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Abstract- This paper concerns to blind identification of a convolutional 

code with desired rate in a noiseless transmission scenario. To the best 

of our knowledge, blind estimation of convolutional code based on only 

the received bitstream doesn’t lead to a unique solution. Hence, 

without loss of generality, we will assume that the transmitter employs 

a non-catastrophic encoder. Moreover, we consider a complete 

synchronous scenario in which one can extract separate codewords 

from received sequence. This assumption is valid in many practical 

communication systems because, the frame preambles allow us to 

identify the beginning of each codewords. In this paper, we examine 

the blind identification problem for rate    and rate     

convolutional codes, respectively. For rate    , we propose an 

iterative method that uses three steps in each iteration to test the 

validity of a possible value of  . We show that this method can identify 

the parameters of a rate     convolutional code from only two 

different noiseless received codewords. Afterwards, we generalize this 

method for a rate     convolutional code in which each iteration is 

composed of seven successive steps. We show that this method requires 

at least     different codewords to identify all parameters of a rate 

    code. 

 
Index Terms- Blind estimation, convolutional code, cognitive radio, non-

catastrophic encoder, minimal-basic encoder. 
 

I. INTRODUCTION 

In recent years, many new communication standards have been developed to improve the bit error 

rate and quality of service in communication systems. To support this development, the transreceiver 

structure should be continuously updated to remain compatible with all standards used. Moreover, the 

standard multiplicity imposes a new compatibility issue on communication systems with different 

standards.The multi-mode receiver can be a practical and effective solution to this problem. Such 

receiver indeed is an intelligent system which first extracts transmitter parameters from received 

signals and then adjusts its parameters according to them. The application of such systems, so called 

blind receiver, in the cognitive radio is obvious. In general, A typical blind receiver consists of: a 

blind channel decoder that first decides on the code existence, then recognizes the type of channel 
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code parameters, and finally decodes the received stream by an appropriately adapted decoder. 

Convolutional code is one of the widely used channel codes in modern communication systems. 

Hence, the blind identification of its parameters is one of the most important issues in blind channel 

decoder design. In [1-2], the well-known Euclidean algorithm is used to recover the generator matrix 

of a rate    convolutional encoder in the noiseless scenario. Despite of limited scope of [1-2] which 

can be used only for rate ½ convolutional codes, their algorithm has a low complexity and also is 

independent of the received codewords length. Authors in [3] exploited the algebraic properties of an 

optimal convolutional code to identify the second convolutional encoder of a turbo code. Also, in [4], 

this method is generalized to blind recovery of a rate     optimal convolutional code in noiseless 

case. Moreover, in [5], the same method is used in an iteration manner to estimate a rate         

convolutional code from noisy observations. Authors in [6] extended this method to rate     

convolutional codes. This method can estimate the code parameters in a very low-noise scenario. 

However, this algorithm suffers from relatively high complexity. It also requires a long bitstream even 

in a noiseless environment. 

In this paper, we propose a new low-complexity and fast iterative method to identify the 

convolutional code parameters from a complete synchronous bitstream in a noiseless transmission 

scenario. The complete synchronous means that both the beginning and the end of each received 

codeword are known. Of course, this level of synchronization is quite practical, since the most 

modern communication systems often transmit the codewords in separate frames. Moreover, in most 

of the practical systems the frame header is not encoded. As a result, a cooperative deframer, or even 

a blind one, can extract the codewords from the frame header. 

On the other hand, any linear code can be generated by many equivalent encoders. Therefore, it is 

not possible to identify the main generator matrix only based on received codewords. Hence, we need 

more information about the applied encoder to limit the number of possible generator matrices. Since 

the identification of code parameters is desired, without loss of generality, we assume that the 

transmitter employs a special type of encoder, i.e., non-catastrophic encoders. Based on this 

assumption, we examine the blind recovery of convolutional codes for rates     and    , 

respectively. In each scenario, we propose a blind method based on the non-catastrophic 

convolutional encoder property [7-9]. Our method for blind identification of a rate     code is an 

iterative algorithm that uses three simple steps to verify the validity of a possible value for  . Then, 

we generalize this method to blind identification of rate     codes. This generalized method is 

composed of seven successive steps, in which the first three steps give an initial estimation of the 

parameters   and  , and then, the last four steps ensure the validity of these values. Moreover, we will 

determine the minimum number of codewords required for each method to work. 

The remainder of this paper is organized as follows. Section 2, briefly introduces the convolutional 

code and also the properties of some special encoders. In section 3, the proposed methods for rate     
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and     convolutional codes are explained in two separate subsections. Moreover, some examples are 

provided to confirm the proposed methods. Finally, section 4 concludes the paper with some 

prospects. 

 

II. THE MATHEMATICAL DESCRIPTION OF CONVOLUTIONAL CODES 

Consider a rate     binary convolutional code         , where   denotes the overall constraint 

length. This code can be described by a     full-rank rational generator matrix      over the field 

of binary rational functions      , denoted by: 

      [
             
   
             

]  (1) 

where the entry              specifies the rational transfer function of the  ’th encoder input to the 

 ’th encoder output in the delay operator  . In this paper, we denote the matrices with uppercase 

letters and a vectors with boldface lowercase letters. 

Let                      be the  -tuple input vector, where       denotes the  th input 

sequence of the encoder. Then, the corresponding  -tuple code vector, denoted by      

               , can be obtained from the following encoding process:  

                (2) 

After encoding, the   output sequences      ,        , are multiplexed to construct the 

codeword      as follows:  

          
        

                (3) 

In general, a typical convolutional code          can be generated with several generator 

matrices, so-called equivalent encoders. Two equivalent generator matrices generate the same code in 

some different mapping orders. The set of all equivalent generator matrices of code         is 

denoted by  . 

Theorem 1: The full-rank     generator matrices      and       are equivalent if and only if 

there exists a     nonsingular matrix T(D) such that [5]: 

                 (4) 

In practice, some encoders are avoided and some are preferred because of practical considerations, 

such as the complexity of encoding and decoding. For instance, system designers avoid an encoder 

with a catastrophic property. A catastrophic encoder maps at least an infinite length message to a 

finite length codeword. In this case, if an error pattern alters this finite length codeword to a zero 

codeword, the decoder (with the minimum distance criterion) decodes the received sequence as a zero 
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message. Thus, this error pattern produces an infinite decoding error or, equivalently, an infinite bit 

error rate. The following theorem is a simple test to verify whether anencoder is catastrophic or not [8, 

9]. 

Theorem 2: The     generator matrix      is non-catastrophic if and only if: 

    (  
             

  )     (5) 

where   
             

   are the     submatrix determinants (minors) of     , GCD(.) gets the 

greatest common divisor (GCD), and   denotes the encoder delay. 

The practical encoders are usually zero-delay,i.e.   . Hence, we can simplify the condition (5) as 

follows: 

    (  
             

  )    (6) 

This relation implies that the     minors of a zero-delay non-catastrophic encoder are relativity 

prime. 

A     generator matrix         can be realized by a different sequential circuit which 

consists of   inputs,   outputs and at least   memories. The below theorem gives a way to calculate 

the parameter   from any generator matrix in   . 

Theorem 3: The overall constraint length   is an invariant of convolutional code          (i.e., it is 

not dependent on the encoder type) and can be calculated from any generator matrix         as 

follows [9]:  

      (   (  
    )           

  ) (7) 

The number of realization memories determines the encoder and decoder complexity, and the 

minimal memory is equal to the overall constraint length[6-8]. Hence, it is a practical interest to 

employ a so-called minimal encoder that can be minimally realized with   memories. 

Definition 1: The polynomial generator matrix           is minimal-basic, if it can be minimally 

realized in a feedforward controller canonical form[8]. 

In the controller canonical realization, every row of a     generator matrix      minimally 

realizes as a separate     encoder and then these   outputs simply sum to generate the overall 

encoder output. Note that, if      is a polynomial, the  ’th row can be minimally realized with    

memory elements, where    is the constraint length of the ’th input and is defined as follows: 

       
         

   (      )              (8) 

Subsequently, in a minimal-basic encoder we have: 

   ∑   
      (9) 
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Below, we give a definition that is used in the next section. 

Definition 2: Demultiplexing at depth   breaks the polynomial               down into   

separate polynomials of   
   

           , as follows: 

   
   

                    
   

 

 
   

  
 

 
 
 (10) 

where     denotes the floor operation. Putting into vector notation, we denotes these polynomials by 

           
   

        
   

    . Note that the demultiplexing at depth   indeed is the inverse of the 

multiplexing in equation (3), i.e.,             . 

 

III. BLIND IDENTIFICATION OF CONVOLUTIONAL CODES 

In this section, we propose a method for blind identification of convolutional code parameters 

based on a complete synchronous errorless received stream. In general case, the parameters to be 

estimated for a typical convolutional code          are constructed of:  ,  ,   and a generator matrix 

       . 

As argued before, it is not possible to estimate the desired encoder of the transmitter only from the 

received codewords, because there are many equivalent encoders that generate the same code. Due to 

this equivalency, without loss of generality, we can assume that the transmitter employs a non-

catastrophic convolutional encoder. Thus, we use the non-catastrophic condition (6) to blindly extract 

the convolutional code parameters. In the following subsections, we represent our methods for blind 

identification of rate     and     convolutional codes, respectively. 

a) Blind identification of a rate     convolutional code 

Assume that the transmitter encodes a message sequence      into a codeword      by the 

following     non-catastrophic polynomial generator vector: 

                      (11) 

For this encoder, equation (6) can be simplified as follows:  

                      (12) 

We exploit this relation to recognize the parameter  . Let we have two different complete 

synchronous errorless codewords       and       in the receiver. Also, let       and       be the 

message and code vector of corresponding to      , respectively. Using this notation, the encoding 

process can be written as: 

                                     (13) 
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Let  ̂ denote the estimation of  . To identify the parameter  , we propose an iterative method for 

 ̂        . The relation (6) is valide only when  ̂    is admitted. Thus, the hypothesis of  ̂    is 

examined in the   ̂    ’th iteration by the following three steps: 

Step 1: For      , demultiplex       at depth  ̂ as   
 ̂        

 ̂          ̂
 ̂     . 

Step 2: For      , calculate GCD of the entries of   
 ̂   , denoted by   

 ̂   . 

Step 3: For      , divide the vector   
 ̂    by   

 ̂    to obtain the vector of   
 ̂   . 

Note that if we have  ̂   , then for      , demultiplexing of the codeword       at depth  ̂ (or 

 ) results the code vector      , i.e.   
   

      
          . Thus, according to (11) and (12), one 

can simply verify that, for      ,   
     is indeed equal to massage sequence      . Therefore, 

from (13), we have        
 ̂      

 ̂   . In other word, if  ̂   , then the vectors of   
 ̂    and 

  
 ̂    are equal. However, this equality is not true for any  ̂   , since in this case two 

demultiplexed vectors   
 ̂   ,      , do not necessarily belong to the same code, and so the vectors 

  
 ̂    and   

 ̂    would be unequal. This property implies that the iteration should be continued 

until the vectors in step (3) become equal. As a result, if this equality is satisfied for a  ̂, then we 

conclude that the hypothesis  ̂    is true. This means that both vectors   
 ̂    and   

 ̂    are equal 

to non-catastrophic encoder     . 

So far, we have recognized the parameter   and also a non-catastrophic basis      for the 

convolutional code         . Since a     non-catastrophic encoder is minimal-basic, from(9), one 

can calculate the overall constraint length   as follows: 

                      (14) 

The detail of the proposed method, is reperesented as a pseudo-code in Algorithm1. In step 2 of 

this algorithm, we require  ̂ iterations to calculate the polynomial   
 ̂    (or   

 ̂   ), where GCD of 

only two polynomials must be found in every iteration. This can be accomplished by a well-known 

Euclidean algorithm.The complexity of the proposed algorithm is highly depended on the received 

codeword lengths.  

Let      denotes the maximum degree of two received codewords. Then, for iteration  ̂, every 

GCD in step 2 can be calculated using the Euclidean algorithm with the complexity  ̃ 
    

 

 ̂  . 

However, benefit a newer GCD algorithm can decrease the computational complexity. 

We consider a maximum complexity  ̃ 
    

 

 ̂   for every polynomial division in step 3. The  ̂’th 

iteration in Algorithm 1 is composed of  ̂    polynomial GCD calculations in step 2, and   ̂ 

polynomial divisions in step 3. 
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Alg. 1. Blind identification of code          

Input: Two different codewords             

Output: ,   and a minimal-basic encoder      

    

 ̂    

while   do 

for    to  do 

  
 ̂      

  ̂     ;  Step 1 

  
 ̂       

 ̂  

for    to  ̂ do 

  
 ̂       (  

 ̂       
 ̂ ) ;   Step 2 

end 

  
 ̂    

  
 ̂   

  
 ̂   

  ;    Step 3 

end 

if   
 ̂      

 ̂   then 

 ̂   ̂    

else 

    

end 

end 

       
 ̂          

 ̂     

   ̂ 

                     

 

As a result, we can approximate the complexity order with  ̃     
  . As a final remark to this 

method, it is worth to note that only two different nonzero complete synchronous errorless codewords 

are sufficient and also necessary for this method. Also, for this  algorithm is no matter to codeword 

lengths. 

Example 1: Assume that the transmitter employs the following non-catastrophic encoder to generate 

the convolutional code         : 

                             

The transmitter encodes the following message sequences: 

                                

where the corresponding received errorless codewords are as follows: 

                               

                             

As first iteration of the proposed algorithm, we examine the hypothesis of  ̂    and demultiplex the 

received codewords in depth 2 as following vectors (step 1): 
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Now, for      , we calculate theGCD of two entries from   
     by Euclidean algorithm, where the 

results are as follows (step 2): 

  
                    

       

Then, calculating   
       

     and   
       

    , we find (step 3): 

  
                                

  
                             

Since these vectors are unequal, i.e.   
       

    , we conclude that the hypothesis  ̂    is 

false. In the next iteration, we examine the hypothesis  ̂    and demultiplex the received codewords 

in depth 3 as following vectors (step 1): 

  
                                   

  
                                 

Then, for      , we calculate GCD of entries in   
     by twice use of Euclidean algorithm, where 

the results are as follows (step 2): 

  
                       

       

Note that the resulted polynomials are equal to message sequences. As final step, calculating  
     

  
     and   

       
    , we obtain (step 3): 

   
       

                             (15) 

Since these vectors are equal, we conclude that the hypothesis  ̂    is true. Finally, we introduce the 

either vectors   
     or   

     as a non-catastrophic encoder for code   and immediately, from (14), 

we find    . 

b) Blind identification of a rate     convolutional code 

 In this scenario, we assume that the transmitter employs a     non-catastrophic polynomial 

generator matrix to generate the convolutional code         , where      is defined as (1). Let we 

have   different complete synchronous errorless codewords                in the receiver. Also, 

let                         and                         be the massage vector and the code 

vector of corresponding to the  ’th codeword      , respectively. We can summarize the encoding 

process using of the message matrix                         and the code matrix      

                  , as follows:  

                (16) 

Note that, since the generator matrix      is full rank, we have                      . 

Moreover, if the binary transmitted messages       are considered with uniform distribution entries, 
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it is expected that, for values of    , the rank of matrix      (and subsequently, the rank of matrix 

    ) will be equal to  . We exploit this property along with non-catastrophicity condition (6) to 

blindly identify the parameters of convolutional code         . To this end, we propose an iterative 

method for  ̂        . The relation (6) is valide only when  ̂    is admitted. The following steps 

are involved in every iteration to investigate the hypothesis of  ̂   : 

Step 1: For        , demultiplex       at depth  ̂ as   
 ̂        

 ̂          ̂
 ̂     . 

Step 2: Construct the matrix   ̂       
 ̂         

 ̂      . 

Step 3: Calculate the rank of the matrix   ̂   denoted by  ̂. 

Note that if  ̂   , then   ̂    is equal to     . In this case, if we have              (i.e.  is 

sufficiently large), then the rank of   ̂    is equal to  , i.e.,  ̂   . However, this is not true for any 

 ̂    because, in this case, the demultiplexed vectors   
  ̂ 

            that can be seen as random 

vectors, do not necessarily belong to the same code. Hence, if   is sufficiently greater than  ̂, the rank 

of   ̂    is equal to  ̂. As a result, for any  ̂   , we have  ̂   ̂. According to these statements, we 

must continue the iteration until a matrix   ̂    with rank deficiency is found (i.e. ̂   ̂). If such 

matrix is found for  ̂, we conclude    ̂ and    ̂. 

In another case, when   is not sufficiently greater than  ̂, it is probable that we encounter rank 

deficiency for some  ̂   . To address this problem, we add the following four steps to ensure the 

initial guess, in which the validity of the guesses  ̂ and  ̂, corresponding to a matrix   ̂    with rank 

deficiency, are tested: 

Step 4: Select two  ̂   ̂ full-rank submatrices of   ̂   , denoted by   
 ̂    and   

 ̂   . 

Step 5: For      , calculate the  ̂   ̂ minors of submatrix   
 ̂   , denoted by  

  
 ̂

 
      

      ̂
 ̂ , and construct the vector  

  
 ̂      

  
 ̂

        
  

 ̂

 
 ̂
 ̂ 

    , which we call as the minor 

vector of   
 ̂   . 

Step 6: For      , calculate GCD of the entries of  
  

 ̂   , whichis denoted by  
  

 ̂   . 

Step 7: For      , divide the vector  
  

 ̂    by  
  

 ̂    to obtain the vector  
  

 ̂   . 

Assume that the initial guess is true, i.e. we have  ̂    and  ̂   . In this case, the demultiplexed 

matrix of   ̂    is equal to the code matrix     . Let       and       be two     full-rank 

submatrices from the message matrix      whose rows are selected corresponding to the submatrices 

  
     and   

    . From (16), we have: 

   
                           (17) 

Subsequently, for      , we can immediately conclude:  
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     |     |   

                   
   (18) 

where | | denotes the matrix determinant. We can rewrite equation (18), in vector notation, as follows: 

    
     |     |       (19) 

where          
         

  
  

     is the minor vector of matrix     . According to (6), the entries 

of       are relatively prime, since we assumed that      is a zero-delay non-catastrophic encoder. 

As a result, one can simply conclude form (19) that for      ,    
     (calculated in step 6) is equal 

to |     |. Therefore, the calculated minor vectors in the final step are equal to      . In summary, 

if  ̂    and  ̂   , then the two minor vectors    
 ̂    and    

 ̂    are equal. However, this 

equality is not true for any  ̂   , since in this case, the demultiplexed vectors   
 ̂            do 

not necessarily belong to the same code and can be seen as random vectors. Thus, the above 

statements are not true for any  ̂   , and so the two resulted minor vectors in step 7 would be 

unequal. As a result, if two minor vectors are equal, we conclude that the initial guesses  ̂    and 

 ̂    are true. 

In step 4, we restricted   
 ̂    and   

 ̂    to be two  ̂   ̂ submatrices of   ̂   , only to simplify 

the description of the proposed method. However, these can be constructed from any  ̂ independent 

vectors chosen from the row space of   ̂   . 

So far, we have identified the parameter   and  . Now, according to (17), we can divide   
     

(from step 4) by    
     (from step 6 that is equal to |     |), for     or  , to obtain a non-

catastrophic encoder for the code space         . The resulted generator matrix is denoted by  ̂   . 

Then, from theorem 1, we get: 

      (      ̂
        

 ̂

  
  

   ) (20) 

The proposed method is presented as a pseudo-codein Algorithm2. In the complexity viewpoint, 

the  ̂’th iteration of this algorithm is composed of a polynomial matrix rank calculation in step 3, two 

different  ̂ independent vectors finding process in step 4,    ̂
 ̂  polynomial matrix determinant 

calculation in step 5,    ̂
 ̂  polynomial GCD calculations in step 6, and   ̂ polynomial divisions in 

step 7. Let      denote the maximum degree of the received codewords. Then steps 3 and 4 can be 

executed by Gauss elimination algorithm with maximum complexity  ̃   ̂     . Also, every  ̂   ̂ 

minor in step 5 can be calculated with complexity  ̃ 
 ̂     

 ̂
 . 
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Alg. 2. Blind identification of code          

Input: Different codewords               

Output:  ,  ,   and a non-catastrophic encoder  ̂    

    

 ̂    

while   do 

for    to  do 

  
 ̂      

  ̂ 
     ;   Step 1 

end 

  ̂       
 ̂         

 ̂      ;  Step 2 

 ̂         ̂      ;  Step 3 

if ̂   ̂then 

 ̂   ̂    

else 

for    to  do 

  
 ̂     find  ̂ independent vectors from row space   ̂    ;  Step 4 

for    to   ̂
 ̂ do 

   

 
  calculate the  ’th minor of   

 ̂     ;  Step 5 

end 

   
 ̂      

  
 ̂

        
  

 ̂

 
 ̂
 ̂ 

     

   
 ̂      

for    to   ̂
 ̂ do 

   
 ̂       (   

 ̂     
  

 ̂

 
   )  ;  Step 6 

end 

   
 ̂    

 
  
 ̂   

 
  

 ̂   
  ;  Step 7 

end 

if    
 ̂       

 ̂   then 

 ̂   ̂    

end 

    

end 

end 

 ̂    
  

 ̂   

   
 ̂   

      
  

 ̂   

   
 ̂   

 

   ̂ 

   ̂ 

     (      ̂
        

 ̂

  
  

    ) 

 



Journal of Communication Engineering, Vol. 7, No. 1, January-June 2018 12 

 
 

Manuscript  received 15-Dec.-2016  and  revised 14-March-2018,                                                   P- ISSN: 2322-4088 
Accepted on 23-April-2018                                                                                            E- ISSN: 2322-3936 
 

 

Note that the matrices  
  

 ̂   ,      , have degree 
 ̂    

 ̂
 at the worst case. Thus, every GCD in 

step 6 or every division in step 7 can be calculated with the maximum complexity  ̃ 
 ̂     

 

 ̂  . Since 

the values of  ,   and   are much smaller than the maximum received codeword length, we can 

express the complexity only in term of     . As a result, we can approximate the complexity of 

Algorithm2 with  ̃     
  . 

As a final remark on this method, note that the steps 1 to 3 require at least     different 

codewords to introduce the values  ̂    and  ̂    as an initial guess for next steps. The     

codewords are sufficient when the         message matrix      is full-rank, or equivalently the 

rank of      is equal to  . In this case, the         matrix       has a rank deficiency, and so 

 ̂    is detected as a valid guess, and also the rank of       is equal to  , i.e.,  ̂   . Moreover, 

step 4 requires at least     different codewords to find two different     full-rank submatrix from 

        matrix      . Note that the     codewords are sufficient if at least two     

submatrices from       are  full-rank. Therefore, the     different codewords are sufficient for 

the proposed blind method if it is possible to find at least two full-rank     submatrices from the 

received code matrix     . Finally, we again emphasize that the codeword lengths is no matter to this 

algorithm. 

Example 2: Assume that the transmitter employs the following non-catastrophic encoder      to 

generate the convolutional code         : 

     [      

     
] 

Consider the four message sequences as:  

                                       

                                          

After encoding and transmitting the above messages, the corresponding received errorless codewords 

will be: 

                  

                         

                           

                       

In the first iteration, we examine the hypothesis of  ̂    and demultiplex the codewords in depth 2 as 

following matrix (step 2): 

      [

    

       

        

    

    

       

        

         

] 
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One can simply verify that the rank of       is equal to 2 (step 3). Thus, we conclude that the 

hypothesis of  ̂    is false, since in this case we have  ̂   ̂   . In the next iteration, we examine 

that the hypothesis of  ̂    and demultiplex the codewords in depth 3 as following matrix (step 2): 

      [

       

            

               

              

] 

In this case, we find               (step 3). Since  ̂   ̂, we select  ̂    and  ̂    as 

possibly true guesses, and verify their validity by steps 4 to 7. To this end, we first find two     

full-rank submatrices from       as follows (step 4): 

  
     [ 

      

            ] 

  
     [ 

      

               ] 

Now, we calculate the minor vectors as follows (step 5): 

   
                                                

   
                                   

 and then, by totaly four times use of Euclidean algorithm, we find (step 6): 

   
                      

           

In final step, by   
        

     and    
        

    , we obtain (step 7): 

   
        

                                     

Since the minor vectors are equal, we conclude that the hypothesises  ̂    and  ̂    are true. 

Moreover, from (20), we simply find    . Finally, we can introduce submatrices   
        

     or 

  
        

     as a non-catastrophic encoder for  . 

 

IV. CONCLUSION 

This paper, a simple method is introduce to blind identification of convolutional code of any rate from 

complete synchronous noiseless codewords. It is assumed that the transmitter uses a non-catastrophic 

encoder where is accepted in practical codes. We used the non-catastrophicity properties to identify 

the convolutional code parameters. In rate    , we proposed an iterative algorithm with three steps in 

which in every iteration examine the validity of a possible value for parameter  . This method can 

identify the parameters   and   and also a minimal-basic set for code         . Moreover, we have 

shown that only two codewords are sufficient and necessary to this method. In rate    , we have 

presented an iterative algorithm with seven. The first three steps, make an initial guess about the 

parameters   and  , then the last four steps verify the validity of this guess. Moreover, this method 

identifies the parameter   and also a non-catastrophic basis for the code space         . Also, it is 
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shown that the algorithm requires at least     different codewords to succeed. We emphasize that 

although the proposed method is limited to errorless scenarios, the development for noisy 

environments would be done as our future work. 
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