimation 

algorithm used to select the appropriate sensors is also used which are based on the calculation of the 

amount of information received by the FIM3. This information is independent of the estimation 

algorithm used to extract them. This approach is called PCRLB based sensor selection because it is 

based on the CRLB minimization, which itself is a reversal of the FIM. In this article, the selection of 

sensors is performed on the basis of the PCRLB minimization criterion, due to its advantages. Since 

the posterior Cramer–Rao expresses the lower bound on the covariance of unbiased estimators of a 

target state vector  [31], one can select those sensors which are providing observations with the least 

error contamination. As mentioned earlier, the posterior Cramer-Rao lower bound ۱௞ for the 

covariance matrix of the state vector error ࢞௞ െ  ෝ௞ is equal to the inverse of the Fisher information࢞

matrix (FIM)	ࡶ௞. 

   In which ࢞ෝ௞ is the estimator of the vector ࢞௞. The following Riccati-like recursion giving the 

sequence of posterior FIMs, Jk, k > 0, for the unbiased estimation of ࢞௞ is provided by [31, 32] 

where 

here ࡴሺ࢞௞ሻ is the Jacobin matrix of all first-order partial derivatives of a vector-valued nonlinear  

function ݄ሺ࢞௞ሻ and			׏௫ାଵൌ
ௗ

ௗ௫ାଵ
, ௫ൌ׏

ௗ

ௗ௫
	. Root mean square error (RMSE) of unbiased estimator 

,ෝ௞ሺ݉ሻ࢞ ݉ ൌ 1,⋯ ,3 is the mth component state vector ܠ௞ in the following  

                                                      
2 Geometric Dilution Of  Precision 
3 Fisher Information Matrix 

۱௞ ൌ ॱሼሺ࢞௞ െ ௞࢞ෝ௞ሻሺ࢞ െ ෝ௞ሻ்ሽ࢞ ൒ ௞ࡶ
ିଵ (3) 

௞ାଵࡶ ൌ ௞ࡰ
ଷଷ െ ௞ࡰ

ଵଶ൫ࡶ௞ ൅ ௞ࡰ
ଵଵ൯

ିଵ
௞ࡰ
ଵଶ ൅ ௞ࡶ

௭  (4) 

௞ࡰ
ଵଵ ൌ ॱሼെ׏௫׏௫ ln ௞ሻሽ࢞|௞ାଵ࢞ሺ݌ ൌ ࡲଵିࡽ்ࡲ

௞ࡰ
ଵଶ ൌ ॱሼെ׏௫׏௫ାଵ ln ௞ሻሽ࢞|௞ାଵ࢞ሺ݌ ൌ ௞ࡰൣ

ଶଵ൧
்
ൌ െିࡽ்ࡲଵ

௞ࡰ
ଷଷ ൌ ॱሼെ׏௫ାଵ׏௫ାଵ ln ௞ሻሽ࢞|௞ାଵ࢞ሺ݌ ൌ ଵିࡽ

௞ࡶ
௭ ൌ෍ॱ൛െ׏௫ାଵ׏௫ାଵ ln ௞ାଵሻൟ࢞|௞ାଵ࢟௝ሺ݌

ே

௝ୀଵ

ൎ෍ॱሾࡴ௝൫࢞ෝ௞|௞ିଵ൯ିࡾଵࡴ௝൫࢞ෝ௞|௞ିଵ൯ሿ

ே

௝ୀଵ

 (5) 

ඥॱሼሾ࢞ෝ௞ሺ݉ሻ െ ௞ሺ݉ሻሿଶሽ࢞ ൒ ܾ௞ሺ݉ሻ (6) 
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Flowchart I.  Sensor Selection Algorithm with the PCRLB benchmark 

1. Input parameters: B is The number of sensors that the  target is in their field of view, M is the 
maximum number of sensors that are allowed to select and threshold ߛ௧௛ is the acceptable 
minimum mean square error. 

2. Output parameters: N Number of selected sensors, A set of sensor indexes selected. 
3.  ܵ ൌ ሼ1, . . . , ܣ ,ሽܤ ൌ ሼ׎ሽ, ܰ ൌ 0 

4. Calculation of  bk for N=N+1 sensors (N of which is related to the selected sensor of the 
previous step) and sensors of the set S. 

5. Selects the sensor that produces the lowest bk. This sensor is identified by the J index. 
6. Remove the selected sensor from S group like S ൌ S/ሼjሽ. 

7. ܰ ൌ ܰ ൅ 1		, ܣ	 ൌ  Uሼ݆ሽ		ܣ
8. Checking the benchmark for the continuation of the algorithm (if N<M and bk <γ୲୦) if yes go 

to step 4 otherwise stop the algorithm. 
 

condition applies: 

Where	ܾ௞ሺ݉ሻ is the ݉th component of diagonal matrix ࡶ௞
ିଵ. The prior distribution of state ݌ሺ࢞଴ሻ is 

Gaussian with covariance ࡯଴, then ࡶ଴ ൌ ଴࡯	 െ 1. Since the objective of tracking the target is 

minimizing the target location error, a suitable criterion for sensor selection is considered as follows: 

where ܾ௞ሺ1ሻ and ܾ௞ሺ3ሻ are the CRLBs of x and y respectively. 

 Choosing the best sensor with the above criterion is a hybrid problem that requires high volume 

computing. According to this issue, in order to reduce the computational burden, the following 

algorithm is proposed. 

IV.   OBSERVATION AND POSITIONING MODEL 

In WSN, As noted above, since these sensors have only the ability to calculate their distance from 

the target, they cannot solely extract the value of the target position. Therefore, the target position 

could be extracted only with the combination of sensors observations (range only). For this subject, at 

least 3 observations of the sensor should be shared so that the Multilateration method can extract the 

target's initial Cartesian position. Here, 3 sensors in a dynamic cluster are selected based on the 

PCRLB criterion participate in the initial positioning process. 

Assume 3 sensor nodes with specific coordinates.  A target with uncertain coordinates in the field of 

view of these sensors is introduced. The distances are measurable to each of the sensor nodes as 

follows: 

ܾ௞ ൌ maxሼܾ௞ሺ1ሻ, ܾ௞ሺ3ሻሽ (7) 

ሺݔ௨ െ ௜ሻଶݔ ൅ ሺݕ௨ െ ௜ሻଶݕ ൌ ,௜ଶݎ ݅ ൌ 1,2,3  (8) 
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It's best to write a set of linear equations based on ሺx୳, y୳ሻ. Here one needs to delete the values of 

xଶ୳	and	yଶ୳. To do this, it suffices to deduce the third equation from the two previous equations: 

After sorting out the equations one has: 

The above equations can easily be expressed as a linear matrix: 
 

Which can be written as the following linear equation: 

The above equation is an overdetermined equation. In this type of linear equation, when the average 

value of the square error is minimized, the pairሺx୳, y୳ሻ will minimize ‖࢞࡭ െ ଶ‖࢈
ଶ (which is equal to 

the Euclidean norm) 

 Since ‖࢜‖ଶ
ଶ ൌ  :one will have ,࢜ exists for each vector ்࢜࢜

Minimizing this value will be the minimization of the average squares. By putting this Polynomial 
equal to zero, one has:  

By solving the above equations, the value of the x vector, which is the approximate location of the 
target, is obtained. 

V.  TRACKING ALGORITHM 

In this section we introduce the proposed algorithm on tracking maneuvering target. One of the 

main assumptions made in the articles of tracking maneuvering targets, is knowing the transition 

probability matrix.  In other words, the performance of the interception algorithm is significantly 

dependent on this matrix and, if poorly designed, the operation of the algorithm is heavily influenced 

[14]. On the other hand, properly designed Transition probability matrix depended on knowing of  

 

 

ሺݑݔ െ 1ሻݔ
2 െ ሺݑݔ െ 3ሻݔ

2 ൅ ሺݑݕ െ 1ሻݕ
2 െ ሺݑݕ െ 3ሻݕ

2 ൌ 1ݎ
2 െ 3ݎ

2

ሺݑݔ െ 2ሻݔ
2 െ ሺݑݔ െ 3ሻݔ

2 ൅ ሺݑݕ െ 2ሻݕ
2 െ ሺݑݕ െ 3ሻݕ

2 ൌ 2ݎ
2 െ 3ݎ

2 (9) 

2ሺݔଷ െ ௨ݔଵሻݔ െ 2ሺݕଷ െ ௨ݕଵሻݕ ൌ ሺݎଵ
ଶ െ ଷݎ

ଶሻ െ ሺݔଵ
ଶ െ ଷݔ

ଷሻ െ ሺݕଵ
ଶ െ ଷݕ

ଶሻ
2ሺݔଷ െ ௨ݔଶሻݔ െ 2ሺݕଷ െ ௨ݕଶሻݕ ൌ ሺݎଶ

ଶ െ ଷݎ
ଶሻ െ ሺݔଶ

ଶ െ ଷݔ
ଷሻ െ ሺݕଶ

ଶ െ ଷݕ
ଶሻ

 (10) 

2 ቀ
ଷݔ െ ଵݔ ଷݕ െ ଵݕ
ଷݔ െ ଶݔ ଷݕ െ ଶݕ

ቁ ቀ
௨ݔ
௨ݕ
ቁ

															ൌ ቆ
ሺݎଵ

ଶ െ ଷݎ
ଶሻ െ ሺݔଵ

ଶ െ ଷݔ
ଷሻ െ ሺݕଵ

ଶ െ ଷݕ
ଶሻ

ሺݎଶ
ଶ െ ଷݎ

ଶሻ െ ሺݔଶ
ଶ െ ଷݔ

ଷሻ െ ሺݕଶ
ଶ െ ଷݕ

ଶሻ
ቇ

 (11) 

࢞࡭ ൌ  (12) ࢈

࢞࡭‖ െ ଶ‖࢈
ଶ ൌ ሺ࢞࡭ െ ࢞࡭ሻ்ሺ࢈ െ ሻ࢈

ൌ ࢞࡭்࡭்࢞ െ ࢈்࡭்࢞2 ൅ ࢈்࢈
 (13) 

࢞࡭்࡭2 െ ࢈்࡭2 ൌ 0 ֞ ࢞࡭்࡭ ൌ  (14) ࢈ࢀ࡭
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Flowchart II .  Auxiliary particle fil ter flowchart [33]. 

Inputs, ሼݓ௞ିଵ
௜ ሽ௜ୀଵ

ேೞ ,ሼݔ௞ିଵ
௜ ሽ௜ୀଵ

ேೞ  

- Outputs,	ሼݓ௞
௜ ሽ௜ୀଵ
ேೞ ,	ሼݔ௞ିଵ

௜ ሽ௜ୀଵ
ேೞ  ො௞ݔ,

1- For ݅ ൌ 1: ௦ܰ 
- Calculate ߤ௞

௜  where ߤ௜~݌ሺݔ௞|ݔ௞ିଵ
௜ ሻ 

- Calculate ݓ௞
௜ ൌ ௞ߤ|௞ݖሺ݌

௜ ሻ 
End 

2- Calculate total weight: ݐ ൌ ௞ݓሾሼ݉ݑݏ
௜ ሽ௜ୀଵ
ேೞ ሿ 

3- For ݅ ൌ 1: ௦ܰ 
- Normalized ݓ௞

௜ ൌ  ௞ݓଵିݐ
End 

4- Resample 
- ൣ൛~, ~, ݅௝ൟ൧ ൌ ௞ିଵݔሾሼ݈݁݌݉ܽݏܴ݁

௜ , ௞ݓ
௜ ሽ௜ୀଵ
ேೞ  

5- For ݅ ൌ 1: ௦ܰ 

- Draw ݔ௞
௝ ൌ ௞ିଵݔ|௞ݔሺ݌

௜ೕ ሻ 

- Assign ݓ௞
௝ ൌ

௣ሺ௭ೖ|௫ೖ
ೕሻ

௣ሺ௭ೖ|ఓೖ
೔ೕሻ

 

End 

 

target statistics condition, that is, in many applications is completely unknown. This is usually the 

case that the type of target is generally unknown in many operational applications. 

In this section, a particle-based filtering technique is presented which is completely independent of 

the mode transfer matrix, where only knowing the scope of mode variation is sufficient. Prior to 

introducing the proposed algorithm, an auxiliary particle filter is presented. Then a review of the 

parameter estimation is given using the Monte Carlo algorithms. Finally, by combination of these two 

methods (auxiliary particle filter and adaptive parameter estimation), a method for maneuvering target 

tracking with unknown maneuvers will be presented. 

A.  Auxiliary particle filter 

In a typical particle filter, particles ቄ࢞௞
ሺ௜ሻቅ

௜ୀଵ

ேೞ
of the transfer density function ݌ሺ࢞௞|࢞௞ିଵሻ are 

propagated and then weighed and sampled from the observed observations (propagation-sampling). 

This method does not function properly in the state estimation, because of the propagated particles are 

independent from received observations. 

It is desirable that the particles are sampled from the density function ݌ሺ࢞௞|࢞௞ିଵ,  ௞ሻ. Sampling thisࢠ

density function leads to an optimal estimation, since it has been proven that in this case, the variance 
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of the particles is minimized [19]. Calculation of this density function requires a very large 

computation volume, so that the actual sampling will encounter the calculation problem. The auxiliary 

particles filter affects the effects of observations in particle propagation [20]. 

In other words, the particles are sampled, based on the predicted probability ݌ሺࢠ௞|࢞௞ିଵሻ 

Then they are propagated according to the transfer function (sampling-propagation).The flowchart 

below shows the implementation steps of the auxiliary particle filter [33]. 

B.  Deterministic parameter estimation using Monte-Carlo method 

Consider a dynamic system based on the Markov chain and seen by the vector ࢠ௞ at different times. 

The function of the probability density of the observations is represented by ݌ሺࢠ௞|࢞௞,  ௞࢞ ሻin whichߠ

is the state vector and ߠ is a constant parameter whose value is unknown. The system is also changed 

in the form of ݌ሺ࢞௞|࢞௞ିଵ,  ሻ based on the first order Markov chain. In the Monte Carlo method, Theߠ

estimation of the posterior probability density function ݌ሺ࢞௞,  .ଵ:௞ሻ in a recursive manner is soughtࢠ|ߠ

For this purpose, the variables to be estimated, state vector and constant parameter, are combined as a 

new state vector and then the conventional Monte Carlo methods are used. In this case, the set of new 

particles can be defined as ቄ࢞௞
ሺ௝ሻ, ௞ߠ

ሺ௝ሻ: ݆ ൌ 1, . . . , ܰቅ, the weights of which correspond to them as 

ቄݓ௞
ሺ௝ሻ: ݆ ൌ 1, . . . , ܰቅ. By using the Bayes rule one has: 

As can be seen from the above equation, sampling from ݌ሺ࢞௞ାଵ,  ଵ:௞ାଵሻ requires knowledge ofࢠ|ߠ

 is known, conventional Monte Carlo methods such as a bootstrap filter or a particle ߠ ଵ:௞ሻ. Ifࢠ|ߠሺ݌

filter can be used. Where ߠ is completely unknown, there are two general methods that will be 

explained below.  

C.  Artificial evolutionary method 

In this method, for a constant parameter ߠ, an artificial evolutionary model is considered as follows: 

In which 

In (17), the matrix  ࢃ௞ାଵ has a certain value. This method, despite its simplicity, is inadequate and 

and can be causing loss of information between different points [21]. 

 

,௞ାଵ࢞ሺ݌ ଵ:௞ାଵሻࢠ|ߠ ן ,௞ାଵ࢞|௞ାଵࢠሺ݌ ,௞ାଵ࢞ሺ݌ሻߠ ଵ:௞ሻࢠ|ߠ
ן																 ,௞ାଵ࢞|௞ାଵࢠሺ݌ ,ߠ|௞ାଵ࢞ሺ݌ሻߠ ଵ:௞ሻࢠ|ߠሺ݌ଵ:௞ሻࢠ

 (15) 

௞ାଵߠ ൌ ௞ߠ ൅  ௞ାଵ (16)ߞ

 ௞ାଵሻ (17)ࢃ,௞ାଵ~ࣨሺ૙ߞ
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Flowchart III. The Liu & West method [34]. 

- Inputs ൛࢞௞ିଵ
௜ , ௞ିଵߠ

௜ ൟ
௜ୀଵ

ேೞ ௞ିଵݓ ,
௜  

- Outputs ൛࢞௞
௜ , ௞ߠ

௜ ൟ
௜ୀଵ

ேೞ ௞ݓ ,
௜ ,෥௞࢞ ,  ෨௞ߠ

1- propagate particles ߤ௜ ൌ ॱ൛࢞௞|࢞௞ିଵ
௜ , ௞ିଵߠ

௜ ൟ 

Calculate ݓ௞
௜ ൌ ௞ିଵݓ

௜ ௞ߤ|௞ࢠ൫݌
௜ ௞ିଵ࢓,

௜ ൯ where ࢓௞ିଵ
ሺ௜ሻ ൌ ሺ௜ሻߠߙ ൅ ሺ1 െ  ߠሻ̅ߙ

2- For ݅ ൌ 1, . . . , ௦ܰ 

- Parameters are sampled from the kernel density ߠ௜~ࣨ൫࢓|ߠ௞ିଵ
௜ , ݄ଶࢂ௞ିଵ൯ where ࢂ௞ିଵ ൌ

∑ ௞ݓ
ሺ௜ሻ൫ߠ௞ିଵ

ሺ௜ሻ െ ௞ିଵߠ൯൫ߠ̅
ሺ௜ሻ െ ൯ߠ̅

்ே
௜ୀଵ  

- Propagate state particles 

௞࢞            
௜ ݌~ ቀ࢞௞|࢞௞ିଵ

ሺ௜ሻ ,  ௜ቁߠ

- Assign weights  

௞ݓ
௜ ൌ

௞࢞|௞ࢠ൫݌
௜ , ௜൯ߠ

௞ߤ|௞ࢠ൫݌
௜ ௞ିଵ࢓,

௜ ൯
 

End  
෥௞࢞ -3 ൌ ∑ ௞ݓ

௜ ௞࢞
௜ே

௜ୀଵ , ෨௞ߠ ൌ ∑ ௞ݓ
௜ ௞ߠ

௜ே
௜ୀଵ ,state and parameter estimation 

 

D.  Kernel smoothing of parameter  

As noted, particle sampling will be possible if the density function of the ݌ሺࢠ|ߠଵ:௞ሻ is specified. To 

solve this problem it is assumed that it can be approximated as a plurality of Gaussian distributions 

[21, 22]. In other words: 

In which: 

In the above relations, the parameter ݄ଶ is a smoothing kernel function and ߙ is the shrinkage 

parameter. This method is known as the Liu & West filter [34]. The Liu & West filter is shown in the 

algorithm III with auxiliary particle filter. 

 

ଵ:௞ሻࢠ|ߠሺ݌ ൎ෍ݓ௧
ሺ௝ሻࣨ ቀ࢓|ߠ௞

ሺ௝ሻ, ݄ଶࢂ௞ቁ

ேೞ

௝ୀଵ

 (18) 

௞࢓
ሺ௜ሻ ൌ ሺ௜ሻߠߙ ൅ ሺ1 െ ߠሻ̅ߙ

௧ࢂ ൌ෍ݓ௞
ሺ௜ሻ൫ߠሺ௜ሻ െ ሺ௜ሻߠ൯൫ߠ̅ െ ൯ߠ̅

்
ேೞ

௜ୀଵ

ߠ̅ ൌ෍ݓ௞
ሺ௜ሻߠሺ௜ሻ

ேೞ

௜ୀଵ

 (19) 
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Using the particle filter with the parameter estimation in the above method is only useful when the 

predicted parameter is strictly constant. In this method, the parameter distribution function 

concentrates with increasing the number of observations at a point. Consequently, if the parameter is 

variable with time, the previously introduced method will be ineffective and cannot follow the sudden 

changes of the parameter. 

E.  Proposed tracking algorithm  

In the tracking issue, some of the parameters are variable with time so that they can be changed 

instantaneously. For example, a maneuvering target that has a constant acceleration in any mode 

which changes with a variation in mode. In the proposed method, one considers these parameters as 

linear piecewise, which have instantaneous changes at the change points. It is assumed that the goal 

with the probabilityܽ  at any given moment can change the mode and remains constant with 

probability 1 െ  with the following ߙAt any given time, the constant parameter with probability .ߙ

distribution function changes to a new value γ௧ and with probability 1 െ   .௧ߠ remains in the value of ߙ

and γ௞	is selected as follows: 

The above distribution function is usually considered uniformly, which is selected in the range of 

minimum and maximum variations of the problem parameters. 

If the ߙ	value is  close to zero, then the probability of modifying the target mode is zero, and the 

tracking problem  is converted to the tracking  with constant parameter. 

On the other hand, if ߙ is selected large, close to 1, the filter will be in a bid to estimate a new 

parameter for most of the time, even if there is no change in the parameter. Depending on the level of 

target maneuver this parameter can be selected. 

  In summary, by combining the auxiliary particle filter and the Liu-West method, we obatin the 

proposed tracking algorithm IV. 

VI.   SIMULATION RESULTS 

In order to get closer to real conditions, 2000 sensors were completely randomly distributed with 

uniform distribution in an area of 9000 hectares (10000 meters in 9000 meters). Based on the 

principles of wireless sensor networks, the geographic location of the sensors is determined at the 

beginning of the network configuration. The field of view of each sensor is limited and can only see  

 

௞ߠ ൌ ൜
1	ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌	݄ݐ݅ݓ		௞ିଵߠ െ ߙ
ߙ			ݕݐ݈ܾܾܾ݅݅ܽ݋ݎ݌	݄ݐ݅ݓ							௞ߛ

 (20) 

γ௞~݌஘ೖషభሺ. ሻ (21) 
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Flowchart IV. Proposed tracking algorithm. 

1- Inputs ൛࢞௞ିଵ
௜ , ௞ିଵߠ

௜ ൟ
௜ୀଵ

ேೞ ௞ିଵݓ ,
௜  

2- Outputs ൛࢞௞
௜ , ௞ߠ

௜ ൟ
௜ୀଵ

ேೞ ௞ݓ ,
௜ ,෥௞࢞ ,  ෨௞ߠ

3- For ݅ ൌ 1, . . . , ௦ܰ 
- Update ࢓௞ିଵ

௜ ൌ ௞ିଵߠߙ
௜ ൅ ሺ1 െ  ௞ିଵߠሻ̅ߙ

- Calculate pre-weights ݓ௞,ଵ
௜ ൌ ௞ߤ|௞ࢠ൫݌

௜ , ௞ߠ
௜ ൯ where ߤ௞

௜ ൌ ௞ିଵ࢞|௞࢞൫݌
௜ , ௞ିଵߠ

௜ ൯ 
- End 
4- For ݅ ൌ 1, . . . , ௦ܰ 
- Sample new parameter particle γ௞

௜ ൌ ఏೖషభ೔݌ ሺ. ሻ 

- Calculate pre-weights ݓ௞,ଶ
௜ ൌ ௞ߤ|௞ࢠ൫݌

௜ , ௞ߛ
௜ ൯ 

- End 
5- For ݅ ൌ 1, . . . , ௦ܰ 

- Sample indices ݇௜ from ሼ1, . . . ,2N௦ሽ with probabilities ൛ሺ1 െ ௞,ଵݓሻߙ
௜ ൟ

௜ୀଵ

ேೞ  and 

൛ݓߙ௞,ଶ
௜ ൟ

௜ୀேೞାଵ

ଶேೞ  

- End 
6- For ݊௜ א ሼ1, . . . , ௦ܰሽ 

- Update parameters ߠ௞
௜ ~ࣨ ቀ. ௞ିଵ࢓|

௡೔ , ݄ଶࢂ௞ିଵቁ 

- Propagate states ࢞௞
௜ ݌~ ቀ࢞௞|࢞௞ିଵ

௡೔ , ௞ߠ
௜ ቁ 

௞ݓ -
௜ ൌ

௣ቀܢೖ|ܠೖ
೔ ,஘ೖ

೔ ቁ

௪ೖ,భ
೙೔

 

- End 
7- For ݊௜ א ሼN௦ ൅ 1, . . . ,2 ௦ܰሽ 

8- Propagate sates ࢞௞
௜ ݌~ ቀ࢞௞|࢞௞ିଵ

௡೔ , ௞ߛ
௡೔ቁ 

- Set parameters θ௞
௜ ൌ γ௞

௡೔  

- Assign weights ݓ௞
௜ ൌ

௣ቀܢೖ|ܠೖ
೔ ,஘ೖ

೔ ቁ

௪ೖ,మ
೙೔

 

- Endfor 
9- Resample particles 
෥௞࢞ -10 ൌ ∑ ௞ݓ

௜ ௞࢞
௜ே

௜ୀଵ , ෨௞ߠ ൌ ∑ ௞ݓ
௜ ௞ߠ

௜ே
௜ୀଵ , state and parameter estimation 

 

the target within a radius of 350 meters. The system assumes that at most 10 sensors (M=10) can be 

selected at any time. We consider the multi-mode linear dynamical model in the form below 

Assume that the matrix F is the same for all modes and is equal to the following value [7]: 

௞ାଵ࢞ ൌ ௞࢞ࡲ ൅ ࡳ ൈ ሺࢇሺ݉ሻ ൅  ௞ሻ (22)࢝

ࡲ ൌ

ۏ
ێ
ێ
ێ
ێ
1ۍ

ܶ߱݊݅ݏ
߱

0 െ
1 െ ܶ߱ݏ݋ܿ

߱
0 ܶ߱ݏ݋ܿ 0 െܶ߱݊݅ݏ

0
1 െ ܶ߱ݏ݋ܿ

߱
1

ܶ߱݊݅ݏ
߱

0 ܶ߱݊݅ݏ 0 ܶ߱ݏ݋ܿ ے
ۑ
ۑ
ۑ
ۑ
ې

 (23) 
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The state vector is ࢞௞ሺݐሻ and the noise vectors ࢜௞~ࣨሺ0,  ሻ are white Gaussianࡽ,௞~ࣨሺ0࢝ ሻ andࡾ

noise with zero means with R and Q covariance matrices as follows: 

The above-mentioned model involves constant velocities (܉ ൌ 0 and ߱ ՜ 0), constant acceleration 

(߱ ՜ 0and ܉ ് 0) and constant angular acceleration (߱ ് ܉ , 0 ൌ 0). For the simulations of this 

paper, the fourth mode in which both the truning rate and the  acceleration are not zero is 

considered.The target dynamic model is CT model with known turn rate. we assume that the 

parameter a is uncertain and must be estimated. The parameter ߙ and the kernel function are assumed 

to be 0.5 and 0.2 respectively. ݌஘ೖషభሺ. ሻ is considered uniformly in the ሾെ10		10ሿ	interval. 

The time step  between k and k + 1 is 1 second and the overal simulation time is 100 seconeds in 

each iteration. In this scenario, accelerations of the target are varying with time as follow: 

Designed filters for DCIMMEKF4 are based on the following accelerations 

It is also assumed that the target with the probability of 0.9077 remains in the current mode and 

changes with the probability of 0.0077.The transition probability matrix for IMMEKF is therefore: 

                                                      
4 Dynamic Clustering Interaction Multi Mode Extended Kalman Filter 

௞࢞ ൌ ൦

௞ݔ
ሶ௞ݔ
௞ݕ
ሶ௞ݕ

൪ , ܩ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ܶଶ

2
	0

0		
ܶଶ

2
ܶ				0
0				ܶ ے

ۑ
ۑ
ۑ
ۑ
ې

, ଶൈଶࡾ ൌ 10ିଵࡵ, ଶൈଶࡽ ൌ 10ିଷ(24) ࢩ 

܉ ൌ

ە
ۖ
۔

ۖ
ۓ
ሾ5				10ሿ																				݇ ൑ 20
ሾ0								0ሿ								20 ൏ ݇ ൑ 35
ሾ0		 െ 5ሿ									35 ൏ ݇ ൑ 50
ሾെ5				0ሿ									50 ൏ ݇ ൑ 70
ሾെ5				5ሿ									70 ൏ ݇ ൑ 80
ሾ0		 െ 5ሿ									80 ൏ ݇ ൏ 100

 (25) 

ଵ܉ ൌ ሾ0 0ሿ, ଶ܉ ൌ ሾ5 0ሿ
ଷ܉ ൌ ሾ0 5ሿ, ସ܉ ൌ ሾെ5 0ሿ
ହ܉ ൌ ሾ0 െ5ሿ, ଺܉ ൌ ሾ5 5ሿ
଻܉ ൌ ሾെ5 5ሿ, ଼܉ ൌ ሾെ5 െ5ሿ
ଽ܉ ൌ ሾ5 െ5ሿ, ଵଵ܉ ൌ ሾ5 10ሿ
ଵଶ܉ ൌ ሾെ5 10ሿ, ଵଷ܉ ൌ ሾെ10 5ሿ

 (26) 

൦

0.9077 0.0077 ⋯ 0.0077
0.0077 0.9077 0.0077 ڭ
ڭ ڭ ڰ 0.0077
0.0077 ⋯ 0.0077 0.9077

൪

ଵଷൈଵଷ

 (27) 
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Fig. 3. Tracing Schema maneuver goal in the DCAPET method with adaptive acceleration estimation and DCIMMEKF. 

 

 

Fig. 4. RMSE of target position estimate. 

 

Fig. 5. RMSE of target velocity estimate. 

 

Dynamic clustering is done based on PCRLB for each methods in the same way. Fig. 4 shows the 

simulated and estimated target (ω = 0.00005). It is notable that the tables (and all simulation results 

hereafter) are made on the basis of averaging over 100 independent Monte Carlo runs with different 

random seeds. 

The root-mean-square error (RMSE) of position and velocity estimates in the x and y dimensions 

are also shown in Figs. 4 and 5. 
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Table.I. RMSE of position and velocity estimates 

Method name RMSE of position estimation RMSE of velocity estimation 

DCIMMEKF 26.43m  45.23 m/s 

DCAPET 2.007 m 7.80m/s 

 

 
Fig. 6. RMSE of target location estimation with 40 percent decrease in the number of active sensors. 

 

 
Fig. 7. RMSE of target speed estimation with 40 percent decrease in the number of active sensors. 

 

As shown in Table 1, the time average RMSE of position and velocity estimates with Multi-Mode 

extended Kalman filter (DCIMMEKF) is about 13 and 5.8 times greater than those of the prorosed 

DCAPET method respectively. 

One of the most important characteristics of any tracking method is its scalability to the possible 

failure of nodes in WSN. Althoung a system is considered scalable if it is capable of handling an 

increasing amount of load when new resources (typically new sensors) are added, here scalable 

tracking algorithm is meant a system which should also tolerate reduction in the number of sensors 

without experiencing detrimental effects on the algorithm's general performance.  

To check this aspect of the proposed algorithm, the performance has been evalouated in terms of 

RMSE of the position and velocity estimates after a random reduction of 40 percent in the number of 

total available sensors in the field is implemented.  

The RMSE of the position and velocity estimates, respectively, are shown in the  Figs. 6 and 7 for 

1200 sensorswhich has been uniformly deployed in a space of 10000×9000 m2.  
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Table II. The position and velocity RMSE in the scalability test. 

DCAPET Method 2000 sensors 1200 sensors Percentage error increase 

Position RMSE 2.007 m 2.373m 18.2% 

velocity RMSE 7.80m/s 8.909m/s 14.3% 

 

As shown in Tables II and III, the DCAPET method is well-scalable and pursues the target, while 

experiencing a rise of, at most, 18.2 percent in the RMSE of the position estimates. 

VI.   CONCLUSION 

In this paper, a target tracking algorithm has been presented based on the combination of dynamic 

sensor selection and advanced auxiliary particle filtering which is equipped with the Liu-West method 

to estimate the target maneuver parameter while the target is moving through the sensor field. The 

presented method is called DCAPET algorithm and achieves a higher level of robustness and resource 

utilization when it is compared with DCIMMEKF which is one of the conventional methods used for 

tracking a target in the WSN. In both arget position and target velocity estimation, there are gains to 

be earned (in terms of RMSE's) from using the DCAPET procedure over the use  of  the 

DCIMMEKF. The DCIMMEKF filtering yielded the RMSE of position and velocity estimates 13 and 

5.8 times greater than those of the DCAPET method respectively. Also, the scalability of the 

DCAPET was tested and the results showed that the DCAPET method, with a 40 percent decrease in 

the number of active sensors, maintains target tracking by experiencing about 18.2% and 14.3% 

increases in its RMSE values of position and velocity estimates, respectively. This result may allow 

the DCAPET method to serve as a highly-scalable tracking solution. 
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