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Abstract –A simple linear profile (SLP) is a type of quality profile that describes the relationship between a 

response variable and an explanatory variable using a linear function. This concept is relevant in various 

industrial applications. Process capability indices (PCIs) are useful tools for measuring the process ability in 

producing items in conformance within the pre-set specification limits (SLs). In this paper, a composite PCI 

is presented for a SLP based on its parameters. The performance of the proposed PCI and existing ones are 

investigated and compared for their accuracy and precision of estimation. The simulation results 

highlight the superior performance of the proposed composite PCI to existing methods in terms of lower 

mean absolute error (MAE) and mean square error (MSE) metrics. Two real-world case studies are also 

analyzed to demonstrate how the proposed method can be applied in practice. 

 

Keywords– Composite capability index, Simple linear profile (SLP), Specification limits (SLs), Simulation 

studies. 
                    

 

I. INTRODUCTION 

In many practical applications, quality characteristics of interest are usually described by a relationship between a 

response variable(s) and one or more explanatory variables referred to as "profile". There are various types of profiles, 

including simple linear profiles (SLPs), polynomial profiles, multiple profiles, and nonlinear profiles. This study 

focuses on SLPs, which can be modeled using a simple linear regression. In this model, a single explanatory variable   

is used to describe the behavior of the response variable   (Saghaei and Noorossana, 2011). Generally, profile 

monitoring involves two phases (Woodall et al., 2004). In Phase I, the stability of the process is assessed, and the 

unknown profile parameters are estimated. Subsequently, in Phase II, the focus shifts to detecting potential shifts in the 

in-control process parameters as they occur (Saghaei and Noorossana, 2011). 

    Profile monitoring has been extensively studied by many researchers, and several methods have been developed 

for monitoring different profiles in both phases I and II (Abbasi et al., 2021; Derakhshani et al., 2021; Fakhimikazemi et 

al., 2023; Sogandi and Amiri, 2023; Yeganeh et al., 2024; Yeganeh and Shadman, 2021). For a more in-depth 

understanding of profile monitoring, readers are encouraged to consult the literature review by (Maleki et al., 2018). 
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Process capability analysis (PCA) is a critical aspect of statistical process control, used to evaluate a process’s 

ability to consistently produce products within specification limitations (SLs). Process capability indices (PCIs) are 

numerical measures generated through PCA to assess process performance relative to these tolerances. Higher PCI 

values indicate better process capability. Research on PCIs has encompassed both single and multiple quality 

characteristics, as well as complex product attributes known as profiles. Previous studies, such as (De-Felipe and 

Benedito, 2017; Pakzad et al., 2021) have provided comprehensive overviews of PCI development for these various 

product types. 

Assessment of process capability for in-control SLP was started by Shahriari and Sarrafian (2009). Following that, 

Ebadi and Shahriari (2013) proposed two methods for assessing the capability of SLPs, based on the observed response 

and the predicted response variable. Hosseinifard and Abbasi (2012a) estimated PCI for SLP using the proportion of 

nonconformance in another attempt. Furthermore, five approaches to estimating PCIs for non-normal linear profiles 

were examined and contrasted by Hosseinifard and Abbasi (2012b).  

Process yield, or the proportion of conforming products, is a standard metric for evaluating manufacturing process 

capability. Assuming a normal distribution, process yield can be calculated by         ((     )  ⁄ )  

 ((     )  ⁄ ), where     and     are the upper and lower SLs, respectively,   is the process mean,   is the 

process standard deviation, and  ( ) is the cumulative distribution function (CDF) of the standard normal distribution. 

Previous research has extended the concept of process yield to linear profiles, considering both simple and multivariate 

cases, as well as accounting for autocorrelation within and between profiles (Wang, 2014, 2016; Wang and Tamirat, 

2014, 2015).  Ganji and Gildeh (2023) introduced a new competence index for SLPs, which outperforms the indices 

proposed by Ebadi and Shahriari (2013) and Wang (2014) in terms of precision and accuracy.  

A functional approach was initially introduced by Nemati Keshteli et al. (2014) to evaluate the capability of linear 

profile processes by considering the entire range of the explanatory variable. This method has been extended to assess 

other profile types, including circular and nonlinear profiles (Nemati Keshteli et al. 2014b; Pour Larimi et al. 2019; 

Wang, 2015). Subsequent research focused on developing functional loss-based capability indices for linear profiles 

with symmetric and asymmetric tolerances, incorporating bootstrap confidence intervals to enhance reliability (Pakzad 

and Basiri, 2023; Pakzad et al., 2022). 

Recently, many studies are developed PCIs for other types of profiles, including logistic regression profiles (Amiri 

and Rezaye Abbasi Charkhi, 2015;  Rezaye Abbasi Charkhi et al., 2016), Poisson regression profiles (Alevizakos et al., 

2019), nonlinear profile (Guevara G and Alejandra López, 2022; Guevara and Vargas, 2016; Guevara and Vargas, 

2015; Wang and Guo, 2014), and SLP in multi-stage processes (Adibfar and Noorossana, 2022, 2024). 

Previous research (Chiang et al., 2017; Karimi Ghartemani et al., 2016; Wu, 2016) has treated process capability 

analysis for SLPs as a problem involving two correlated variables: the intercept and slope. This approach has led to the 

development of PCIs for SLPs based on multivariate PCI methods. However, these previous studies have been 

criticized for not accurately determining the SLs for the profile parameters. 

Recent work has addressed this issue by considering both profile SLs and in-control profile information to establish 

more accurate SLs for the intercept and slope. This led to the proposal of two univariate indices      
 and      

 for 

evaluating SLP capability based on the intercept and slope separately. A process is deemed incapable if either index 

falls below a certain threshold. 

This paper introduces a method to produce one number jointly representing SLP capability based on its parameters, 

which also improves the estimators of PCIs. To this end, a new composite index for the SLP intercept and slope 

parameters is established. While acknowledging the potential for bias, the proposed index aims to enhance the accuracy 

of process capability estimation by reducing mean squared error (MSE) compared to existing methods. The proposed 

method combines the strengths of Bothe’s multivariate PCI (Bothe, 1999) with the accurate SL estimation from (Pakzad 
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et al., 2024) to provide an improved single index for assessing SLP performance. 

This paper is structured as follows: Section 2 provides some preliminaries, including a review of an existing 

composite index, an overview of SLPs, and a summary of previous SLP-related PCIs. Section 3 introduces a new 

composite index for assessing SLP coefficients capability. Section 4 compares the performance of the proposed index 

with existing methods through simulation. Section 5 presents two real case studies to demonstrate the applicability of 

the proposed index. Finally, conclusions and remarks for future research are provided in the final section. 

II. PRELIMINARIES  

The following subsections provide essential definitions that will be used throughout the paper. 

A. Traditional Composite Capability Index  

Capability index     proposed by Kane (1986), is defined as     *(     )   ⁄  (     )   ⁄ +. Index     has 

been viewed as a yield-based index since it provides bounds on the process yield for a normally distributed process with 

a fixed value of    . Given a fixed value of    , the bounds on process yield   can be expressed as  (     )    

  (     ) (Boyles, 1991). For instance, if      , then it guarantees that the yield will be not less than 99.73%, or 

equivalently not more than 2700 ppm of non-conformities. Bothe  (1999) proposed a single measure,     , to 

summarize the capability of several different uncorrelated characteristics on the same part. Given the multiple 

uncorrelated product characteristics, if every characteristic is within its SLs, the product is capable, while if only one of 

the characteristics is out of its SLs, it makes the product incapable for the customer. To calculate     , the probability 

that a measure of the product characteristic is within the SLs (  ) is firstly obtained for each product characteristic. 

Consequently, the total proportion of conforming parts (      ) is obtained by Equation (1).  

       ∏  

 

   

 (1) 

 

Then, the total proportion of nonconforming parts (          ) can be obtained with the Equation (2).  

                    (2) 

 

Finally, with the inverse cumulative normal distribution function,    ( ), it is possible to transform            into 

the      by Equation (3). 

     
           

 
 (3) 

 

where            
 is the corresponding Z value for            (Bothe, 1997). 

B. Simple Linear Profile and Stable Parameters 

Consider a SLP defined by a linear relationship between one response variable and one explanatory variable. For the 

    profile sample, we have (      )           and          . Equation (4) models the relationship between the 

explanatory and response variables when the process is in-control.  

                                     (4) 
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The intercept    and slope    are profile parameters and    is explanatory variable with fixed values for each 

sample. In addition,     are assumed to be independently and identically distributed normal random variables with mean 

zero and variance   . Therefore, the reference line for the process follows a normal distribution with mean        

and variance   . The stable values of the parameters    and    must be estimated using in-control profile samples and 

Equation (5). 

 ̂      
∑    
 
   

 
   ̂      

∑    
 
   

 
     (5) 

 

where the least-square estimates of profile parameters for the     sample calculated by Equation (6) (Kutner et al., 

1996). 

     ̅      ̅     
   ( )

   
   (6) 

 

where  ̅   
∑    
 
   

 
  ̅   

∑   
 
   

 
     ( )  ∑ (    ̅)   

 
         ∑ (    ̅)  

   .  

Thus,  ̂            ,          , where  ̂   denotes the predicted value of the     response variable for a 

given level of the explanatory variable. The mean square error is used to estimate the process variance (  ) and is 

calculated as      
∑     
 
   

 
, where      

∑    
  

   

(   )
 is the unbiased estimator of    for sample   and     denotes 

residuals and is defined as          ̂   (Saghaei and Noorossana, 2011).  

C. Overview Of Existing PCI for SLP 

(Pakzad et al., 2024) introduced a novel method for evaluating SLP capability that utilizes coded  - values to create 

independent profile parameters and subsequently proposes two independent univariate indices for profile parameters. 

Equation (7) represents the transformed version of the SLP model in Equation (4). 

"Pakzad et al. (2024)." 

           
                              (7) 

 

where          ̅,       and   
       ̅. Similarly, to obtain the stable values of the unknown parameters 

   and   , we can use the in-control profile samples as follows. 

 ̂      
∑    

 
   

 
   ̂      

∑    
 
   

 
    (8) 

 

Under this situation, the least-square estimation of profile parameters for the     sample is calculated using       ̅  

and         
   ( )

   
, respectively. When the process is in-control, both     and     are mutually independent and 

follow a normal distribution with means    and    and variances 
  

 
 and 

  

   
, respectively. This allows for the 

construction of separate Shewhart control charts using Equations (9) and (10). 

          
 (   ) 

 
 

√
(   )   

  
           

 (   ) 
 
 

√
(   )   

  
  (9) 
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 (   ) 
 
 
√
(   )   

    

      
     

 (   ) 
 
 
√
(   )   

    

    (10) 

 

where  
 (   ) 

 

 
 is a    (  

 

 
) percentile of t distribution with  (   ) degrees of freedom (Kim et al., 2003; 

Mahmoud and Woodall, 2004). Assuming that the SLs for the reference profile           
  at each level of the   

  

are defined by      and      where          , two regression lines can be fitted as shown in Equation (11).  

       
    

   
         

    
   

   (11) 

 

where   
 ,   

 ,   
 , and   

  are the intercepts and slopes for      and     , respectively. Although the SLs may not be 

parallel, for simplicity, it is assumed parallelism (Pakzad et al., 2024), so   
    

   . Therefore, the SLs based on 

both a conforming and in-control profile for the intercept and slope were obtained as come in Equations (12) and (13).  

   {  
  (       )  

    
  (       )  

 }        {  
  (       )  

    
  (       )  

 }  (12) 

    *                             +         *                              +  (13) 

 

where   
  and   

  are the lower and upper values of    s, and   
(  

       )

  
    

(  
       )

  
    

(  
       )

  
  and 

  
(  

       )

  
  are conforming and in-control slopes. Therefore, based on the   in-control profile samples, the 

estimation of     for    and    were defined as Equation (14).  

 ̂    
 

           

 √ ̂  
  ( ̂      )

 
  ̂    

 
           

 √ ̂  
  ( ̂      )

 
  

(14) 

 

The estimated mean and variance of    are denoted by  ̂  
    and  ̂  

  
   

  
, respectively. Likewise, the 

estimated mean and variance of    are represented by  ̂      and  ̂  
  

   

    
. The upper and lower SLs for the 

intercept and slope are denoted by      ,      ,      , and      , respectively, and are calculated using  Equations 

(12) and (13). The centers of the SLs for the intercept and slope are     and    , which are also the target values. Both 

indices  ̂    
 and  ̂    

 are used simultaneously to evaluate process capability, and if either index is less than one, the 

process is deemed “incapable” (Pakzad et al., 2024). 

III. NEW CAPABILITY INDEX FOR SIMPLE LINEAR PROFILE 

Since the intercept and the slope of SLP can be two-dimensional predictions that describe the prediction profile, a 

capability index for the SLP considering two-responses (intercept and slope) is developed in this section. For an in-

control profile given in Equation (4), it is recommended to use the composite index      proposed by Bothe (1999) for 

the intercept and slope by employing coded  -values and then the independent profile parameters that follow normal 

distribution as mentioned in Subsection C. Hence, we need to calculate                     and        in order to 

derive      
           

 
 for SLP. In this case,               , which     and    represent the probability of being 
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within the SLs for the intercept and slope, respectively. These probabilities are obtained using Equations (15) and (16) 

associated with a normal distribution. 

     (               )  (15) 

     (               )  (16) 

 

where      ,      ,      , and       are the upper and lower SLs for the intercept and slope that are calculated 

based on Equations (12) and (13). The intercept estimator    and the slope estimator    (see Equation (8)) are known to 

be independent following  (   
   

  
) and  (   

   

    
), respectively. It should be noted that the interpretation of the new 

composite index is the same as that of the traditional ones mentioned in Subsection A. 

IV. PERFORMANCE OF THE PROPOSED INDEX 

To investigate and compare the performance of existing and new capability indices for SLP, we conducted a 

simulation study in MATLAB. The in-control model given by Kang and Albin (2000), i.e.               

     (   ) with four fixed   -values of 2, 4, 6, and 8 is used in the simulation study. In our proposed method, by 

coding   -values, we obtain the transformed model as           
           (   ) with   

 -values as -3, -1, 0, 1 

and 3. Based on the response SLs for each level of the explanatory variable (as shown in Table I), we fitted two 

regression lines                      
  and                     

 , using the transformed model.  

Table I. SLs for each level of explanatory variable 

Target                

6.25 10 2.5 2 1 

10.60 14.35 6.85 4 2 

15 18.75 11.25 6 3 

20 23.75 16.25 8 4 

 
We investigate and compare the performance of the proposed index with the existing       

 and      
 indices 

under different numbers of profile samples (  *             +) and small shifts in intercept, slope, and variance in 

terms of mean absolute error (MAE) and MSE metrics. For each simulated case, the true values of PCIs are calculated 

and listed. The number of simulation runs is set to 10,000 to obtain the estimates. In Tables II–IV, the estimated and 

true values of the      ,      
, and      

, as well as the corresponding MAE and MSE values for different simulation 

cases are reposted. The average values of MAE and MSE for the      
and      

are represented by    ̅̅ ̅̅ ̅̅ ̅ and    ̅̅ ̅̅ ̅̅ , 

respectively. Importantly, the true values of all indices are influenced by the number of profile samples, as this affects 

the calculation of control limits and, subsequently, the SLs for the intercept and slope. To enhance clarity, the Monte 

Carlo simulation process used to calculate   ̂  , MAE, and MSE is detailed in Pseudocode I. This procedure can also 

be adapted to estimate the existing indices      
 and      

. 
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Pseudocode I. The procedure for computing     ,   ̂  , MAE, and MSE using Monte Carlo simulation 

         

Consider the in-control transformed profile model (       
 ), SLs’ function, n, k,  . 

% It is necessary to transfer the SLs as we apply the transformation of the in-control profile model. 

% The Monte Carlo simulation loop. 

% The computed    ̂   in each iteration is denoted by   ̂     
, respectively. 

for rep = 1:1:10,000 

    Generate k profiles with shifts in intercept (   
), slope (   

), standard deviation (   ). 

    % The parameter estimation of the transformed model is performed based on the Subsection C. 

    (         ) = Estimate the profile parameters, including the intercept, slope, and process variance using the k 

profiles.  

    (                      ̂   ̂    ) = Compute the estimation error of each profile parameters, 

including the intercept, slope, and standard deviation. 

    Compute      ,      ,      , and       based on Eqs. (9) and (10) and the in-control parameters (       
 ). 

    Compute      ,      ,      , and       based on Eqs. (12) and (13). 

    Compute    , and     based on Eqs. (15) and (16) and considering shifts in parameters (   
     

    ) 

    Compute               ,                    , and      
           

 
. 

    Compute    ̂  ,    ̂  ,    ̂  , and    ̂   based on Eqs. (9) and (10) by   ,   , and     . 

    Compute    ̂  ,    ̂  ,    ̂  , and    ̂   based on Eqs. (12) and (13). 

    Compute  ̂  , and  ̂   based on Eqs. (15) and (16) and considering shifts in parameters (   
    

    ) 

    Compute  ̂       ̂    ̂  ,  ̂             ̂     , and   ̂     
 

 ̂          

 
. 

    Store the values   ̂     
  

    Store the values |   ̂     
     |  

    Store the values (   ̂     
      )

   

end for 

   ̂   = 
∑   ̂     
      
     

      
. 

MAE =
∑ |   ̂     

     |
      
     

      
. 

MSE = 
∑ (   ̂     

      )
       

     

      
. 
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Table II. Simulation results for small shifts in    parameter 

Simulated case   

    

         

     
      

 

True 

value 

Estimated 

(        
,         

) 
True 

value 

Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) 
True 

value 

Estimated 

(   , MSE) 

   
          

      

25 4.356 
4.335 

(0.294, 0.137) 
0.621 

0.645 

(0.083, 0.012) 
(0.189, 0.074) 0.579 

0.624 

(0.137, 0.031) 

50 4.407 
4.396 

(0.212, 0.071) 
0.602 

0.615 

(0.058, 0.006) 
(0.135, 0.038) 0.549 

0.572 

(0.095, 0.014) 

100 4.466 
4.459 

(0.153, 0.037) 
0.580 

0.588 

(0.041, 0.003) 
(0.097, 0.020) 0.514 

0.527 

(0.067, 0.007) 

200 4.528 
4.527 

(0.108, 0.018) 
0.558 

0.560 

(0.029, 0.001) 
(0.069, 0.010) 0.477 

0.482 

(0.047, 0.004) 

   
         

      

25 4.485 
4.456 

(0.284, 0.129) 
0.621 

0.646 

(0.085, 0.012) 
(0.184, 0.070) 0.579 

0.624 

(0.138, 0.032) 

50 4.538 
4.527 

(0.204, 0.065) 
0.602 

0.616 

(0.059, 0.006) 
(0.131, 0.035) 0.549 

0.575 

(0.096, 0.015) 

100 4.599 
4.591 

(0.146, 0.034) 
0.580 

0.587 

(0.041, 0.003) 
(0.093, 0.018) 0.514 

0.526 

(0.067, 0.007) 

200 4.663 
4.658 

(0.103, 0.017) 
0.558 

0.561 

(0.029, 0.001) 
(0.066, 0.009) 0.477 

0.482 

(0.047, 0.003) 

   
       

      

25 4.639 
4.597 

(0.266, 0.112) 
0.621 

0.645 

(0.083, 0.012) 
(0.175, 0.062) 0.579 

0.624 

(0.137, 0.031) 

50 4.694 
4.669 

(0.185, 0.054) 
0.602 

0.615 

(0.058, 0.005) 
(0.121, 0.030) 0.549 

0.572 

(0.094, 0.014) 

100 4.756 
4.744 

(0.130, 0.027) 
0.580 

0.587 

(0.041, 0.003) 
(0.086, 0.015) 0.514 

0.526 

(0.067, 0.007) 

200 4.822 
4.815 

(0.092, 0.013) 
0.558 

0.560 

(0.029, 0.001) 
(0.060, 0.007) 0.477 

0.482 

(0.047, 0.004) 

   
         

      

25 4.616 
4.573 

(0.269, 0.115) 
0.621 

0.646 

(0.083, 0.012) 
(0.176, 0.063) 0.579 

0.624 

(0.136, 0.031) 

50 4.671 
4.650 

(0.187, 0.056) 
0.602 

0.615 

(0.058, 0.006) 
(0.123, 0.031) 0.549 

0.572 

(0.095, 0.015) 

100 4.733 
4.721 

(0.133, 0.028) 
0.580 

0.587 

(0.041, 0.003) 
(0.087, 0.015) 0.514 

0.525 

(0.066, 0.007) 

200 4.798 
4.795 

(0.095, 0.014) 
0.558 

0.560 

(0.029, 0.001) 
(0.062, 0.008) 0.477 

0.483 

(0.047, 0.004) 

   
          

      

25 4.538 
4.505 

(0.280, 0.126) 
0.621 

0.648 

(0.085, 0.012) 
(0.182, 0.069) 0.579 

0.627 

(0.140, 0.033) 

50 4.592 
4.574 

(0.201, 0.064) 
0.603 

0.615 

(0.059, 0.006) 
(0.130, 0.035) 0.549 

0.572 

(0.096, 0.015) 

100 4.653 
4.644 

(0.138, 0.030) 
0.580 

0.587 

(0.040, 0.003) 
(0.089, 0.016) 0.514 

0.526 

(0.065, 0.007) 

200 4.718 
4.713 

(0.099, 0.015) 
0.558 

0.560 

(0.029, 0.001) 
(0.064, 0.008) 0.477 

0.482 

(0.047, 0.004) 
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Table III. Simulation results for small shifts in    parameter 

Simulated case   

    

         

     
      

 

True 

value 

Estimated 

(        
,         

) 
True 

value 

Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) 
True 

value 

Estimated 

(   , MSE) 

   
          

 

     

25 4.639 
4.593 

(0.272, 0.117) 
0.861 

0.895 

(0.132, 0.029) 

(0.202, 

0.073) 
0.801 

0.847 

(0.156, 0.040) 

50 4.694 
4.670 

(0.184, 0.054) 
0.834 

0.852 

(0.092, 0.013) 

(0.138, 

0.033) 
0.770 

0.793 
(0.107, 0.018) 

100 4.756 
4.742 

(0.129, 0.026) 
0.804 

0.813 
(0.064, 0.007) 

(0.097, 

0.016) 
0.734 

0.746 
(0.075, 0.009) 

200 4.822 
4.816 

(0.092, 0.013) 
0.773 

0.777 
(0.045, 0.003) 

(0.068, 

0.008) 
0.697 

0.702 
(0.053, 0.004) 

   
         

      

25 4.639 
4.597 

(0.266, 0.112) 
0.775 

0.806 

(0.114, 0.022) 

(0.190, 

0.067) 
0.728 

0.774 

(0.148, 0.036) 

50 4.694 
4.669 

(0.185, 0.054) 
0.751 

0.768 

(0.080, 0.010) 

(0.132, 

0.032) 
0.697 

0.721 

(0.102, 0.017) 

100 4.756 
4.744 

(0.130, 0.027) 
0.724 

0.733 

(0.057, 0.005) 

(0.093, 

0.016) 
0.662 

0.675 

(0.073, 0.009) 

200 4.822 
4.815 

(0.092, 0.013) 
0.696 

0.700 

(0.040, 0.003) 

(0.066, 

0.008) 
0.625 

0.630 

(0.051, 0.004) 

   
       

      

25 4.639 
4.597 

(0.266, 0.112) 
0.621 

0.645 

(0.083, 0.012) 

(0.175, 

0.062) 
0.579 

0.624 

(0.137, 0.031) 

50 4.694 
4.669 

(0.185, 0.054) 
0.602 

0.615 

(0.058, 0.005) 

(0.121, 

0.030) 
0.549 

0.572 

(0.094, 0.014) 

100 4.756 
4.744 

(0.130, 0.027) 
0.580 

0.587 

(0.041, 0.003) 

(0.086, 

0.015) 
0.514 

0.526 

(0.067, 0.007) 

200 4.822 
4.815 

(0.092, 0.013) 
0.558 

0.560 

(0.029, 0.001) 

(0.060, 

0.007) 
0.477 

0.482 

(0.047, 0.004) 

   
         

      

25 4.639 
4.599 

(0.267, 0.113) 
0.505 

0.524 

(0.061, 0.006) 

(0.164, 

0.060) 
0.430 

0.474 

(0.126, 0.027) 

50 4.694 
4.674 

(0.184, 0.054) 
0.489 

0.499 

(0.043, 0.003) 

(0.114, 

0.028) 
0.400 

0.423 

(0.088, 0.013) 

100 4.756 
4.746 

(0.132, 0.028) 
0.472 

0.477 

(0.030, 0.001) 

(0.081, 

0.015) 
0.365 

0.377 

(0.061, 0.006) 

200 4.822 
4.815 

(0.092, 0.013) 
0.453 

0.455 

(0.021, 0.001) 

(0.057, 

0.007) 
0.328 

0.337 

(0.043, 0.003) 

   
          

 

     

25 4.639 
4.599 

(0.266, 0.112) 
0.460 

0.478 

(0.054, 0.005) 

(0.160, 

0.059) 
0.356 

0.402 

(0.122, 0.025) 

50 4.694 
4.667 

(0.184, 0.053) 
0.445 

0.453 

(0.037, 0.002) 

(0.111, 

0.028) 
0.325 

0.345 

(0.084, 0.011) 

100 4.756 
4.744 

(0.131, 0.027) 
0.429 

0.434 

(0.027, 0.001) 

(0.079, 

0.014) 
0.290 

0.302 

(0.060, 0.006) 

200 4.822 
4.816 

(0.092, 0.013) 
0.413 

0.415 

(0.019, 0.001) 

(0.056, 

0.007) 
0.254 

0.259 

(0.042, 0.003) 
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Table IV. Simulation results for small shifts in    parameter 

Simulated case   

    
         

     
      

 

True value 
Estimated 

(        
,         

) 
True 

value 

Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) 
True 

value 

Estimated 

(   , MSE) 

     (  (   ) ) 

25 5.183 
5.156 

(0.405, 0.273) 
0.646 

0.675 

(0.091, 0.014) 

(0.248, 

0.144) 
0.648 

0.710 

(0.169, 0.050) 

50 5.244 
5.233 

(0.283, 0.129) 
0.627 

0.642 

(0.064, 0.007) 

(0.173, 

0.068) 
0.613 

0.646 
(0.117, 0.023) 

100 5.314 
5.306 

(0.196, 0.061) 
0.604 

0.611 
(0.044, 0.003) 

(0.120, 

0.032) 
0.575 

0.590 
(0.080, 0.010) 

200 5.388 
5.382 

(0.141, 0.031) 
0.580 

0.584 
(0.031, 0.002) 

(0.086, 

0.016) 
0.534 

0.540 
(0.056, 0.005) 

     (  (   ) ) 

25 4.888 
4.842 

(0.327, 0.170) 
0.633 

0.661 

(0.088, 0.013) 

(0.207, 

0.091) 
0.611 

0.663 

(0.151, 0.039) 

50 4.946 
4.929 

(0.227, 0.081) 
0.614 

0.629 

(0.061, 0.006) 

(0.144, 

0.044) 
0.578 

0.607 

(0.104, 0.018) 

100 5.012 
5.001 

(0.157, 0.039) 
0.592 

0.599 

(0.043, 0.003) 

(0.100, 

0.021) 
0.542 

0.555 

(0.073, 0.008) 

200 5.081 
5.076 

(0.112, 0.020) 
0.569 

0.571 

(0.030, 0.001) 

(0.071, 

0.011) 
0.503 

0.509 

(0.051, 0.004) 

     (  (   ) ) 

25 4.639 
4.597 

(0.266, 0.112) 
0.621 

0.645 

(0.083, 0.012) 

(0.175, 

0.062) 
0.579 

0.624 

(0.137, 0.031) 

50 4.694 
4.669 

(0.185, 0.054) 
0.602 

0.615 

(0.058, 0.005) 

(0.121, 

0.030) 
0.549 

0.572 

(0.094, 0.014) 

100 4.756 
4.744 

(0.130, 0.027) 
0.580 

0.587 

(0.041, 0.003) 

(0.086, 

0.015) 
0.514 

0.526 

(0.067, 0.007) 

200 4.822 
4.815 

(0.092, 0.013) 
0.558 

0.560 

(0.029, 0.001) 

(0.060, 

0.007) 
0.477 

0.482 

(0.047, 0.004) 

     (  (   ) ) 

25 4.424 
4.377 

(0.223, 0.078) 
0.609 

0.633 

(0.081, 0.011) 

(0.152, 

0.045) 
0.552 

0.594 

(0.128, 0.027) 

50 4.477 
4.457 

(0.156, 0.038) 
0.591 

0.604 

(0.057, 0.005) 

(0.106, 

0.022) 
0.523 

0.547 

(0.089, 0.013) 

100 4.536 
4.526 

(0.109, 0.019) 
0.570 

0.576 

(0.039, 0.002) 

(0.074, 

0.011) 
0.490 

0.501 

(0.062, 0.006) 

200 4.599 
4.594 

(0.075, 0.009) 
0.547 

0.550 

(0.028, 0.001) 

(0.052, 

0.005) 
0.455 

0.460 

(0.044, 0.003) 

     (  (   ) ) 

25 4.237 
4.194 

(0.193, 0.058) 
0.598 

0.621 

(0.078, 0.010) 

(0.135, 

0.034) 
0.529 

0.566 

(0.118, 0.023) 

50 4.287 
4.262 

(0.130, 0.026) 
0.580 

0.592 

(0.055, 0.005) 

(0.092, 

0.016) 
0.501 

0.520 

(0.083, 0.011) 

100 4.344 
4.332 

(0.093, 0.014) 
0.559 

0.566 

(0.038, 0.002) 

(0.066, 

0.008) 
0.469 

0.480 

(0.058, 0.005) 

200 4.404 
4.398 

(0.064, 0.007) 
0.537 

0.540 

(0.027, 0.001) 

(0.045, 

0.004) 
0.435 

0.439 

(0.041, 0.003)         

According to performance assessment metrics results in Tables II–IV, the proposed index      consistently 

outperforms the existing indices      
 and      

 in terms of both MAE and MSE across all simulated scenarios. This 

superiority is evident in the lower MAE and MSE values associated with the proposed index, as highlighted in Tables 

II-IV. Also, it can be seen that the number of profile samples   affects the estimates of all PCIs. So that, as the number 

of profiles in the sample increases, the values of MAE and MSE decrease, and the estimates improve. Based on another 

simulation result provided in Tables II and III, the values of the proposed index      is more sensitive to small shifts 

in the slope compared to the intercept. Additionally, Table IV shows that as    decreases, the values of       increase, 

and vice versa. 
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To provide a more comprehensive assessment, the performance of the indices was evaluated under scenarios where 

simultaneous small shifts occur in the    and    under different error term variances, as shown in Tables V-VII and 

Figures I-III. While all PCIs generally improve with larger profile sample sizes, the proposed index consistently 

outperforms the existing method across various simulation scenarios and sample size  . Notably, as Figures I–III 

demonstrate, the superiority of the proposed index is especially evident in cases involving smaller sample sizes. This 

characteristic is particularly advantageous in real-world situations, where obtaining large sample sizes is often 

constrained. Therefore, we propose using the index      to assess the process capability of SLP processes based on its 

parameters. 

Table V. Simulation results for      (  (   ) ) and small shifts in    and    parameter 

Simulated case   

    
         

     
      

 

True 

value 

Estimated 

(        
,         

) 
True 

value 

Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) 
True 

value 

Estimated  

(   , MSE) 

   
           

      

25 4.593 
4.598 

(0.410, 0.273) 
1.034 

1.077 
(0.180, 0.055) (0.295, 0.164) 

0.976 
1.035 

(0.203, 0.070) 

50 4.648 
4.652 

(0.295, 0.140) 
1.002 

1.026 
(0.125, 0.026) (0.210, 0.083) 

0.941 0.972 
(0.139, 0.032) 

100 4.710 4.713 
(0.215, 0.073) 

0.966 
0.979 

(0.087, 0.012) (0.151, 0.042) 
0.902 0.917 

(0.096, 0.015) 

200 4.775 4.778 
(0.149, 0.035) 

0.929 0.933 
(0.061, 0.006) (0.105, 0.021) 

0.860 0.865 
(0.068, 0.007) 

   
            

 

     

25 5.199 5.173 
(0.401, 0.259) 

0.826 0.866 
(0.134, 0.031) (0.268, 0.145) 

0.814 0.881 
(0.187, 0.060) 

50 5.261 5.241 
(0.282, 0.127) 

0.801 0.821 
(0.093, 0.014) (0.187, 0.070) 

0.780 0.812 
(0.127, 0.027) 

100 5.331 5.322 
(0.198, 0.062) 

0.772 0.782 
(0.064, 0.007) (0.131, 0.034) 

0.741 0.758 
(0.088, 0.013) 

200 5.404 5.397 
(0.139, 0.030) 

0.742 0.746 
(0.045, 0.003) (0.092, 0.017) 

0.700 0.706 
(0.061, 0.006) 

   
            

 

     

25 4.971 
4.956 

(0.413, 0.283) 
0.470 0.488 

(0.056, 0.005) (0.235, 0.144) 
0.398 0.455 

(0.147, 0.038) 

50 5.030 
5.024 

(0.292, 0.137) 
0.455 

0.464 
(0.039, 0.003) (0.166, 0.070) 

0.363 
0.392 

(0.100, 0.017) 

100 5.097 
5.091 

(0.210, 0.069) 
0.439 

0.444 
(0.027, 0.001) (0.118, 0.035) 

0.325 
0.339 

(0.068, 0.007) 

200 5.168 
5.168 

(0.147, 0.034) 
0.422 0.423 

(0.020, 0.001) (0.083, 0.017) 
0.284 0.290 

(0.049, 0.004) 

   
           

      

25 4.593 4.600 
(0.410, 0.276) 

0.428 0.444 
(0.049, 0.004) (0.230, 0.140) 

0.314 0.369 
(0.141, 0.034) 

50 4.648 4.654 
(0.294, 0.141) 

0.415 0.423 
(0.034, 0.002) (0.164, 0.071) 

0.280 0.307 
(0.093, 0.014) 

100 4.710 4.712 
(0.214, 0.073) 

0.400 0.404 
(0.024, 0.001) (0.119, 0.037) 

0.241 0.255 
(0.065, 0.007) 

200 4.775 
4.772 

(0.151, 0.036) 
0.385 0.386 

(0.017, 0.001) (0.084, 0.018) 
0.200 0.205 

(0.046, 0.003) 

   
           

      

25 4.888 
4.889 

(0.419, 0.289) 
0.428 

0.444 
(0.050, 0.004) (0.234, 0.147) 

0.314 
0.369 

(0.141, 0.034) 

50 4.946 
4.944 

(0.293, 0.138) 
0.415 

0.423 
(0.034, 0.002) (0.163, 0.070) 

0.280 
0.308 

(0.095, 0.015) 

100 5.012 
5.007 

(0.211, 0.072) 
0.400 

0.404 
(0.024, 0.001) (0.118, 0.036) 

0.241 
0.255 

(0.066, 0.007) 

200 5.081 
5.081 

(0.150, 0.036) 
0.385 0.386 

(0.017, 0.001) (0.084, 0.018) 
0.200 0.206 

(0.045, 0.003) 
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Table VI. Simulation results for      (  (   ) ) and small shifts in    and    parameter 

Simulated case   

    

         

     
      

 

True value 
Estimated 

(        
,         

) True value 
Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) True value 
Estimated  

(   , MSE) 

   
           

 

     

25 4.202 
4.189 

(0.301, 0.144) 
0.939 

0.968 

(0.145, 0.035) 
(0.223, 

0.089) 
0.868 

0.906 

(0.160, 0.042) 

50 4.252 
4.243 

(0.218, 0.075) 
0.910 

0.928 

(0.102, 0.017) 
(0.160, 

0.046) 
0.836 

0.858 
(0.112, 0.020) 

100 4.308 
4.305 

(0.158, 0.039) 
0.877 

0.887 
(0.073, 0.008) 

(0.116, 

0.024) 
0.800 

0.813 
(0.081, 0.010) 

200 4.368 
4.367 

(0.113, 0.020) 
0.843 

0.847 
(0.051, 0.004) 

(0.082, 

0.012) 
0.762 

0.767 
(0.056, 0.005) 

   
            

 

     

25 4.650 
4.609 

(0.271, 0.115) 
0.775 

0.808 

(0.117, 0.023) 
(0.194, 

0.069) 
0.728 

0.776 

(0.151, 0.038) 

50 4.706 
4.685 

(0.185, 0.055) 
0.751 

 0.768 

(0.081, 0.011) 
(0.133, 

0.033) 
0.697 

0.722 

(0.104, 0.018) 

100 4.768 
4.755 

(0.129, 0.026) 
0.724 

0.733 

(0.056, 0.005) 
(0.093, 

0.016) 
0.662 

0.674 

(0.072, 0.008) 

200 4.834 
4.827 

(0.092, 0.013) 
0.696 

0.700 

(0.040, 0.003) 
(0.066, 

0.008) 
0.625 

0.631 

(0.051, 0.004) 

   
            

 

     

25 4.485 
4.461 

(0.285, 0.129) 
0.460 

0.476 

(0.053, 0.005) 
(0.169, 

0.067) 
0.356 

0.399 

(0.120, 0.024) 

50 4.539 
4.527 

(0.202, 0.065) 
0.445 

0.455 

(0.038, 0.002) 
(0.120, 

0.033) 
0.325 

0.350 

(0.085, 0.012) 

100 4.599 
4.588 

(0.142, 0.032) 
0.429 

0.434 

(0.026, 0.001) 
(0.084, 

0.017) 
0.290 

0.301 

(0.059, 0.006) 

200 4.663 
4.658 

(0.102, 0.016) 
0.413 

0.414 

(0.019, 0.001) 
(0.061, 

0.009) 
0.254 

0.258 

(0.042, 0.003) 

   
           

 

     

25 4.202 
4.193 

(0.304, 0.146) 
0.421 

0.435 

(0.047, 0.004) 
(0.176, 

0.075) 
0.281 

0.322 

(0.117, 0.023) 

50 4.252 
4.248 

(0.220, 0.076) 
0.408 

0.416 

(0.033, 0.002) 
(0.126, 

0.039) 
0.251 

0.274 

(0.081, 0.011) 

100 4.308 
4.305 

(0.158, 0.039) 
0.393 

0.397 

(0.023, 0.001) 
(0.091, 

0.020) 
0.216 

0.227 

(0.056, 0.005) 

200 4.368 
4.365 

(0.112, 0.020) 
0.378 

0.379 

(0.017, 0.000) 
(0.064, 

0.010) 
0.179 

0.184 

(0.040, 0.003) 

   
           

 

     

25 4.424 
4.405 

(0.292, 0.136) 
0.421 

0.435 

(0.047, 0.004) 
(0.169, 

0.070) 
0.281 

0.322 

(0.116, 0.022) 

50 4.477 
4.460 

(0.206, 0.067) 
0.408 

0.416 

(0.033, 0.002) 
(0.119, 

0.035) 
0.251 

0.272 

(0.080, 0.010) 

100 4.536 
4.530 

(0.150, 0.036) 
0.393 

0.398 

(0.023, 0.001) 
(0.087, 

0.018) 
0.216 

0.228 

(0.057, 0.005) 

200 4.599 
4.595 

(0.105, 0.018) 
0.378 

0.380 

(0.017, 0.000) 
(0.061, 

0.009) 
0.179 

0.184 

(0.040, 0.003) 
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Table VII. Simulation results for      (  (   ) ) and small shifts in    and    parameter 

Simulated case   

    

         

     
      

 

True value 
Estimated 

(        
,         

) True value 
Estimated 

(        
,         

) (   ̅̅ ̅̅ ̅̅ ̅,   ̅̅ ̅̅ ̅̅ ̅) True value 
Estimated  

(   , MSE) 

   
           

 

     

25 3.896 
3.877 

(0.239, 0.089) 
0.866 

0.895 

(0.124, 0.025) 

(0.181, 

0.057) 
0.786 

0.822 

(0.137, 0.030) 

50 3.942 
3.931 

(0.169, 0.045) 
0.839 

0.855 

(0.086, 0.012) 

(0.128, 

0.029) 
0.757 

0.775 
(0.095, 0.014) 

100 3.995 
3.994 

(0.122, 0.023) 
0.809 

0.816 
(0.062, 0.006) 

(0.092, 

0.015) 
0.724 

0.732 
(0.068, 0.007) 

200 4.050 
4.051 

(0.088, 0.012) 
0.777 

0.780 
(0.043, 0.003) 

(0.066, 

0.008) 
0.689 

0.692 
(0.048, 0.004) 

   
            

 

     

25 4.245 
4.201 

(0.192, 0.058) 
0.732 

0.762 

(0.104, 0.018) 

(0.148, 

0.038) 
0.663 

0.704 

(0.129, 0.027) 

50 4.296 
4.269 

(0.131, 0.027) 
0.710 

0.724 

(0.071, 0.008) 

(0.101, 

0.017) 
0.635 

0.655 

(0.088, 0.012) 

100 4.353 
4.342 

(0.090, 0.013) 
0.685 

0.693 

(0.050, 0.004) 

(0.070, 

0.007) 
0.603 

0.614 

(0.062, 0.006) 

200 4.413 
4.408 

(0.063, 0.006) 
0.658 

0.661 

(0.035, 0.002) 

(0.049, 

0.004) 
0.569 

0.573 

(0.044, 0.003) 

   
            

 

     

25 4.119 
4.088 

(0.211, 0.071) 
0.450 

0.468 

(0.053, 0.005) 

(0.132, 

0.038) 
0.325 

0.364 

(0.109, 0.019) 

50 4.168 
4.152 

(0.150, 0.036) 
0.436 

0.444 

(0.036, 0.002) 

(0.093, 

0.019) 
0.297 

0.315 

(0.074, 0.009) 

100 4.223 
4.213 

(0.105, 0.018) 
0.421 

0.425 
(0.025, 0.001) 

(0.065, 

0.009) 
0.265 

0.274 
(0.052, 0.004) 

200 4.282 
4.277 

(0.076, 0.009) 
0.404 

0.406 
(0.018, 0.001) 

(0.047, 

0.005) 
0.232 

0.236 
(0.037, 0.002) 

   
           

 

     

25 3.896 
3.879 

(0.238, 0.088) 
0.413 

0.428 
(0.045, 0.003) 

(0.142, 

0.046) 
0.257 

0.292 
(0.102, 0.017) 

50 3.942 
3.938 

(0.169, 0.045) 
0.401 

0.408 
(0.032, 0.002) 

(0.100, 

0.023) 
0.229 

0.248 
(0.071, 0.008) 

100 3.995 
3.990 

(0.122, 0.023) 
0.386 

0.390 

(0.023, 0.001) 

(0.072, 

0.012) 
0.197 

0.207 

(0.051, 0.004) 

200 4.050 
4.047 

(0.087, 0.012) 
0.371 

0.373 

(0.016, 0.000) 

(0.052, 

0.006) 
0.164 

0.167 

(0.036, 0.002) 

   
           

 

     

25 4.071 
4.043 

(0.220, 0.077) 
0.413 

0.429 

(0.045, 0.003) 

(0.133, 

0.040) 
257 

0.294 

(0.103, 0.017) 

50 4.120 
4.107 

(0.157, 0.039) 
0.401 

0.409 

(0.032, 0.002) 

(0.095, 

0.020) 
0.229 

0.248 

(0.072, 0.008) 

100 4.174 
4.167 

(0.111, 0.019) 
0.386 

0.390 

(0.022, 0.001) 

(0.067, 

0.010) 
0.197 

0.205 

(0.050, 0.004) 

200 4.232 
4.227 

(0.079, 0.010) 
0.371 

0.373 

(0.016, 0.000) 

(0.048, 

0.005) 
0.164 

0.168 

(0.036, 0.002) 
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Fig. 1. The values of MAE/ MSE in   *             +for      (  (   ) ) and small shifts in    and   . 
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Fig. 2. The values of MAE/ MSE in   *             +for      (  (   ) ) and small shifts in    and   . 
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Fig. 3. The values of MAE/ MSE in   *             +for      (  (   ) ) and small shifts in    and   . 
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V. REAL CASE  

This section presents two case studies to illustrate the application of our proposed method. 

A. Example 1 

To illustrate the application of our proposed method, we consider a case study originally presented by Natrella 

(2010) and further analyzed by Wang and Tamirat (2014) and Pakzad et al. (2024). This case study involves monitoring 

the line widths of three photomask reference standards. To calibrate the optical imaging system, three control 

measurements were taken for each standard at the lower, middle, and upper ends of the calibration interval. The initial 

calibration experiment included 10 units (40 measurements) and resulted in an in-control linear calibration profile 

                         with a residual standard deviation of 0.06203. The SLs for the response variable at 

each level of the explanatory variable are provided in Table VIII.  

Table VIII. Line-width SLs at each measurement level (Wang and Tamirat, 2014) 

Target                

1.024 1.30 0.70 0.76 1 

3.495 3.80 3.20 3.29 2 

8.965 9.30 8.70 8.89 3 

 

To evaluate the capability of the calibration process for the optical imaging system based on the proposed method, 

we used two simulated datasets of size      profiles, generated by Pakzad et al. (2024). These datasets were based on 

the same model and residual standard deviations as used by Wang and Tamirat (2014) to represent incapable and 

capable processes. Tables IX and X show the simulated data for the incapable and capable processes, respectively. 

Then, the transformed model for both incapable and capable processes, as well as profile SLs are obtained as     

            
 ,                  

 , and                  
 , respectively.  

Table IX. Simulated data for 50 incapable line-width profiles (Pakzad et al., 2024) 

NO.  
 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 

1 1.039029 26 1.088235 1 3.397398 26 3.344075 1 9.093297 26 8.983126 

2 1.167355 27 1.057762 2 3.490559 27 3.342085 2 8.922185 27 9.118844 

3 0.762174 28 0.955759 3 3.362702 28 3.531231 3 9.020009 28 8.982591 

4 1.071155 29 1.014893 4 3.372663 29 3.46534 4 8.956192 29 9.079553 

5 1.017358 30 0.907859 5 3.482222 30 3.463491 5 9.040149 30 8.80697 

6 0.856339 31 1.073751 6 3.63463 31 3.623412 6 8.950668 31 8.975069 

7 0.942874 32 0.87224 7 3.406703 32 3.511767 7 9.058607 32 8.928565 

8 1.01972 33 0.879982 8 3.519667 33 3.502483 8 9.083297 33 8.853971 

9 1.340061 34 0.90566 9 3.460567 34 3.640082 9 9.179577 34 9.060389 

10 1.259974 35 0.694316 10 3.593518 35 3.403258 10 8.990882 35 9.038016 

11 0.852161 36 1.1282 11 3.375083 36 3.551866 11 8.798403 36 9.013415 

12 1.286257 37 1.017994 12 3.486123 37 3.565574 12 8.926981 37 8.878066 

13 1.057615 38 0.911062 13 3.5376 38 3.458772 13 9.144205 38 9.121722 
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Continue Table IX. Simulated data for 50 incapable line-width profiles (Pakzad et al., 2024) 

NO.  
 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 

14 0.979558 39 1.12146 14 3.59186 39 3.504251 14 8.903957 39 9.044768 

15 1.05656 40 0.81636 15 3.635777 40 3.367481 15 9.105234 40 8.980492 

16 0.965508 41 0.975678 16 3.491407 41 3.369253 16 9.022381 41 9.012366 

17 0.97351 42 0.961897 17 3.335233 42 3.493283 17 9.152333 42 8.984162 

18 1.13328 43 1.017401 18 3.409412 43 3.554403 18 8.815971 43 8.836829 

19 1.125294 44 1.016773 19 3.377803 44 3.738864 19 8.990528 44 8.981821 

20 1.126102 45 0.900177 20 3.715595 45 3.416878 20 8.890523 45 8.927795 

21 1.052278 46 0.982825 21 3.421955 46 3.501446 21 9.297993 46 8.913159 

22 0.866259 47 0.969477 22 3.55696 47 3.474733 22 9.091797 47 8.895616 

23 1.056807 48 1.047943 23 3.463851 48 3.291531 23 9.146618 48 8.957278 

24 1.147193 49 1.094033 24 3.570872 49 3.439442 24 8.90534 49 8.811839 

25 1.0342 50 1.095618 25 3.40718 50 3.305227 25 8.963707 50 9.105559 

 

Table X. Simulated data for 50 capable line-width profiles (Pakzad et al., 2024) 

NO.  
 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 

1 1.0180593 26 1.0138177 1 3.4942656 26 3.4553197 1 8.9645595 26 8.9515202 

2 0.9845577 27 0.9777184 2 3.4190235 27 3.473227 2 9.0081886 27 8.9281095 

3 0.9836431 28 0.9971942 3 3.5417802 28 3.5000245 3 9.0245125 28 9.067467 

4 0.9362899 29 0.9562642 4 3.5019471 29 3.4667 4 9.0365488 29 9.0101031 

5 1.048989 30 1.0392712 5 3.4912849 30 3.5104055 5 8.9869747 30 9.0066934 

6 0.9775365 31 0.9013341 6 3.5148607 31 3.5072092 6 8.9954327 31 9.0666172 

7 0.9414777 32 1.0140255 7 3.499115 32 3.4053204 7 9.1356295 32 9.046982 

8 1.0696265 33 0.9331546 8 3.4244996 33 3.424098 8 8.8700143 33 9.031823 

9 0.9718575 34 0.965027 9 3.4728302 34 3.4369292 9 9.1483925 34 9.0876531 

10 0.9492625 35 1.0200892 10 3.4738402 35 3.4514001 10 9.0310391 35 9.0677748 

11 0.9675785 36 1.0502548 11 3.4498993 36 3.4630147 11 9.0721338 36 9.0249725 

12 0.9332031 37 0.9164729 12 3.5872409 37 3.4836735 12 8.9068719 37 8.9672769 

13 0.9163184 38 1.0639987 13 3.4285785 38 3.2950001 13 8.9735002 38 8.9696841 

14 1.1424878 39 1.0267487 14 3.452889 39 3.4545514 14 8.9928517 39 9.0840461 

15 1.0884905 40 0.9815903 15 3.4387344 40 3.5599691 15 9.0363211 40 8.9101182 

16 1.0048764 41 0.9736904 16 3.4100636 41 3.4167325 16 8.9064975 41 9.0085826 

17 0.9078209 42 0.9723019 17 3.4709754 42 3.5408192 17 9.0393555 42 8.889213 

18 0.932115 43 0.9669982 18 3.4658994 43 3.5046304 18 8.9348671 43 9.0734015 

19 0.9748496 44 0.9872295 19 3.5778104 44 3.4811008 19 9.0142058 44 9.0635523 
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Continue Table X. Simulated data for 50 capable line-width profiles (Pakzad et al., 2024) 

NO.  
 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 NO.  

 
 

20 1.0348915 45 0.9889815 20 3.467453 45 3.4942175 20 9.0505656 45 9.0101721 

21 0.9031758 46 1.0370407 21 3.4168868 46 3.3858196 21 9.0303875 46 9.005706 

22 0.8412783 47 1.0805184 22 3.5823625 47 3.477656 22 9.0772558 47 8.8558758 

23 0.8959125 48 1.0147627 23 3.5594871 48 3.5823928 23 9.072507 48 9.0461501 

24 1.0064877 49 0.9727915 24 3.4686563 49 3.4890005 24 8.9697242 49 8.8741033 

25 1.0100757 50 1.0245806 25 3.3894729 50 3.4854664 25 9.0260452 50 8.866235 

 

For the first data set with         (incapable process), the values of      is estimated as 0.1238. Since the index 

     is less than one, the process is deemed incapable. For the second data set with           (capable process), 

The      index is equal to 1.2362, for the profile with          , which indicates a capable process.   

It should be noted that these obtained results agree with those reported by (Pakzad et al., 2024). However, the 

proposed method has the ability to represent SLP capability by one number jointly instead of calculating two separate 

indices      
and      

. 

B. Example 2 

To demonstrate the practical application of our proposed method, we analyzed a real-world dataset from the leather 

industry, as presented by (Amiri, 2011). Leather quality is crucial in shoe production, and the dyeing process 

significantly impacts this quality. When shoe temperatures rise, sweat can cause the dye to stain socks. Therefore, 

evaluating the performance of the leather dyeing process is essential. The relationship between color effluent and 

temperature can be modeled in this process as the SLP. The response variable is color effluent, and the explanatory 

variable is temperature, with five levels: 25, 32, 39, 46, and 53 degrees Celsius (°C). A set of historical data, presented 

in Table XI, shows that based on 11 in-control profile samples, the reference profile is                   , 

where      (        ). The functional SLs for color effluent at each temperature level are defined as     ( )  

              and     ( )               , as described by (Karimi Ghartemani et al., 2016). 

Table XI In-control leather industry dataset   (Amiri, 2011) 

                     Temperature 

   Profile 
25 32 39 46 53 

1 0.02180 0.02878 0.09083 0.10111 0.12566 

2 0.03020 0.05422 0.07183 0.11716 0.13127 

3 0.02880 0.02868 0.08575 0.09310 0.13549 

4 0.03060 0.07571 0.01011 0.11624 0.12850 

5 0.04880 0.02806 0.08549 0.11812 0.11880 

6 0.03100 0.09438 0.07157 0.11922 0.14965 

7 0.02310 0.07626 0.08093 0.13988 0.15714 

8 0.04550 0.09253 0.15109 0.08746 0.14101 

9 0.02090 0.04746 0.10231 0.12651 0.12299 

10 0.05780 0.05227 0.11557 0.11261 0.11202 

11 0.04630 0.06435 0.08679 0.07877 0.10632 
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To apply the proposed method in section III, we obtained a transformed model as                    with 

profile SLs as                     
  and                     

 . Then, based on Equations (12) and (13), 

the SLs of intercept and slope parameters are obtained as                   and                 , 

respectively. Then, based on Equations (4) and (7), the    
  , and    

        are obtained indicated. Finally, the 

value of      is estimated as 0.0795. Thus, as the index      is less than one, we state that the SLP is not capable. 

The estimated values of the      
and      

were also obtained as 2.6665 and 0.2772, respectively. Given that the 

process is deemed incapable due to incapability in the slope parameter, this finding aligns with the proposed method’s 

prediction of a higher nonconformity rate for slope compared to intercept. 

VI. CONCLUSION  

In this paper, the composite capability index,     , for SLP parameters was introduced. A comprehensive 

simulation study was conducted to evaluate the performance of the proposed and existing indices in terms of accuracy 

and precision. The simulation results demonstrated the superior performance of the proposed index estimation 

compared to existing methods across all simulated scenarios. This is confirmed by smaller MAE and MSE values, 

which indicate have closer values to their true values. The superiority of the proposed index is particularly pronounced 

in scenarios with limited data, making it a valuable tool for practical applications. Two real-world case studies were 

provided to demonstrate the proposed index’s applicability. Future research will focus on the extension of the proposed 

index for more complex profiles, such as multivariate, polynomial, non-linear profiles, as well as in multi-stage 

processes with profile quality characteristics.  

REFERENCES 

Abbasi, S. A., Abbas, T., & Adegoke, N. A. (2021). Improved simple linear profiling method with application to chemical gas 

sensors. Quality and Reliability Engineering International, 37(8), 3179-3191. 

Adibfar, S., & Noorossana, R. (2022). Process Capability Analysis for Simple Linear Profiles in Two-stage Process. Journal of 

Industrial Engineering Research in Production Systems, 10(20), 183-191. 

Adibfar, S., & Noorossana, R. (2024). Process Capability Analysis for Simple Linear Profiles in Multistage Processes. Pakistan 

Journal of Statistics and Operation Research, 139-155. 

Alevizakos, V., Koukouvinos, C., & Castagliola, P. (2019). Process capability index for Poisson regression profile based on the S 

pmk index. Quality Engineering, 31(3), 430-438. 

Amiri, A. (2011, January). Monitoring Simple Linear Profiles in the Leather Industry-A Case Study. In 2011 the 2nd International 

Conference on Industrial Engineering and Operations Management. 2011 the 2nd International Conference on Industrial 

Engineering and Operations Management. 

Bothe, D. R. (1997). Measuring process capability: techniques and calculations for quality and manufacturing engineers. McGraw-

Hill Companies.Bothe, D. R. (1999). Composite capability index for multiple product characteristics. Quality Engineering, 12(2), 

253-258. 

Boyles, R. A. (1991). The Taguchi capability index. Journal of quality technology, 23(1), 17-26. 

Chiang, J. Y., Lio, Y. L., & Tsai, T. R. (2017). MEWMA control chart and process capability indices for simple linear profiles with 

within‐profile autocorrelation. Quality and Reliability Engineering International, 33(5), 1083-1094. 

de-Felipe, D., & Benedito, E. (2017). A review of univariate and multivariate process capability indices. The International Journal of 

Advanced Manufacturing Technology, 92, 1687-1705. 

Derakhshani, R., Esmaeeli, H., & Amiri, A. (2021). Monitoring binary response profiles in multistage processes. Journal of Quality 

Engineering and Production Optimization, 6(2), 97-114. 



Journal of Quality Engineering and Production Optimization  / Volume 8, Issue 2, Summer & Autumn 2023, PP. 119-140 139 
 

 

Ebadi, M., & Shahriari, H. (2013). A process capability index for simple linear profile. The International Journal of Advanced 

Manufacturing Technology, 64, 857-865. 

FakhimiKazemi, H., Ahmadi, O., & Izadbakhsh, H. (2023). Monitoring of simple linear profiles and change point estimation in the 

presence. Journal of Quality Engineering and Production Optimization, 8(1). 

Ganji, Z. A., & Gildeh, B. S. (2023). A new process capability index for simple linear profile. Communications in Statistics-Theory 

and Methods, 52(11), 3879-3894. 

Guevara G, R. D., & Alejandra Lopez, T. (2022). Process capability vector for multivariate nonlinear profiles. Journal of Statistical 

Computation and Simulation, 92(6), 1292-1321. 

Guevara, R. D., & Vargas, J. A. (2016). Evaluation of process capability in multivariate nonlinear profiles. Journal of Statistical 

Computation and Simulation, 86(12), 2411-2428. 

Guevara, R. D., & Vargas, J. A. (2015). Process capability analysis for nonlinear profiles using depth functions. Quality and 

Reliability Engineering International, 31(3), 465-487. 

Hosseinifard, S. Z., & Abbasi, B. (2012a). Evaluation of process capability indices of linear profiles. International Journal of Quality 

& Reliability Management, 29(2), 162-176. 

Hosseinifard, S. Z., & Abbasi, B. (2012b). Process capability analysis in non normal linear regression profiles. Communications in 

Statistics-Simulation and Computation, 41(10), 1761-1784. 

Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.. 

Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of quality Technology, 32(4), 

418-426. 

Karimi Ghartemani, M., Noorossana, R., & Niaki, S. T. A. (2016). A new approach in capability analysis of processes monitored by 

a simple linear regression profile. Quality and Reliability Engineering International, 32(1), 209-221. 

Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35(3), 

317-328. 

Kutner, Michael .. .., Christopher. J. Nachtsheim, John Neter, and William Li. 1996. Applied Linear Regression Models. Fifth. 

McGraw-Hill, Boston. 

Mahmoud, M. A., & Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications. Technometrics, 46(4), 

380-391. 

Maleki, M. R., Amiri, A., & Castagliola, P. (2018). An overview on recent profile monitoring papers (2008–2018) based on 

conceptual classification scheme. Computers & Industrial Engineering, 126, 705-728.Natrella, M. (2010). NIST/SEMATECH e-

handbook of statistical methods. Nist/Sematech, 49. 

Nemati Keshteli, R., Baradaran Kazemzadeh, R., Amiri, A., & Noorossana, R. (2014). Developing functional process capability 

indices for simple linear pro le. Scientia Iranica, 21(3), 1096-1104. 

Nemati Keshteli, R., Kazemzadeh, R. B., Amiri, A., & Noorossana, R. (2014). Functional process capability indices for circular 

profile. Quality and Reliability Engineering International, 30(5), 633-644. 

Saghaei, A., & Noorossana, R. (2011). Introduction to profile monitoring. Statistical Analysis of Profile Monitoring, 1-20. doi: 

10.1002/9781118071984.ch1  

Pakzad, A., Adibfar, S., Razavi, H., & Noorossana, R. (2024). Process capability analysis for simple linear profiles. Quality & 

Quantity, 58(3), 2183-2211. 



140 Pakzad, A. / A new composite index for improved capability analysis of profile coefficients  

 

 

Pakzad, A., & Basiri, E. (2023). A new incapability index for simple linear profile with asymmetric tolerances. Quality 

Engineering, 35(2), 324-340. 

Pakzad, A., Razavi, H., & Sadeghpour Gildeh, B. (2022). Developing loss-based functional process capability indices for simple 

linear profile. Journal of Statistical Computation and Simulation, 92(1), 115-144. 

Pakzad, A., Razavi, H., & Sadeghpour Gildeh, B. (2021). Functional process capability indices for a simple linear profile in fuzzy 

environment. Journal of Industrial and Systems Engineering, 13(4), 1-22. 

Pour Larimi, A. M., Nemati Keshteli, R., & Safaei, A. S. (2019). Functional process capability indices for nonlinear profile. Journal 

of Industrial and Systems Engineering, 12, 1-14. 

Amiri, A., & Rezaye Abbasi Charkhi, M. (2015). Process capability index for logistic regression profile based on SPMK 

index. International Journal of Engineering, 28(8), 1186-1192. 

Rezaye Abbasi Charkhi, M., Aminnayeri, M., & Amiri, A. (2016). Process capability indices for logistic regression profile. Quality 

and Reliability Engineering International, 32(5), 1655-1661. 

Shahriari, H., & Sarrafian, M. (2009). Assessment of process capability in linear profiles. In Proceedings of the 6th international 

industrial engineering conference, Tehran, Iran (in Farsi). 

Sogandi, F., & Amiri, A. (2023). A Robust Control Chart for Monitoring Autocorrelated Multiple Linear Profiles in Phase 

I. International Journal of Engineering, 36(8), 1429-1439. 

Wang, F. K. (2014). A process yield for simple linear profiles. Quality Engineering, 26(3), 311-318. 

Wang, F. K. (2015). Measuring the process yield for circular profiles. Quality and Reliability Engineering International, 31(4), 579-

588. 

Wang, F. K. (2016). Process yield analysis for multivariate linear profiles. Quality Technology & Quantitative Management, 13(2), 

124-138. 

Wang, F. K., & Guo, Y. C. (2014). Measuring process yield for nonlinear profiles. Quality and Reliability Engineering 

International, 30(8), 1333-1339. 

Wang, F. K., & Tamirat, Y. (2014). Process yield analysis for autocorrelation between linear profiles. Computers & Industrial 

Engineering, 71, 50-56.Wang, F. K., & Tamirat, Y. (2015). Process yield analysis for linear within‐profile 

autocorrelation. Quality and Reliability Engineering International, 31(6), 1053-1061. 

Woodall, W. H., Spitzner, D. J., Montgomery, D. C., & Gupta, S. (2004). Using control charts to monitor process and product quality 

profiles. Journal of Quality Technology, 36(3), 309-320. doi:10.1080/00224065.2004.11980276 

Wu, X. F. (2016). An assessment approach for process capability in simple linear profile. In Proceedings of the 22nd International 

Conference on Industrial Engineering and Engineering Management 2015: Core Theory and Applications of Industrial 

Engineering (Volume 1) (pp. 613-620). Atlantis Press.  

Yeganeh, A., Abbasi, S. A., Shongwe, S. C., Malela-Majika, J. C., & Shadman, A. R. (2024). Evolutionary support vector regression 

for monitoring Poisson profiles. Soft Computing, 28(6), 4873-4897. 

Yeganeh, A., & Shadman, A. (2021). Monitoring linear profiles using Artificial Neural Networks with run rules. Expert Systems with 

Applications, 168, 114237. 


