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Abstract- Tracking a target which is sensed by a collection of randomly
deployed, limited-capacity, and short-ranged sensorsisatricky problem
and, yet applicable to the empirical world. In this paper, this challenge
has been addressed by introducing a nested algorithm to track a
maneuvering target entering the sensor field. In the proposed nested
algorithm, different modules are to fulfil different functions, including
sensor selection, adaptive maneuver parameter estimation, and target
trajectory extraction. To that end, proposed algorithm combines the
auxiliary particlefilter with the Liu and West filter and appliesthem for
the first time in the wireless sensor network. Its performance is
compared to one of the most common approaches for this kind of
problem and the results show the superiority of proposed method in
terms of the estimation accuracy. The simulation study also involves
evaluating the proposed algorithm based on the scalability criterion and
the results are promising since the reduction by 40 percent in the
number of active sensors leads to, respectively, 18.2 and 14.3 percent
incrementsin the RM SE of position and velocity estimates.

Index Terms- Wireless Sensor Network, Tracking, Posterior Cramer-Rao Lower
Bound, Auxiliary Particle Filter, Adaptive Parameter Estimation

|. INTRODUCTION

In recent years, much attention has been paid to the use of WSN in target positioning & tracking.
Common networks are mostly based on radar networks, but the advantages and excellence of WSN
such as the possibility of sampling within the scope of the operation, lacking line of sight, LOS, low
cost and low interference have made these systems more effective on the operationa field [1].
Tracking a target in a wireless sensor network is one of the research topics that have been gaining

interest in recent years [2-5]. The most important in target tracking in a wireless sensor network isto
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estimate the position and direction of the target using observed measurements. This estimate is used to
determine the next header and to wake up sensor nodes that are effective in target tracking. Given that
the transmitted radiation pattern of the nodes are quasi-spherical and practically it is only possible to
estimate the distance from the received signal level. The distance detection method from a single node
is limited to this method and the prediction of the signal direction is not possible. In many articles,
Authors assume that the sensor node can extract the target position [6-8]. But, it is possible to
estimate the locations of targets by a WSN. Another issue that is important, apart from the
discussion of sensor specifications, is the type of target being tracked by wireless sensor networks. If
the target can have radiating pattern, it is named an active target. The target with no radiation is
referred to as passive target.

Several papers and research articles have been conducted in the field of tracking the passive objects.

Wenjun Tang et al. [7] have been working on a consensus-based distributed particle filter in a
sparse wireless sensor network. The main objective of their paper is to provide an optimal way to
limit the consensus average error in sparse WSN. In their method, the information is weighted by
local particlefilters and finally, a consensus of these sensorsis considered as the optimal output.

In order to compensate for the sub-optimality of the EKF tracking method, Wang, Xingbo et al.[9]
provide an algorithm based on the combination of the ML method and the standard Kalman filter. In
their paper, the ML method is used to estimate the initial location of the target and to eliminate
nonlinear effects in the range based measurements by using the standard Kalman filter algorithm to
estimate a target trgjectory. Then, this paper compares the tracking error using the proposed method
with the developed Kalman filter in the simulation result section.

In [10], Bajelan and Bakhshi introduced a centralized cluster-based method considering network
energy consumption. In their method, information of the current state of nodes (including the
remaining energy of nodes, the distance to sink, and between head-clusters) are considered to select
the optimal head-clusters for target tracking.

Ziyia Jia et a.[11] have tried to provide a distributed algorithm to obtain target path in a binary
network with the same distributed sensors. In this paper, the estimation of the moving target velocity
(in purely progressive motion) is determined by the time the target is detected by each sensor of the
network. In this method, target tracking is based on the sensing node tracking, which involves several
problems, such as fading and Multipath, so this method can be used in high density nodes.

In [12], Atieh Mohammadian Keshavarz and their colleagues have presented a method for 3D
tracking of a maneuvering target in WSN with additive and multiplicative noise in observation
equation. In this method; a sensor cluster is selected based on the Posterior Cramer-Rao Lower Band,
PCRLB, and then object tracking is performed using the measurements, obtained from the selected

sensors, which are then exploited to execute the Interacting Multi Mode Particle Filter, IMMPF.
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Nevertheless, contributions made by this paper may be visualized through the following three point

which many references, such as[6, 13-17], have left out of consideration:
1) All consensus-based methods, such as the Kalman filter and its nonlinear extensions, require the
initial positioning of the target. As mentioned, each sensor node alone cannot extract the target
location without the help of its neighbors. In many of these articles, it is assumed that each node can
estimate the position of the target, which is not based on the limitations of the present article.

2) In practice, considering the limited battery and computational power, it is not possible to
implement average consensus filters in each sensor node (based on the state-vector combination
method).

3) In many references, the Kalman tracker filter has been developed (or it has been used together
with other methods) [6], [14], [15], [18], [19], [20], [21], [22]. In many cases, the multi mode particle
filter has been used [11-14], [23],[24], [25],[26]. These two methods are the most used tracking filters
in wireless sensor networks. The methods for tracking a maneuvering target used in these articles are
restricted on the availability of the transition probability matrix. In other words, the performance of the
tracking algorithm is significantly dependent on this matrix and, if poorly designed, the operation of
the algorithm is heavily influenced [14]. On the other hand, the availibility of the transition
probability matrix is usually not arealistic expectation in many applications.

This paper contribution to fix these problems, is a proposed hybrid method for tracking the target
with unknown maneuvers in WSN. This method, which is called DCAPET? hereafter, combines
dynamic clustering based on PCRLB, Multi-lateration and a new average consensus tracking
algorithm consist of auxiliary particle filter with adaptive parameter estimation called the Liu and
West filter.

In this method, after sensor selection and forming a PCRLB-based dynamic cluster in the context of
the target, by using the Multilateration method, the initial position of the target is extracted from the
object observation and the result is sent to the data integration center, Fig. 1.

At this center, with the implementation of proposed tracking algorithm the future position and
trajectory of the target are foreseen. The corresponding new dynamic cluster is determined to awaken
the nodes that the target moves towards them. This cycle will be repeated until the end of the tracking
mission, Fig. 2.

The content of this article is organized as follows. In Section I, the WSN architecture and target
dynamics are introduced. In the third section, the formation of the dynamic cluster and the selection of
active sensors are described. In Section 1V, the target observation and positioning model (which is

used as input for the tracker filter) is expressed and in the section V, The auxiliary particle filter and

! Dynamic Clustering Adaptive Parameter Estimation Tracking
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Fig. 1. The proposed tracking method scheme
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Fig. 2. DCAPET Block Diagram

adaptive parameter estimation method is first intuduced and then, with a combination of these two
methods, a hybrid algorithm will be presented for tracking the target with unknown maneuvers.

In the section V1, the accuracy of the proposed hybrid method in the estimation of both the position
and velocity of a moving target is evaluated . Furthermore, the scalability of the proposed method in
the tracking of the target with high percentage of dropping in the number of active sensors is

investigated and the results are presented. Finally, conclusion remarks are given in Sections VII.
Il. PROBLEM FORMULATION

Before proceeding to the problem statement, it isimportant to give aremark about the notation. The
conversation analytic notation system will be used in this paper is as follows. Vector quantities are
shown in lower case bold, an example being the state vector, x. Matrices are shown as bold and upper

case, such as the covariance matrix, C.

A. Network Architecture

In WSN, sensors are usualy distributed randomly in a uniform distribution in the enviroment.
Based on the principle of WSN, the geographic location of the sensors is determined at the beginning
of the network configuration, and the position of each sensor in the network is determined.
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B. Target Dynamic and measurement’ s equation
The state equations are expressed in the following general form:

X411 = Fx + G x (a(m) + wy) @
Z, = h(xk) + Vg

Vectors v,~N(0,R) and w;,~N(0,Q) are white Gaussian noise zero mean with R and Q

T
covariance matrices. The coordinate’ s vector of the target x;, is [xt(k) i k), yt(k), vi (k)] and the

matrices Q, G, F, and R can be time dependent. In this equation "m" is the "mode" of target. The

mode is varying based on the target accelerations. The jth element z; (k) is derived from the nonlinear
vector mapping h; (x;, )in terms of the x; vector as ((xf(k) - xf)2 + (i) - y]-s)z)l/z.

As aresult, jth element of the vector of observations z, which means that z; is the equivalent of

the received signal from the jth sensor, and it is modeled as follows

where v;(k) is the noise of the received observations in the jth sensor at time k. To get enough

observations for tracking, at least, the top 3 sensors are selected based on the PCRLB benchmark to
estimate the target position [27].

I11. SENSOR SELECTION AND DYNAMICS CLUSTERING

One of the mgjor challenges facing the WSN is experiencing a very high communication load as all
sensors need to send and receive the network information to and from a sink or a base. This network
information includes sensor observations as well as the basecommands or processed results returning
to sensors on-demand Given the bandwidth and power constraints, the size of transmitted
observations should be minimal. Particularly, as the network information communication widely
shares the main part of network energy depletion . As shown in [13], the power consumption level per
each transmitted byte is 10 times greater than per byte calculation. These values are 400 nJ for each
byte of transmission and 40 nJfor each byte of calculationsin this reference.

As a result, devising an effecive strategy to reduce the overal network communcation will prolong
the life span of the network. One of the most promising tools to meet this demand is to select only a
subset of sensors which have a magjor impact on the target trajectory estimation accuracy and let other
sensors sleep. Up to now, various methods have been proposed for selecting a subset of sensor for

target motion estimation, such as the use of information derived from the covariance matrix of the
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estimated error or the trace of the covariance matrix on its determinant, which is called the GDOP?.
Recently, Husam, and Havens have also used the GDOP measure to select sensors which are moving
[28].The covariance matrix may be derived from different estimation algorithms such as the Kalman
filter developed in [29] or the information filter in [30]. In addition to the use of information derived
from the various estimation agorithms, another approach independent of the type of estimation
algorithm used to select the appropriate sensors is aso used which are based on the calculation of the
amount of information received by the FIM3. This information is independent of the estimation
algorithm used to extract them. This approach is called PCRLB based sensor selection because it is
based on the CRLB minimization, which itself is areversal of the FIM. In this article, the selection of
sensors is performed on the basis of the PCRLB minimization criterion, due to its advantages. Since
the posterior Cramer—Rao expresses the lower bound on the covariance of unbiased estimators of a
target state vector [31], one can select those sensors which are providing observations with the least
error contamination. As mentioned earlier, the posterior Cramer-Rao lower bound C, for the
covariance matrix of the state vector error x;, — X, is equal to the inverse of the Fisher information

matrix (FIM) J .

Cro = E{(x =) (e =X} = i 3)

In which %, is the estimator of the vector x;. The following Riccati-like recursion giving the

sequence of posterior FIMs, Ji, k > 0, for the unbiased estimation of x;, isprovided by [31, 32]
Jisa = DI = D(Jic + D) DI + Jj @
where

Di' = E{=V,Vy Inp(Xy41|%:)} = FTQ™'F
T —
D%Z = E{—Vy Vo1 InpQrpyql2)} = [Dil] =-F'Q™!

ng = E{~Vys1Vys1 INp(xpesq x4} = Q71 ®)
N N

Ji = Z E{—Vy+1Vys1 InD; Wpsalxps1)} = Z E[H;(Ryjx-1)R ™ H;(Ryejie—1)]
j=1 =1

here H(x,) is the Jacobin matrix of all first-order partial derivatives of a vector-valued nonlinear

d

—, V,= < . Root mean square error (RMSE) of unbiased estimator
dx+1 dx

function h(x,) and V,, .=
X, (m), m = 1,--+,3 isthe mth component state vector x;, in the following

VE{[(m) — x,,(m)]2} = by (m) 6)

2 Geometric Dilution Of Precision
3 Fisher Information Matrix
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Flowchart |. Sensor Selection Algorithm with the PCRLB benchmark

1. Input parameters: B is The number of sensors that the target isin their field of view, M is the
maximum number of sensors that are allowed to select and threshold y;;, is the acceptable
minimum mean square error.

2. Output parameters. N Number of selected sensors, A set of sensor indexes selected.

35={1,...,B},A={0},N=0

4, Calculation of bk for N=N+1 sensors (N of which is related to the selected sensor of the
previous step) and sensors of the set S.

5. Selects the sensor that produces the lowest by. This sensor isidentified by the Jindex.

6. Remove the selected sensor from S group like S = S/{j}.

7.N=N+1, A=A U{j}

8. Checking the benchmark for the continuation of the algorithm (if N<M and bk <yy,) if yesgo
to step 4 otherwise stop the algorithm.

condition applies:
Where b, (m) is the mth component of diagonal matrix J,~*. The prior distribution of state p(x,) is
Gaussian with covariance C,, then J, = C, — 1. Since the objective of tracking the target is

minimizing the target location error, a suitable criterion for sensor selection is considered as follows:
b = max{by (1), b (3)} @)

where by, (1) and b (3) arethe CRLBs of x and y respectively.
Choosing the best sensor with the above criterion is a hybrid problem that requires high volume
computing. According to this issue, in order to reduce the computational burden, the following

algorithm is proposed.

IVV. OBSERVATION AND POSITIONING MODEL

In WSN, As noted above, since these sensors have only the ability to calculate their distance from
the target, they cannot solely extract the value of the target position. Therefore, the target position
could be extracted only with the combination of sensors observations (range only). For this subject, at
least 3 observations of the sensor should be shared so that the Multilateration method can extract the
target's initial Cartesian position. Here, 3 sensors in a dynamic cluster are selected based on the

PCRLB criterion participate in the initial positioning process.
(u — xi)z + O — yi)z = riz;i =123 )

Assume 3 sensor nodes with specific coordinates. A target with uncertain coordinates in the field of
view of these sensors is introduced. The distances are measurable to each of the sensor nodes as

follows:
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It's best to write a set of linear equations based on (x, y,)- Here one needs to delete the values of
x?, and yzu. To do this, it suffices to deduce the third equation from the two previous equations.

(=22 = (o, =232+ (0, =y — O, — ¥ =7" —13° ©
(= x)2 = (o, — 232 + (7, = ¥,)" — (0, —¥)* =1° —73°

After sorting out the equations one has;

2(x3 = x1)%y — 2(y3 = Y1)V = (it —7§) — (xf — x3) — (v — ¥3)

(10
2(x3 — x)%y — 2(¥3 — Y2 )y = (5 —15) — (x5 —x3) — (5 — ¥3)

The above equations can easily be expressed as alinear matrix:

X3 = X1 Y3~ Y1\ [ Xu
2 (x3 —X2 Y3~ J’Z) (yu)
_ ((rf =) = (xf —x§) - O - y32)> 1D
(7 =18 — (5 —x3) — V7 — ¥5)

Which can be written as the following linear equation:

Ax=0b (12

The above equation is an overdetermined equation. In this type of linear equation, when the average
value of the square error is minimized, the pair(x,, y,) will minimize ||Ax — b||5 (which is equal to
the Euclidean norm)

IAx — blI3 = (Ax — b)" (Ax — b)

(13
=xTATAx — 2xTA"b + b"h

Since ||v||3 = v"v exists for each vector v, one will have:

Minimizing this value will be the minimization of the average squares. By putting this Polynomial
equal to zero, one has:

2ATAx —2ATh =0 = ATAx = ATbh (14

By solving the above equations, the value of the x vector, which is the approximate location of the
target, is obtained.

V. TRACKING ALGORITHM

In this section we introduce the proposed agorithm on tracking maneuvering target. One of the
main assumptions made in the articles of tracking maneuvering targets, is knowing the transition
probability matrix. In other words, the performance of the interception algorithm is significantly
dependent on this matrix and, if poorly designed, the operation of the algorithm is heavily influenced
[14]. On the other hand, properly designed Transition probability matrix depended on knowing of
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Flowchart 1. Auxiliary particle filter flowchart [33].

— —
IanJtSv {Wllc—l}izsl!{xll(—l}[il
iyN. i Ng -~
- OUtpUtSv {Wllc}i=511 {x}lc—l}iipxk
1- Fori=1:Ng
- Calculate ul, where ui~p(x|xi_1)

- Cdculate w} = p(zx|ul)
End

2- Calculate total weight: t = sum[{wi}, ]

3 Fori=1:N;
- Normalized wy, = t~twy
End

4- Resample
- [{~, ~,i1}] = Resample[{x}(_l,W,@}?]:S1

5 Fori=1:N;
- Drawxj = p(x|xk_1)

. J
: j _ plx)
- Assignw;, = i
p(zklug)

End

target statistics condition, that is, in many applications is completely unknown. This is usually the
case that the type of target is generally unknown in many operational applications.

In this section, a particle-based filtering technique is presented which is completely independent of
the mode transfer matrix, where only knowing the scope of mode variation is sufficient. Prior to
introducing the proposed agorithm, an auxiliary particle filter is presented. Then a review of the
parameter estimation is given using the Monte Carlo agorithms. Finally, by combination of these two
methods (auxiliary particle filter and adaptive parameter estimation), a method for maneuvering target

tracking with unknown maneuvers will be presented.

A. Auxiliary particlefilter

N
In a typical particle filter, particles {x,((‘)}. 1of the transfer density function p(x;|x,—,) are
i=

propagated and then weighed and sampled from the observed observations (propagation-sampling).
This method does not function properly in the state estimation, because of the propagated particles are
independent from received observations.

It is desirable that the particles are sampled from the density function p(x;, |x_1, Z;). Sampling this

density function leads to an optimal estimation, since it has been proven that in this case, the variance
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of the particles is minimized [19]. Calculation of this density function requires a very large
computation volume, so that the actual sampling will encounter the calculation problem. The auxiliary
particlesfilter affects the effects of observationsin particle propagation [20].

In other words, the particles are sampled, based on the predicted probability p(z|x,—1)

Then they are propagated according to the transfer function (sampling-propagation).The flowchart

below shows the implementation steps of the auxiliary particle filter [33].

B. Deterministic parameter estimation using Monte-Carlo method

Consider a dynamic system based on the Markov chain and seen by the vector z,, at different times.
The function of the probability density of the observations is represented by p(z;|x, 6)in which x;,
is the state vector and 0 is a constant parameter whose value is unknown. The system is also changed
in the form of p(x;|x;_1,8) based on the first order Markov chain. In the Monte Carlo method, The
estimation of the posterior probability density function p(x,, 8|z,.,) in arecursive manner is sought.
For this purpose, the variables to be estimated, state vector and constant parameter, are combined as a

new state vector and then the conventional Monte Carlo methods are used. In this case, the set of new

particles can be defined as {x,((j),elgj);j = 1,...,N}, the weights of which correspond to them as

{ngf);j = 1,__,,N}. By using the Bayes rule one has:

P(Xk41,0121:141) X P(Zies1|Xier1, )P (X 41, 0121.) (15)
X P(Zgs1]Xk11, )0 (Xp 41160, 2140 (6]21.4)

As can be seen from the above equation, sampling from p(x; 41, 0|21.x+1) requires knowledge of
p(0|z1). If 6 is known, conventional Monte Carlo methods such as a bootstrap filter or a particle
filter can be used. Where 6 is completely unknown, there are two general methods that will be

explained below.

C. Artificial evolutionary method

In this method, for a constant parameter 8, an artificial evolutionary model is considered as follows:

Ok+1 = Ok + Qiq1 (16)
In which
Ck,+1"’N(0r Wk+1) (17)

In (17), the matrix W, ,; has a certain value. This method, despite its simplicity, is inadequate and

and can be causing loss of information between different points [21].
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Flowchart I11. The Liu & West method [34].

. . N .
l L S L
- Inputs {xjc_y, 651}, Wi

. N L~
- OutputS {x;{,ell{}hl, W]lc, xk,ek

1- propagate particles ut = E{x; |x,_;, 051}

Calculate wy = wj_,p(zy|uk, mi_,) where m,(cizl =abdD +(1-a)d

2- Fori=1,...,Ng
- Parameters are sampled from the kernel density 8'~'(8|m}_,, h?V,_,) where V,_; =
. . _ . T
?’:1 Wél)(ekﬂ(l) - 6)(6k—1(l) - 9)

- Propagate state particles

Xi~p (xk|x;(31. Qi)
- Assignweights
i _ p(Zk|x;c,9i)
Wk ="7"77 7 )
p(zp | mi_y)

End

3 % =N, wixk,0, =¥, wie. state and parameter estimation

D. Kernel smoothing of parameter

As noted, particle sampling will be possible if the density function of the p(6|z,.;) is specified. To
solve this praoblem it is assumed that it can be approximated as a plurality of Gaussian distributions
[21, 22]. In other words:

Ny
pO1z,) = Y ww (om{, 12v,) 8
=1

In which:

m,(ci) =af® + (1 -a)d

Ng
v =Zw(i) 0@ — ) (6® — )"
=2, e ( )( ) a9

In the above relations, the parameter h? is a smoothing kernel function and « is the shrinkage
parameter. This method is known asthe Liu & West filter [34]. The Liu & West filter is shown in the

algorithm |11 with auxiliary particlefilter.
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Using the particle filter with the parameter estimation in the above method is only useful when the
predicted parameter is strictly constant. In this method, the parameter distribution function
concentrates with increasing the number of observations at a point. Consequently, if the parameter is
variable with time, the previously introduced method will be ineffective and cannot follow the sudden

changes of the parameter.

E. Proposed tracking algorithm

In the tracking issue, some of the parameters are variable with time so that they can be changed
instantaneously. For example, a maneuvering target that has a constant acceleration in any mode
which changes with a variation in mode. In the proposed method, one considers these parameters as
linear piecewise, which have instantaneous changes at the change points. It is assumed that the goal
with the probabilitya at any given moment can change the mode and remains constant with
probability 1 — a. At any given time, the constant parameter with probabilitya with the following

distribution function changesto anew vaue y, and with probability 1 — a remainsin the value of 6,.

0. = {Bk_l with probability 1 — a 20)
k= lyx  withprobbability «

andyy, is selected asfollows:

Yi~Poy_, () (21)

The above distribution function is usually considered uniformly, which is selected in the range of
minimum and maximum variations of the problem parameters.

If the @ value is close to zero, then the probability of modifying the target mode is zero, and the
tracking problem is converted to the tracking with constant parameter.

On the other hand, if a is selected large, close to 1, the filter will be in a bid to estimate a new
parameter for most of the time, even if there is no change in the parameter. Depending on the level of
target maneuver this parameter can be selected.

In summary, by combining the auxiliary particle filter and the Liu-West method, we obatin the

proposed tracking algorithm 1V.

VI. SIMULATION RESULTS

In order to get closer to real conditions, 2000 sensors were completely randomly distributed with
uniform distribution in an area of 9000 hectares (10000 meters in 9000 meters). Based on the
principles of wireless sensor networks, the geographic location of the sensors is determined at the

beginning of the network configuration. The field of view of each sensor islimited and can only see
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Flowchart V. Proposed tracking algorithm.
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3 Fori=1,...,Ng

- Updatemj_; = afi_; + (1 — a)f;_4

- Caculate preweights wy, ; = p(zx|uk, 05 ) Where uj, = p(xy|x},_1, 0f_1)
- End

4- Fori=1,...,N;

- Sample new parameter particley}, = peli(_l(.)
- Caculate pre-weights w) , = p(zy |uk, Vi)

- End

5 Fori=1,...,Ng

- Sampleindices k' from {1,...,2N} with probabilities {(1 — a)w};‘l}iv:l and
. y2Ng
{aW’lCJZ}i=NS+1
- End

6- Fornief{1,...,N}

- Update parameters 65 ~N° ( |m£1_1,h2Vk_1)
- Propagate states x,~p (xklxﬁi_l, 9,‘()
p(zk|x};,9§()

15

i _
- Wk = ~
Wik

- End

7- Forn' € {Ng+1,...,2Ns}

8- Propagate sates xi~p (xklx}jl_l,y,?l)
- Set parameters 6} =y

p(zk|x§c'elic)

nl
Wi 2

- Assignweightsw) =

- Endfor

9- Resample particles

10- %, = YN wixt , 6, = XN, wi6L, state and parameter estimation

the target within a radius of 350 meters. The system assumes that at most 10 sensors (M=10) can be

selected at any time. We consider the multi-mode linear dynamical model in the form below
Xi+1 = Fxi + G X (a(m) +wy)

Assume that the matrix F is the same for al modes and is equal to the following value [7]:

sinwT 1 —coswT
1 O ———
w w
F = 0 coswT 0 —sinwT
1—coswT sinwT
0 1
w w
0 sinwT 0 coswT

22

(23)
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The state vector is x; (t) and the noise vectors v, ~N (0, R) and w;~N (0, Q) are white Gaussian

noise with zero means with R and Q covariance matrices as follows:

TZ
Xk 7
Xk 2 _ _
xe =y [.6=|o T? Ry = 10711, Qysp = 10731 (24)
Yk T 0
lo 7]

The above-mentioned model involves constant velocities (a = 0 and w — 0), constant acceleration
(w = 0and a # 0) and constant angular acceleration (w # 0 , a = 0). For the simulations of this
paper, the fourth mode in which both the truning rate and the acceleration are not zero is
considered.The target dynamic model is CT model with known turn rate. we assume that the
parameter a is uncertain and must be estimated. The parameter a and the kernel function are assumed
to be 0.5 and 0.2 respectively. pg, _, (.) isconsidered uniformly in the [-10 10] interval.

The time step between k and k + 1 is 1 second and the overal simulation time is 100 seconeds in
each iteration. In this scenario, accelerations of the target are varying with time as follow:

[5 10] k<20
[0 0] 20<k<35
_J[0 =5] 35<k <50
4= [-5 0] s50<k<70 (23
[-5 5] 70 < k<80
[0 —5] 80 <k <100
Designed filters for DCIMMEKF* are based on the following accelerations
a; =[0 0],a,=[5 0]
a3 =[0 5La,=[-5 0]
as = [O _5]'a6 = [5 5] (26)

a; =[-5 5], ag=[-5 -5]
ag =[5 -5],a;; =[5 10]
a;; =[-5 10],a;3=[-10 5]

It is aso assumed that the target with the probability of 0.9077 remains in the current mode and
changes with the probability of 0.0077.The transition probability matrix for IMMEKF is therefore:
0.9077 0.0077 - 0.0077
0.0077 0.9077 0.0077

: : 0.0077 (27)
00077 A 00077 09077 13%13

4 Dynamic Clustering Interaction Multi Mode Extended Kalman Filter
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Fig. 5. RMSE of target velocity estimate.

Dynamic clustering is done based on PCRLB for each methods in the same way. Fig. 4 shows the
simulated and estimated target (w = 0.00005). It is notable that the tables (and al simulation results
hereafter) are made on the basis of averaging over 100 independent Monte Carlo runs with different

random seeds.

The root-mean-square error (RMSE) of position and velocity estimates in the x and y dimensions

areaso shownin Figs. 4 and 5.
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Table.l. RMSE of position and velocity estimates

Method name RM SE of position estimation RM SE of velocity estimation
DCIMMEKF 26.43m 45.23 m/s
DCAPET 2.007m 7.80m/s

RMSE(position(m)

v} 10 20 30 40 50 60 70 80 Q0 100
Time(s)

Fig. 6. RMSE of target location estimation with 40 percent decrease in the number of active sensors.
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0 10 20 30 40 50 60 70 80 80 100
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Fig. 7. RMSE of target speed estimation with 40 percent decrease in the number of active sensors.

As shown in Table 1, the time average RMSE of position and velocity estimates with Multi-Mode
extended Kalman filter (DCIMMEKF) is about 13 and 5.8 times greater than those of the prorosed
DCAPET method respectively.

One of the most important characteristics of any tracking method is its scalability to the possible
failure of nodes in WSN. Althoung a system is considered scalable if it is capable of handling an
increasing amount of load when new resources (typically new sensors) are added, here scalable
tracking algorithm is meant a system which should also tolerate reduction in the number of sensors
without experiencing detrimental effects on the algorithm's general performance.

To check this aspect of the proposed algorithm, the performance has been evalouated in terms of
RMSE of the position and velocity estimates after a random reduction of 40 percent in the number of
total available sensorsin thefield isimplemented.

The RMSE of the position and velocity estimates, respectively, are shown in the Figs. 6 and 7 for
1200 sensorswhich has been uniformly deployed in a space of 100009000 m?.
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Tablell. The position and velocity RMSE in the scalability test.

DCAPET Method 2000 sensors 1200 sensors Percentage error increase
Position RMSE 2.007m 2.373m 18.2%
velocity RMSE 7.80m/s 8.909m/s 14.3%

As shown in Tables Il and Il1, the DCAPET method is well-scalable and pursues the target, while
experiencing arise of, at most, 18.2 percent in the RM SE of the position estimates.

VI. CONCLUSION

In this paper, atarget tracking algorithm has been presented based on the combination of dynamic
sensor selection and advanced auxiliary particle filtering which is equipped with the Liu-West method
to estimate the target maneuver parameter while the target is moving through the sensor field. The
presented method is called DCAPET algorithm and achieves a higher level of robustness and resource
utilization when it is compared with DCIMMEKF which is one of the conventional methods used for
tracking a target in the WSN. In both arget position and target velocity estimation, there are gains to
be earned (in terms of RMSE's) from using the DCAPET procedure over the use of the
DCIMMEKF. The DCIMMEKEF filtering yielded the RM SE of position and velocity estimates 13 and
5.8 times greater than those of the DCAPET method respectively. Also, the scalability of the
DCAPET was tested and the results showed that the DCAPET method, with a 40 percent decrease in
the number of active sensors, maintains target tracking by experiencing about 18.2% and 14.3%
increases in its RMSE values of position and velocity estimates, respectively. This result may allow

the DCAPET method to serve as a highly-scalable tracking solution.
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