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Abstract —A simple linear profile (SLP) is a type of quality profile that describes the relationship between a
response variable and an explanatory variable using a linear function. This concept is relevant in various
industrial applications. Process capability indices (PCls) are useful tools for measuring the process ability in
producing items in conformance within the pre-set specification limits (SLs). In this paper, a composite PCI
is presented for a SLP based on its parameters. The performance of the proposed PCI and existing ones are
investigated and compared for their accuracy and precision of estimation. The simulation results
highlight the superior performance of the proposed composite PCI to existing methods in terms of lower
mean absolute error (MAE) and mean square error (MSE) metrics. Two real-world case studies are also
analyzed to demonstrate how the proposed method can be applied in practice.

Keywords— Composite capability index, Simple linear profile (SLP), Specification limits (SLs), Simulation
studies.

I. INTRODUCTION

In many practical applications, quality characteristics of interest are usually described by a relationship between a
response variable(s) and one or more explanatory variables referred to as "profile". There are various types of profiles,
including simple linear profiles (SLPs), polynomial profiles, multiple profiles, and nonlinear profiles. This study
focuses on SLPs, which can be modeled using a simple linear regression. In this model, a single explanatory variable X
is used to describe the behavior of the response variable Y (Saghaei and Noorossana, 2011). Generally, profile
monitoring involves two phases (Woodall et al., 2004). In Phase |, the stability of the process is assessed, and the
unknown profile parameters are estimated. Subsequently, in Phase 11, the focus shifts to detecting potential shifts in the
in-control process parameters as they occur (Saghaei and Noorossana, 2011).

Profile monitoring has been extensively studied by many researchers, and several methods have been developed
for monitoring different profiles in both phases | and 1l (Abbasi et al., 2021; Derakhshani et al., 2021; Fakhimikazemi et
al., 2023; Sogandi and Amiri, 2023; Yeganeh et al., 2024; Yeganeh and Shadman, 2021). For a more in-depth
understanding of profile monitoring, readers are encouraged to consult the literature review by (Maleki et al., 2018).
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Process capability analysis (PCA) is a critical aspect of statistical process control, used to evaluate a process’s
ability to consistently produce products within specification limitations (SLs). Process capability indices (PCIs) are
numerical measures generated through PCA to assess process performance relative to these tolerances. Higher PCI
values indicate better process capability. Research on PCls has encompassed both single and multiple quality
characteristics, as well as complex product attributes known as profiles. Previous studies, such as (De-Felipe and
Benedito, 2017; Pakzad et al., 2021) have provided comprehensive overviews of PCI development for these various
product types.

Assessment of process capability for in-control SLP was started by Shahriari and Sarrafian (2009). Following that,
Ebadi and Shahriari (2013) proposed two methods for assessing the capability of SLPs, based on the observed response
and the predicted response variable. Hosseinifard and Abbasi (2012a) estimated PCI for SLP using the proportion of
nonconformance in another attempt. Furthermore, five approaches to estimating PCls for non-normal linear profiles
were examined and contrasted by Hosseinifard and Abbasi (2012b).

Process yield, or the proportion of conforming products, is a standard metric for evaluating manufacturing process
capability. Assuming a normal distribution, process yield can be calculated by %Yield = ®((USL —u)/o) —
®((u — LSL)/a), where USL and LSL are the upper and lower SLs, respectively, u is the process mean, o is the
process standard deviation, and ®(.) is the cumulative distribution function (CDF) of the standard normal distribution.
Previous research has extended the concept of process yield to linear profiles, considering both simple and multivariate
cases, as well as accounting for autocorrelation within and between profiles (Wang, 2014, 2016; Wang and Tamirat,
2014, 2015). Ganji and Gildeh (2023) introduced a new competence index for SLPs, which outperforms the indices
proposed by Ebadi and Shahriari (2013) and Wang (2014) in terms of precision and accuracy.

A functional approach was initially introduced by Nemati Keshteli et al. (2014) to evaluate the capability of linear
profile processes by considering the entire range of the explanatory variable. This method has been extended to assess
other profile types, including circular and nonlinear profiles (Nemati Keshteli et al. 2014b; Pour Larimi et al. 2019;
Wang, 2015). Subsequent research focused on developing functional loss-based capability indices for linear profiles
with symmetric and asymmetric tolerances, incorporating bootstrap confidence intervals to enhance reliability (Pakzad
and Basiri, 2023; Pakzad et al., 2022).

Recently, many studies are developed PCls for other types of profiles, including logistic regression profiles (Amiri
and Rezaye Abbasi Charkhi, 2015; Rezaye Abbasi Charkhi et al., 2016), Poisson regression profiles (Alevizakos et al.,
2019), nonlinear profile (Guevara G and Alejandra Lépez, 2022; Guevara and Vargas, 2016; Guevara and Vargas,
2015; Wang and Guo, 2014), and SLP in multi-stage processes (Adibfar and Noorossana, 2022, 2024).

Previous research (Chiang et al., 2017; Karimi Ghartemani et al., 2016; Wu, 2016) has treated process capability
analysis for SLPs as a problem involving two correlated variables: the intercept and slope. This approach has led to the
development of PCls for SLPs based on multivariate PCI methods. However, these previous studies have been
criticized for not accurately determining the SLs for the profile parameters.

Recent work has addressed this issue by considering both profile SLs and in-control profile information to establish

more accurate SLs for the intercept and slope. This led to the proposal of two univariate indices C,l,mb0 and Cpmb1 for

evaluating SLP capability based on the intercept and slope separately. A process is deemed incapable if either index
falls below a certain threshold.

This paper introduces a method to produce one number jointly representing SLP capability based on its parameters,
which also improves the estimators of PCls. To this end, a new composite index for the SLP intercept and slope
parameters is established. While acknowledging the potential for bias, the proposed index aims to enhance the accuracy
of process capability estimation by reducing mean squared error (MSE) compared to existing methods. The proposed
method combines the strengths of Bothe’s multivariate PCI (Bothe, 1999) with the accurate SL estimation from (Pakzad
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et al., 2024) to provide an improved single index for assessing SLP performance.

This paper is structured as follows: Section 2 provides some preliminaries, including a review of an existing
composite index, an overview of SLPs, and a summary of previous SLP-related PCls. Section 3 introduces a new
composite index for assessing SLP coefficients capability. Section 4 compares the performance of the proposed index
with existing methods through simulation. Section 5 presents two real case studies to demonstrate the applicability of
the proposed index. Finally, conclusions and remarks for future research are provided in the final section.

II. PRELIMINARIES
The following subsections provide essential definitions that will be used throughout the paper.

A. Traditional Composite Capability Index

Capability index C,; proposed by Kane (1986), is defined as min {(USL — u)/30, (u — LSL)/3c}. Index C, has
been viewed as a yield-based index since it provides bounds on the process yield for a normally distributed process with
a fixed value of C,. Given a fixed value of Cy, the bounds on process yield P can be expressed as Z(BCpk ) -1<
p< (3Cpk) (Boyles, 1991). For instance, if C,, = 1, then it guarantees that the yield will be not less than 99.73%, or
equivalently not more than 2700 ppm of non-conformities. Bothe (1999) proposed a single measure, MCyy, to
summarize the capability of several different uncorrelated characteristics on the same part. Given the multiple
uncorrelated product characteristics, if every characteristic is within its SLs, the product is capable, while if only one of
the characteristics is out of its SLs, it makes the product incapable for the customer. To calculate MC,, the probability
that a measure of the product characteristic is within the SLs (p;) is firstly obtained for each product characteristic.
Consequently, the total proportion of conforming parts (p;.:q:) is Obtained by Equation (1).

n
Ptotar = npi 1
i=1

Then, the total proportion of nonconforming parts (p¢,¢q; ncp) Can be obtained with the Equation (2).

Protatnee = 1 — Drotar 2

Finally, with the inverse cumulative normal distribution function, ®~*(.), it is possible to transform p;o¢q; ncp iNtO
the MC,, by Equation (3).

Z
Ptotal,NCP
My = T 3)
where Z,,  cp 1 the corresponding Z value for p;otq; ncp (Bothe, 1997).

B. Simple Linear Profile and Stable Parameters

Consider a SLP defined by a linear relationship between one response variable and one explanatory variable. For the
jt" profile sample, we have (X;,Y;;);i = 1,2,..,nand j = 1,2,..., k. Equation (4) models the relationship between the
explanatory and response variables when the process is in-control.

Yij = Ao + A1 X; + &5, i=12,..,n, j=12,..,k @)
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The intercept A, and slope A; are profile parameters and X; is explanatory variable with fixed values for each
sample. In addition, ¢;; are assumed to be independently and identically distributed normal random variables with mean
zero and variance a2. Therefore, the reference line for the process follows a normal distribution with mean 4, + 4, X
and variance o2. The stable values of the parameters A, and A; must be estimated using in-control profile samples and
Equation (5).

K ag;
Ao _ &j=1%j & _
Ag=ay = x Ay =a, =

Z?’n alj. (5)
k

where the least-square estimates of profile parameters for the j** sample calculated by Equation (6) (Kutner et al.,
1996).

7 7 Sxy(j)
anZY}—ale, aljzg. (6)

where ¥; =

DD ST 'S _ _
- 111 ”'X = lnl : SXY(j) = Z?=1(Xi _X)Yij' Sxx = ?:1(Xi _X)z-
Thus, ﬁ-,- =ap; +ay;X;, i =1,2,..,n, where 17”- denotes the predicted value of the j¢* response variable for a
given level of the explanatory variable. The mean square error is used to estimate the process variance (o2) and is

< MSE; n 2 . . i
calculated as MSE = % where MSE; = (‘n%:;’ is the unbiased estimator of g2 for sample j and e;; denotes

residuals and is defined as e;; = V;; — 17”- (Saghaei and Noorossana, 2011).

C. Overview Of Existing PCI for SLP

(Pakzad et al., 2024) introduced a novel method for evaluating SLP capability that utilizes coded X- values to create
independent profile parameters and subsequently proposes two independent univariate indices for profile parameters.
Equation (7) represents the transformed version of the SLP model in Equation (4).

"Pakzad et al. (2024)."
Yy =By +B X +¢&j i=12,..,n j=12,.,k ©)

where B, = A, + A; X, B, = A; and X/ = X; — X. Similarly, to obtain the stable values of the unknown parameters
B, and B;, we can use the in-control profile samples as follows.

_ Yhaby

X by
ko0 B :

k

EO = bo = bl (8)

Under this situation, the least-square estimation of profile parameters for the j** sample is calculated using by, = ;

SXy(j)

and by; = ayj = Sy respectively. When the process is in-control, both b,; and b,; are mutually independent and

2 2
follow a normal distribution with means B, and B; and variances % and :— respectively. This allows for the
XX

construction of separate Shewhart control charts using Equations (9) and (10).

(k — 1)MSE (k — 1)MSE )
LCLyy = bo ~ by [T pen Ul = Dot by [T



Journal of Quality Engineering and Production Optimization /Volume 8, Issue 2, Summer & Autumn 2023, PP. 119-140 123

, (k — 1)MSE (k — 1)MSE
LCLy, = by =ty R UCLy, = by + ty,_za B (10)

where ten-2)2 isa 100(1 — %) percentile of t distribution with k(n — 2) degrees of freedom (Kim et al., 2003;
’2

n—
Mahmoud and Woodall, 2004). Assuming that the SLs for the reference profile Y; = b, + b, X; at each level of the X;
are defined by LSL; and USL; where i = 1,2, ..., n, two regression lines can be fitted as shown in Equation (11).

USL; = by + b1 X{,LSL; = bj + b{X]. 11

where by, by, b;, and b; are the intercepts and slopes for USL; and LSL;, respectively. Although the SLs may not be
parallel, for simplicity, it is assumed parallelism (Pakzad et al., 2024), so b; = b; = b. Therefore, the SLs based on
both a conforming and in-control profile for the intercept and slope were obtained as come in Equations (12) and (13).

Min{b; + (b — LCLy,)X], b; + (b — UCLy, )X};} < by < Max{by + (b — UCLy, )X[, by + (b — LCL,,)X}}. (12)
Min {conforming & incontrol slopes} < b; < Max {conforming & incontrol slopes }. (13)
where X; and X}, are the lower and upper values of X’s, and b + (b‘;_;,“b"),b + (b"_;:,c L) 4 (b"_z,“”") and

U U L

b+ (b(’_;i”") are conforming and in-control slopes. Therefore, based on the k in-control profile samples, the
L

estimation of C,,, for b, and b, were defined as Equation (14).

] USL,, — LSLy, 4 USLy, — LSLy,

Comp, = — - ~ Comy, = — - .
6 |65 + (fipy — Ts,) 6|65 + (Ap, — T,)

(14)

The estimated mean and variance of b, are denoted by f,, = b, and 6,,20 = % respectively. Likewise, the

estimated mean and variance of b; are represented by /i, = b, and 651 = :;i The upper and lower SLs for the
XX

intercept and slope are denoted by USL,,, LSLy,, USLy,, and LSL,,, respectively, and are calculated using Equations
(12) and (13). The centers of the SLs for the intercept and slope are T}, and T}, , which are also the target values. Both
indices Cppm,, and Com,,,

process is deemed “incapable” (Pakzad et al., 2024).

are used simultaneously to evaluate process capability, and if either index is less than one, the

III. NEW CAPABILITY INDEX FOR SIMPLE LINEAR PROFILE

Since the intercept and the slope of SLP can be two-dimensional predictions that describe the prediction profile, a
capability index for the SLP considering two-responses (intercept and slope) is developed in this section. For an in-
control profile given in Equation (4), it is recommended to use the composite index MC,, proposed by Bothe (1999) for
the intercept and slope by employing coded X-values and then the independent profile parameters that follow normal
distribution as mentioned in Subsection C. Hence, we need to calculate pyoeqince = 1 — Protar aNd Proeq in Order to

Z.
derive MC,;, = w for SLP. In this case, piorqr = Pb,-Pp,» Which p;, and p,, represent the probability of being
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within the SLs for the intercept and slope, respectively. These probabilities are obtained using Equations (15) and (16)
associated with a normal distribution.

Py, = P(LSLyp, < by < USLy,). (15)
pp, = P(LSLy, < by < USLy,). (16)

where USLy,, LSLy,, USL,,, and LSL,, are the upper and lower SLs for the intercept and slope that are calculated
based on Equations (12) and (13). The intercept estimator b, and the slope estimator b, (see Equation (8)) are known to
I\Z—f) and N (bl,%), respectively. It should be noted that the interpretation of the new
composite index is the same as that of the traditional ones mentioned in Subsection A.

be independent following N (b,,

IV. PERFORMANCE OF THE PROPOSED INDEX

To investigate and compare the performance of existing and new capability indices for SLP, we conducted a
simulation study in MATLAB. The in-control model given by Kang and Albin (2000), i.e. Y;; =3 + 2X; + ¢;;,
&;;~N(0,1) with four fixed X;-values of 2, 4, 6, and 8 is used in the simulation study. In our proposed method, by
coding X;-values, we obtain the transformed model as Y;; = 13 + 2X] + ¢;;, €;~N(0,1) with X;-values as -3, -1, 0, 1
and 3. Based on the response SLs for each level of the explanatory variable (as shown in Table I), we fitted two
regression lines USL; = 16.7125 + 2.2825X; and LSL; = 9.2125 + 2.2825X;, using the transformed model.

Table I. SLs for each level of explanatory variable

i X; LSL; USL; Target
1 2 25 10 6.25
2 4 6.85 14.35 10.60
3 6 11.25 18.75 15

4 8 16.25 23.75 20

We investigate and compare the performance of the proposed index with the existing sz,mb0 and sz,mb1 indices

under different numbers of profile samples (k € {25, 50, 100,200}) and small shifts in intercept, slope, and variance in
terms of mean absolute error (MAE) and MSE metrics. For each simulated case, the true values of PCls are calculated
and listed. The number of simulation runs is set to 10,000 to obtain the estimates. In Tables 11-1V, the estimated and

true values of the MCyy , Cpmbo' and Cpmbl, as well as the corresponding MAE and MSE values for different simulation
cases are reposted. The average values of MAE and MSE for the Cpmboand Cpmy,, are represented by MAE and MSE,
respectively. Importantly, the true values of all indices are influenced by the number of profile samples, as this affects
the calculation of control limits and, subsequently, the SLs for the intercept and slope. To enhance clarity, the Monte
Carlo simulation process used to calculate A?Z‘pk, MAE, and MSE is detailed in Pseudocode I. This procedure can also

be adapted to estimate the existing indices Comp, and Comp, -
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Pseudocode I. The procedure for computing MC,y, MC,,, MAE, and MSE using Monte Carlo simulation

Consider the in-control transformed profile model (B,, B;, 52), SLs’ function, n, k, a.
% It is necessary to transfer the SLs as we apply the transformation of the in-control profile model.
% The Monte Carlo simulation loop.
% The computed ATCPk in each iteration is denoted by mpkrep, respectively.
for rep = 1:1:10,000
Generate k profiles with shifts in intercept (45,), slope (45, ), standard deviation (4,2).
% The parameter estimation of the transformed model is performed based on the Subsection C.

(by. by MSE) = Estimate the profile parameters, including the intercept, slope, and process variance using the k
profiles.

(6,,0 = by — By.8p, = by — By.842 = 6% — o'2) = Compute the estimation error of each profile parameters,
including the intercept, slope, and standard deviation.

Compute UCLy,, LCLy,, UCL,,, and LCL,, based on Egs. (9) and (10) and the in-control parameters (Bj. B; . o?).
Compute USLy,, LSLy,,, USLy,, and LSLy,, based on Egs. (12) and (13).
Compute py,, and p,, based on Egs. (15) and (16) and considering shifts in parameters (ABO .ABl./le)

C _ =1 d MC.., = Zptotal,NCP
OmpUte Ptotat = Pbys Pby» Protal,nce = 1 — Ptotals an pk — .

Compute UCLy,, LCLy,,, UCL,,, and LCL,, based on Egs. (9) and (10) by b, by, and MSE .
Compute USLy,, LSLy,, USLy,, and LSL,, based on Egs. (12) and (13).
Compute py,,, and p,, based on Egs. (15) and (16) and considering shifts in parameters (ABO,ABI,/L,z)

C te B A N A =1 A d McC _ Zptotal,NCP
OMPULE Deorar = Pby» Pbys Protai,nce = 1 — Protais an pkrep - 3 .

Store the values MC,y,
rep

Store the values MACpkrep — MCpy,
Store the values (MACpkrep — MCy)?

end for

10,000 77
— _ Zrep:l Mcpkn,p

MC

pk — 10,000

10,000( ;77
ZTep:l MCPkTep_MCPk

MAE =

10,000

10,000, i+ 2
Zrep:i( Mcpkrep_ Mcpk)

10,000

MSE =
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Table II. Simulation results for small shifts in B, parameter

Simulated case

Com

c

pmp,

C

pmp,

Com

MCpy,

True
value

Estimated

(MAEc,,, .MSEc,, )

True
value

Estimated
(MAECW% , MSE.
1

Pmpy

)

(MAE,MSE)

True
value

Estimated
(MAE, MSE)

Yi'

25

4.356

4335
(0.294, 0.137)

0.621

0.645
(0.083, 0.012)

(0.189, 0.074)

0.579

0.624
(0.137, 0.031)

50

4.407

4.396
(0.212, 0.071)

0.602

0.615
(0.058, 0.006)

(0.135, 0.038)

0.549

0572
(0.095, 0.014)

100

4.466

4.459
(0.153, 0.037)

0.580

0.588
(0.041, 0.003)

(0.097, 0.020)

0.514

0.527
(0.067, 0.007)

200

4.528

4527
(0.108, 0.018)

0.558

0.560
(0.029, 0.001)

(0.069, 0.010)

0.477

0.482
(0.047, 0.004)

Yi'

25

4.485

4.456
(0.284, 0.129)

0.621

0.646
(0.085, 0.012)

(0.184, 0.070)

0.579

0.624
(0.138, 0.032)

50

4.538

4.527
(0.204, 0.065)

0.602

0.616
(0.059, 0.006)

(0.131, 0.035)

0.549

0575
(0.096, 0.015)

100

4.599

4.591
(0.146, 0.034)

0.580

0.587
(0.041, 0.003)

(0.093, 0.018)

0.514

0.526
(0.067, 0.007)

200

4.663

4.658
(0.103, 0.017)

0.558

0.561
(0.029, 0.001)

(0.066, 0.009)

0.477

0.482
(0.047, 0.003)

Yi'

25

4.639

4.597
(0.266, 0.112)

0.621

0.645
(0.083, 0.012)

(0.175, 0.062)

0.579

0.624
(0.137, 0.031)

50

4.694

4.669
(0.185, 0.054)

0.602

0.615
(0.058, 0.005)

(0.121, 0.030)

0.549

0.572
(0.094, 0.014)

100

4.756

4.744
(0.130, 0.027)

0.580

0.587
(0.041, 0.003)

(0.086, 0.015)

0.514

0.526
(0.067, 0.007)

200

4.822

4.815
(0.092, 0.013)

0.558

0.560
(0.029, 0.001)

(0.060, 0.007)

0.477

0.482
(0.047, 0.004)

Yi'

25

4.616

4573
(0.269, 0.115)

0.621

0.646
(0.083, 0.012)

(0.176, 0.063)

0.579

0.624
(0.136, 0.031)

50

4.671

4.650
(0.187, 0.056)

0.602

0.615
(0.058, 0.006)

(0.123, 0.031)

0.549

0572
(0.095, 0.015)

100

4.733

4.721
(0.133, 0.028)

0.580

0.587
(0.041, 0.003)

(0.087, 0.015)

0.514

0.525
(0.066, 0.007)

200

4.798

4.795
(0.095, 0.014)

0.558

0.560
(0.029, 0.001)

(0.062, 0.008)

0.477

0.483
(0.047, 0.004)

Yi'

25

4.538

4.505
(0.280, 0.126)

0.621

0.648
(0.085, 0.012)

(0.182, 0.069)

0.579

0.627
(0.140, 0.033)

50

4.592

4574
(0.201, 0.064)

0.603

0.615
(0.059, 0.006)

(0.130, 0.035)

0.549

0572
(0.096, 0.015)

100

4.653

4.644
(0.138, 0.030)

0.580

0.587
(0.040, 0.003)

(0.089, 0.016)

0.514

0.526
(0.065, 0.007)

200

4.718

4.713
(0.099, 0.015)

0.558

0.560
(0.029, 0.001)

(0.064, 0.008)

0.477

0.482
(0.047, 0.004)
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Table II1. Simulation results for small shifts in B; parameter
Cpm
Cpm MC,p
Simulated case k Comy, Com,,
Jrue (MAECEP :Ifl;ngcmo) Jrue (MAEEEP Zi::lzﬁgdscml) (MMAEMSE) | ™ (l\]i;tg';,:esi)

25 14.639 (0.2?5%?117) 0.861 (0.1395%?029) gg?;' 0.801 (o.1géz,3go40)
2'13 + 215y, S0 14.694 (0.1321%(.)054) 0.834 (o.ogéa,%%?om) (c?.'o13338)' 0.770 (0.1(())%7%?018)
ey | 100{a75s (0.1397%?026) 0.804 (o.ogfgom) ((())81967) 0.734 (0.0?5??)?009)
200 14.822 (0.035%)?013) 0.773 (0.02;2?003) ((()).3)0688)' 0.697 (0.02:%7%?004)
25 14.639 (0.236?%?112) 0.775 (0.1?21?%(.5022) ((()).'01:70)' 0.728 (0.12{37)‘.1036)
v, 50 14694 (0.135?%?054) 0.751 (0.0567%?010) (5)013322) 0.697 (0.182%%017)
LT 100 | 4756 (0.1;67?)%027) 0.724 (0.0%?%?005) ((()).gfe% 0.662 (0.0?:%%?009)
200 14.822 (0.035%)?013) 0.696 (0.026?%(.)003) ((()).3)0686)' 0.625 (o.ogi?%(.)om)
25 14639 (0.226?%?112) 0.621 (o.ogéf,s‘(lfmz) (golgzs) 0.579 (0.13%%%031)
Y, 50 14.694 (0.135‘?%?054) 0.602 (o.ogé(,a%)?ooa ((()).'013201)' 0.549 (0.0821%?014)
T 100 | 4756 (0.1;67?)%027) 0.580 (0.025%?003) ((()).'(5)12?)' 0.514 (0.02%?%?007)
200 \4.822 (0.032%?013) 0.558 (o.ogé?%?om) (é)(;)g?c; 0477 (0.04(1)%‘,1%?004)
25 14.639 (o.zg%?%?m) 0.505 (o.ogi?%%oos) ((()).'01:51)' 0.430 (0.136%%027)
Y, 50 |4.694 (0.1321%%054) 0.489 (0.04(1);,{%?003) ((()).'0121;)' 0.400 (0.0&3?%?013)
~ T IRT 100 4756 (0.13?2‘(1)?028) 0472 (0.03?6%?001) (ggfsl) 0-365 (o.ogfgoos)
200 14.822 (0.035%)?013) 0.453 (o.ogi‘,‘%?om) ((()).'(5)0577)' 0.328 (0.025%7003)
25 14.639 (o.zgé?%?m) 0.460 (0.05?21%?005) ((()).615?5)' 0.356 (0.135,1%?025)
2'13 + Lesy: 50 |4.694 (0.1321?%7053) 0.445 (o.og%?%?ooz) ((?012181) 0.325 (o.ogfégfon)
ey | 100|756 (o.1§iTLc1)L.1027) 0.429 (0.02%?%%001) ((()).'(5)174% 0.290 (0.026?%?006)
200 14.822 (0.035%)?013) 0.413 (o.oféﬁfom) %).55% 0.254 (0.025%?003)
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Table IV. Simulation results for small shifts in 62 parameter

c Com c Com MCpy
Simulated case k pmy, pmy,
e ]f:)stimated True Es:imated . True Estimated
Truevalue \(MAE,, MSEc,, )| vale |MAEc, .MSEc, )| (MAEMSE) |-, (MAE, MSE)
5.156 0.675 (0.228, 0.710
251 5183 1 4 405 0273) | 9040 | (0.001,0014) | 0.144) | %] (0.169, 0.050)
5.233 0.642 (0.173, 0.646
L | B0 52441 583 0129) | 9627 (0064, 0007 | 0.068) | %8| (0.117, 0.023)
&j~N (0, (0-8) 5.306 0.611 (0.120 0.590
100 | 5314 ' 0.604 ' 120,16 575 :
(0.196, 0.061) (0.044,0.003) | 0.032) (0.080, 0.010)
5.382 0.584 (0.086, 0.540
200 | 5388 | (6141 0031) | %0 | (0.031,0002) | 0016) |%%*| (0.056,0.005)
4.842 0.661 (0.207, 0.663
25| 4888 | 4397 0170) | 03| (0.088,0.013) | 0001) | %O | (0.151, 0.039)
2.929 0.629 (0.144, 0.607
o | 20 ] 49481 5507 0081y | 96| (0.061,0006) | 0.044) | %78 (0.104, 0.018)
&j~N(0,(0.9)%) 5.001 0.599 (0.100 0.555
100 | 5.012 : 0.592 : 100,15 540 :
(0.157, 0.039) (0.043,0.003) | 0.021) (0.073, 0.008)
5.076 0571 (0.071, 0.509
2001 5081 | 4112 0.020) | 99| (0.030, 0.001) | 0.011) |%°%| (0.051,0.004)
4597 0.645 (0.175, 0.624
25| 4639 1 4966 0.112) | 02| (0.083,0012) | 0062) | %% (0.137,0.031)
4.669 0.615 (0.121, 0.572
Lo | 90| 48941 6185 0.054) | 0002 | (0058, 0.005) | 0.030) | 9%*°| (0.094, 0.014)
&j~N (0, (1.0)5) 4.744 0.587 (0.086 0.526
100 | 4.756 : 0.580 : 086, 1 514 :
(0.130, 0.027) (0.041,0.003) | 0.015) (0.067, 0.007)
2.815 0.560 (0.060, 0.482
200 | 4822 1 6092 0.013) | %8| (0.029,0001) | 0007) |%*"7| (0.047,0.004)
4377 0.633 (0.152, 0.594
25| 4424 1 593 0.078) | 9699 (0.081,0011) | 0.045 | 9%9?2| (0.128 0.027)
4.457 0.604 (0.106, 0.547
o | B0 44T 6156, 0.088) | 99| (0.057,0008) | 0.022) | %52 | (0.089, 0.013)
&;~N(0,(1.1)%) 4526 0.576 (0.074 0.501
100 | 4.536 : 0.570 : 074, 1 490 :
(0.109, 0.019) (0.039,0.002) | 0.011) (0.062, 0.006)
4.504 0.550 (0.052, 0.460
2001 4599 | 4075 0.009) | %" | (0.028,0001) | 0.005) |%*°| (0.044,0.003)
4.194 0.621 (0.135, 0.566
25| 4237 1 (5193 0.058) | 2% | (0.078.0.010) | 0034) |%%%°| (0.118, 0.023)
4.262 0.592 (0.092, 0.520
Lo | 90| 42871 5130, 0.026) | 2289 | (0.055,0.005) | 0.016) | 999 | (0.083, 0.011)
&;~N(0,(1.2)%) 4,332 0.566 (0.066 0.480
100 | 4.344 : 0.559 : 066,14 469 :
(0.093, 0.014) (0.038,0.002) | 0.008) (0.058, 0.005)
4398 0.540 (0.045, 0.439
2001 4404 | 064 0.007) | 9°%7 | (0.027,0001) | 0.004) | %% (0.041,0.003)

According to performance assessment metrics results in Tables 111V, the proposed index MCpy consistently
outperforms the existing indices Cy,, and Cpyy,, in terms of both MAE and MSE across all simulated scenarios. This
superiority is evident in the lower MAE and MSE values associated with the proposed index, as highlighted in Tables
I1-1V. Also, it can be seen that the number of profile samples k affects the estimates of all PCls. So that, as the number
of profiles in the sample increases, the values of MAE and MSE decrease, and the estimates improve. Based on another
simulation result provided in Tables Il and 111, the values of the proposed index MC, is more sensitive to small shifts
in the slope compared to the intercept. Additionally, Table IV shows that as o decreases, the values of MC,, increase,

and vice versa.
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To provide a more comprehensive assessment, the performance of the indices was evaluated under scenarios where
simultaneous small shifts occur in the B, and B, under different error term variances, as shown in Tables V-VII and
Figures I-111. While all PCls generally improve with larger profile sample sizes, the proposed index consistently
outperforms the existing method across various simulation scenarios and sample size k. Notably, as Figures I-lIl
demonstrate, the superiority of the proposed index is especially evident in cases involving smaller sample sizes. This
characteristic is particularly advantageous in real-world situations, where obtaining large sample sizes is often
constrained. Therefore, we propose using the index MCp to assess the process capability of SLP processes based on its
parameters.

Table V. Simulation results for £;;~N (0, (0.8)%) and small shifts in By, and B; parameter

Com
Com MCpy
Simulated case k Comy, Com,, ’ ’
— Estimated — Estimated N rue stimate
vTalue (MAE C,,mt:n > II; SE Cpmbo) \Ff;llue ™. AECW"ZI > A;SECpmm) mAzMsE vTalue (BIZI:E’ N:S(;:)
4598 1077 1035
25 |4593| (0.410,0273) |10%*| (0.180,0.055) |(0.295,0.164) %7 | (0.203, 0.070)
¥, 50 |4.648 (0.235(,5%?140) 1.002 (0.1215(,)20?026) (0.210, 0.083) *°4 (0.1§é%?032)
=13.2+ 2.2X] + &; 4713 0.979 0.917
100 14710] (0215, 0.078) |*%| (0.087.0.012) |(0.151.0.042)| ®9? | (0.096, 0.015)
4.778 0.933 0.865
20014775 (0,149, 0.035) |%9%°| (0.061,0.006) |(0.105, 0.021)| *®%° | (0.068, 0.007)
5.173 0.866 0.881
25 |>199] (0.401,0259) |%828| (0.134,0.031) |(0.268,0.45)| *81* | (0.187,0.060)
5.241 0.821 0.812
Y.
i , 1201201 (0.282,0127) |98 (0.093,0.014) |(0.187, 0.070) ®78° | (0.127,0027)
= 12.95 + 2.1X
" l100|5331| 2322 o772 0782 0741 | 018
+ &y 31| (0198,0062) |%7"| (0.064,0.007) |(0.131,0.084) % | (0.088,0013)
5397 0.746 0.706
20015404]  (0.139,0.030) |*"*?| (0.045,0003) |(0.092,0017)| >"% | (0.061,0.006)
4.956 0.488 0.455
25 |49 (0.413,0.283) 9470 (0.056,0.005) |(0.235, 0.144)| °3%8 | (0.147, 0.038)
5.024 0.464 0.392
Y.
M a1e Lasy: 50 15.080) 5595 0.137) |94%®| (0.039,0.003) |(0.166,0.070)| °203 | (0.100, 0.017)
te;  |1w00[s007| 2091 lgazg| - 0-444 0325 | 0339
£y 9971 (0210,0069) |[%**°| (0.027,0.001) |(0.118, 0.035)| ®3%° | (0.068,0.007)
5168 0423 0.290
20015168] (0.147,0084) |%*%2| (0.020,0.001) |(0.083,0.017)| %?®*| (0.049,0.004)
4.600 0.444 0.369
25 |4593| (0.410,0276) |*4?8| (0.049,0.004) |(0.230,0.140)| >34 | (0.141,0.034)
4.654 0.423 0.307
v, 20 |4648] (0.204,0141) |%*'3| (0.034,0.002) |(0.164,0071)| *?*0| (0.093, 0.014)
=132+ 1.8X] + ¢ 4.712 0.404 0.2%5
V100147101 9014, 0.073) |%4%°| (0.024,0001) |(0.129,0087) ®?*! | (0.065,0.007)
4772 0.386 0205
20014.775] (0.151,0.036) |*38°| (0.017,0001) |(0.084,0.018)| >?% | (0.046,0.003)
4.889 0.444 0-369
25 |4.888 (0.419é0.289) 0.428 (0.0%0, géoo4) (0.234, 0.147)| 0314 (0.14(1)1é8é034)
4.944 4 -
v, 20 |4.946| (0.003,0.138) |%4'°| (0.034,0002) |(0.163,0070) %% | (0.095, 0.015)
=128+ 18X +¢; 5.007 0.404 0.295
J| 10015012 5011, 0.072) |24%0] (0.024,0.001) |(0.118,0.038) %** | (0.066,0.007)
5.081 0.386 0.206
20015081 (9.150,0036) |®3%°| (0.017,0.001) |(0.084,0.018)| %?%| (0.045,0.003)
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Table V1. Simulation results for £;;~N (0. (1.0)%) and small shifts in B, and B parameter

Com
Cpm MCpk
Simulated case k Comy, Comy,
True value (MAECEP :Ifl;g%cmo) True value (MAEcEp:till?:;eSdEc,,mbl) (TAEMSE) (Truevalud — (yiag" i)
4.189 0.968 (0.223, 0.906
2 | 42021 (0301,0144) | *9%| (045,005 | 0.089) | %% | (0.160,0.042)
4.243 0.928 (0.160, 0.858
%'132+22X’ 501 42521 (9218,0075) | 90| (0.102,0017) | o046 | 8% | (0.112, 0.020)
= 132+ 2.2%, 4305 0.887 (0.116, 0.813
+ & 100 | 4308 | o 155 0039) | %877 | (0073,0.008) | 0024 | ©% | (0.081, 0.010)
4.367 0.847 (0.082, 0.767
200| 4368 | (5113 0.020) | %843 | (0.051,0008) | 0.012) | 72| (0.056,0.005)
4.609 0.808 (0.194, 0.776
25| 480 | 9271, 0115) | 977 | (0.117,0023) | o0069) | >'%®| (0.151,0.038)
4.685 0.768 (0.133, 0.722
2.1295”1)(, 50 | 4706 | (0135 0.055) | %751 | (0.08L.0011) | 003z | ®7 | (0104 0.018)
~ s A 4.755 0.733 (0.093, 0.674
+ & 100 | 4768 | 5 156 0.026) | %724 | (00560005 | o016 || (0,072, 0.008)
4.827 0.700 (0.066, 0.631
2001 4834 1 (0,002,0013) | “% | (0.040,0003) | 0008 | %% | (0.051,0004)
4.461 0.476 (0.169, 0.399
25 | 4485 | (0055 0.120) | 040 | (00530005 | 006n | % | (0.120,0022)
4.527 0.455 (0.120, 0.350
%.131+185X, 50 | 4539 | (3209 0.085) | %45 | (0.038,000) | 0033 | %35 | (0085, 0.012)
= oA E LA 4.588 0.434 (0.084, 0.301
+ &) 10014599 1 9142 0.032) | %4%° | (0.026,0.001) | 0.017) | %20 | (0.059,0.006)
4.658 0.414 (0.061, 0.258
20014663 | 0102 0.016) | %43 | (0.019,0.001) | 0009) | °?°*| (0.042,0.003)
4.193 0.435 (0.176, 0.322
2 | 42021 (0.304,0146) | **?1| (0.047,0008) | 0075 | %% (0.017,0.029)
4.248 0.416 (0.126, 0.274
%.132+18X’ 50 | 42521 (9.220,0076) | 4% | (0.033,0002) | 0039) | 2| (0.081,0.011)
- 13 BX; 4.305 0.397 (0.091, 0.227
+ & 100 1 4.308 | 9158 0.039) | %39 | (0.023,0.001) | 00200 | %8| (0.056,0.005)
4.365 0.379 (0.064, 0.184
2004368 | (0115 0.020) | ®378 | (0.017.0000) | 0o10) |%L7®| (0.040, 000
4.405 0.435 (0.169, 0.322
25 | 44241 0202,0136) | 9421 | (0.047,0004) | o0070) | 28| (0.116, 0.022)
4.460 0.416 (0.119, 0.272
2.128“8)(, 50 | 4477 | (0206, 0.067) | %4%8 | (0.033,0002) | 0035 | % | (00800010
=128+ 18X] 4.530 0.398 (0.087, 0.228
+ & 10014536 1 9150, 0.036) | %39 | (0.023,0.001) | 0.018) | %8| (0.057,0.005)
4.595 0.380 (0.061, 0.184
2001 45991 0105, 0018) | %378 | (0.017,00000 | 0009) |°1"°| (0.040,0.003)
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Table VII. Simulation results for sl-j~N (0. (1.2)2) and small shifts in By and B, parameter
Com
Com MCp
Simulated case k Comy, Comy,
True value| (74 EcE,,,S,:I?;ZdEcW“) True value (AR EEp Zi'f‘i}es"gcml )| (MAEMSE) [True value (l\]i:\té’f‘;;g%)
25 | 389 (0.2??52?089) 0866 (0.1321?%5025) ((?.'015871)’ 0786 (0.139%?%?030)
Yis220m ol ©165,005) |°% | (008,001 | 005 | °757 | (0095, 0010
+ &) | 100 | 3995 (0.132?%%023) 0.809 (0.032?%)?006) %)8352) 0.724 (0.025?%?007)
200 | 4.050 (o.ogé(,)%%om) 0777 (0.025%?003) gggg), 0689 (0.025?%?004)
25 | 425 | 01550058 | ©7%2 | 10001 | 0038 | °%%°| (01260027
KoM Bl s 0131.0020) | °7° | 0ort 0008) | oon | ©%% | (0088 0012)
+ & | 100 | 4353 (0.036?%?013) 0.685 (0.05?6?%?004) (é)(())g?o) 0.603 (o.ogé?gooe)
200 | 4.413 (o.ogél,l%?ooe) 0658 (0.025?%%002) ((;)c())(?j) 0569 (0-024%?003)
25 | 4119 (o_zfi(,)%?on) 0450 (o.ogé‘,l%?oos) ((?01582) 0-325 (0.185?%%019)
2'13_1 o 50 | 4.168 (0.154(.)%%?036) 0436 (0.026%%002) ((g).'c())fg)’ 0297 (0-034?%5009)
+ &) | 100] 4223 (0.135?%)?018) 0421 (0.025?%?001) (c?c?(?;) 0265 (O.ngg-lom)
200| 4282 | 76 01008) | 4% | (00160001 | 0005 | °%% | 0a7. 0002
25 | 389 (0.23&%%?088) 0413 (0.025‘,1%)2.;003) (c?.'olfg)’ 0257 (0-18é?%?017)
ORI Bl i 0166,0045) | *4 | 0032000 | 0029 |°%| ori o0
+ &) | 100 3995 (0.132?%(.)023) 0-386 (o.ogé?%(.)om) ((?(?1722) 0197 (o.ogf%?om)
200 | 4.050 (0.03%%?012) 0371 (0.0%5%?000) (c?c?(?sz) 0164 (0.03?6?%?002)
25 | 4071 (0.236%?077) 0413 (0.025?%?003) (c?olf(% 231 (0-18;%1.1017)
2-12.8 s Lo 50 | 4.120 (0.154#%?039) 0.401 (o.ogéé,l%?ooz) ((;)(;)2905) 0229 (0-0%‘8%08)
ey " | 100 | 4.174 (o.1fi%%7019) 0.386 (0.032%?001) (é’_'(?fg)’ 0.197 (o.ogé?%!.som)
200 | 4.232 (0.0?9?%?010) 0.371 (0.056%?000) ((;)c?cfss) 0.164 (0-03(’)6?%?002)
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Fig. 1. The values of MAE/ MSE in k € {25,50,100, 200}for &;;~N (0. (0.8)?) and small shifts in By and B.
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V. REAL CASE
This section presents two case studies to illustrate the application of our proposed method.

A. Example 1

To illustrate the application of our proposed method, we consider a case study originally presented by Natrella
(2010) and further analyzed by Wang and Tamirat (2014) and Pakzad et al. (2024). This case study involves monitoring
the line widths of three photomask reference standards. To calibrate the optical imaging system, three control
measurements were taken for each standard at the lower, middle, and upper ends of the calibration interval. The initial
calibration experiment included 10 units (40 measurements) and resulted in an in-control linear calibration profile
Y;; = 0.2357 + 0.9870 X; + &;; with a residual standard deviation of 0.06203. The SLs for the response variable at
each level of the explanatory variable are provided in Table VIII.

Table VIII. Line-width SLs at each measurement level (Wang and Tamirat, 2014)

i X, LSL, USL, Target
1 0.76 0.70 1.30 1.024
2 3.29 3.20 3.80 3.495
3 8.89 8.70 9.30 8.965

To evaluate the capability of the calibration process for the optical imaging system based on the proposed method,
we used two simulated datasets of size k = 50 profiles, generated by Pakzad et al. (2024). These datasets were based on
the same model and residual standard deviations as used by Wang and Tamirat (2014) to represent incapable and
capable processes. Tables IX and X show the simulated data for the incapable and capable processes, respectively.
Then, the transformed model for both incapable and capable processes, as well as profile SLs are obtained as Y;; =

4.5 + 0.9870X/, LSL; = 4.2 + 0.9837X/, and USL; = 4.8 + 0.9837X], respectively.

Table IX. Simulated data for 50 incapable line-width profiles (Pakzad et al., 2024)

NO. Y. NO. Y, NO. Y, NO. Y, NO. Vs NO. Y3
1 1.039029 | 26 | 1.088235 1 3.397398 | 26 | 3.344075 1 9.093297 | 26 | 8.983126
2 1.167355 | 27 | 1.057762 2 3.490559 | 27 | 3.342085 2 8.922185 | 27 | 9.118844
3 0.762174 | 28 | 0.955759 3 3.362702 | 28 | 3.531231 3 9.020009 | 28 | 8.982591
4 1.071155 | 29 | 1.014893 4 3.372663 | 29 3.46534 4 8.956192 | 29 | 9.079553
5 1.017358 | 30 | 0.907859 5 3.482222 | 30 | 3.463491 5 0.040149 | 30 8.80697
6 0.856339 | 31 | 1.073751 6 3.63463 31 | 3.623412 6 8.950668 | 31 | 8.975069
7 0.942874 | 32 0.87224 7 3.406703 | 32 | 3.511767 7 9.058607 | 32 | 8.928565
8 1.01972 33 | 0.879982 8 3.519667 | 33 | 3.502483 8 9.083297 | 33 | 8.853971
9 1.340061 | 34 0.90566 9 3.460567 | 34 | 3.640082 9 9.179577 | 34 | 9.060389
10 | 1.259974 | 35 | 0.694316 | 10 | 3.593518 | 35 | 3.403258 | 10 | 8.990882 | 35 | 9.038016
11 | 0.852161 | 36 1.1282 11 | 3.375083 | 36 | 3.551866 | 11 | 8.798403 | 36 | 9.013415
12 | 1.286257 | 37 | 1.017994 | 12 | 3.486123 | 37 | 3.565574 | 12 | 8.926981 | 37 | 8.878066
13 | 1.057615 | 38 | 0.911062 | 13 3.5376 38 | 3.458772 | 13 | 9.144205 | 38 | 9.121722
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Continue Table IX. Simulated data for 50 incapable line-width profiles (Pakzad et al., 2024)

NO. Y, NO. Y, NO. Y, NO. Y, NO. Y3 NO. Y3
14 | 0.979558 | 39 1.12146 14 3.59186 39 | 3.504251 | 14 | 8.903957 | 39 | 9.044768
15 1.05656 40 0.81636 15 | 3.635777 | 40 | 3.367481 | 15 | 9.105234 | 40 | 8.980492
16 | 0.965508 | 41 | 0.975678 | 16 | 3.491407 | 41 | 3.369253 | 16 | 9.022381 | 41 | 9.012366
17 0.97351 42 | 0961897 | 17 | 3.335233 | 42 | 3.493283 | 17 | 9.152333 | 42 | 8.984162
18 1.13328 43 | 1.017401 | 18 | 3.409412 | 43 | 3.554403 | 18 | 8.815971 | 43 | 8.836829
19 | 1125294 | 44 | 1.016773 | 19 | 3.377803 | 44 | 3.738864 | 19 | 8.990528 | 44 | 8.981821
20 | 1.126102 | 45 | 0.900177 | 20 | 3.715595 | 45 | 3.416878 | 20 | 8.890523 | 45 | 8.927795
21 | 1.052278 | 46 | 0.982825 | 21 | 3.421955 | 46 | 3.501446 | 21 | 9.297993 | 46 | 8.913159
22 | 0.866259 | 47 | 0.969477 | 22 3.55696 47 | 3.474733 | 22 | 9.091797 | 47 | 8.895616
23 | 1.056807 | 48 | 1.047943 | 23 | 3.463851 | 48 | 3.291531 | 23 | 9.146618 | 48 | 8.957278
24 | 1147193 | 49 | 1.094033 | 24 | 3570872 | 49 | 3.439442 | 24 8.90534 49 | 8.811839
25 1.0342 50 | 1.095618 | 25 3.40718 50 | 3.305227 | 25 | 8.963707 | 50 | 9.105559
Table X. Simulated data for 50 capable line-width profiles (Pakzad et al., 2024)
NO. Y, NO. Y, NO. Y, NO. Y, NO. Y, NO. Y,
1 | 1.0180593 | 26 | 1.0138177 | 1 | 3.4942656 | 26 | 3.4553197 | 1 | 8.9645595 | 26 | 8.9515202
2 | 0.9845577 | 27 | 09777184 | 2 | 3.4190235 | 27 | 3.473227 2 | 9.0081886 | 27 | 8.9281095
3 109836431 | 28 | 0.9971942 | 3 | 3.5417802 | 28 | 3.5000245 | 3 | 9.0245125 | 28 | 9.067467
4 10.9362899 | 29 | 0.9562642 | 4 | 3.5019471 | 29 3.4667 4 |9.0365488 | 29 | 9.0101031
5 1.048989 | 30 | 1.0392712 | 5 | 3.4912849 | 30 | 3.5104055 | 5 | 8.9869747 | 30 | 9.0066934
6 | 09775365 | 31 | 0.9013341 | 6 | 3.5148607 | 31 | 3.5072092 | 6 | 8.9954327 | 31 | 9.0666172
7 | 0.9414777 | 32 | 1.0140255 | 7 3.499115 | 32 | 3.4053204 | 7 | 9.1356295 | 32 | 9.046982
8 | 1.0696265 | 33 | 0.9331546 | 8 | 3.4244996 | 33 | 3.424098 8 | 8.8700143 | 33 | 9.031823
9 | 09718575 | 34 | 0.965027 9 | 34728302 | 34 | 3.4369292 | 9 | 9.1483925 | 34 | 9.0876531
10 | 0.9492625 | 35 | 1.0200892 | 10 | 3.4738402 | 35 | 3.4514001 | 10 | 9.0310391 | 35 | 9.0677748
11 | 0.9675785 | 36 | 1.0502548 | 11 | 3.4498993 | 36 | 3.4630147 | 11 | 9.0721338 | 36 | 9.0249725
12 | 0.9332031 | 37 | 0.9164729 | 12 | 3.5872409 | 37 | 3.4836735 | 12 | 8.9068719 | 37 | 8.9672769
13 | 09163184 | 38 | 1.0639987 | 13 | 3.4285785 | 38 | 3.2950001 | 13 | 8.9735002 | 38 | 8.9696841
14 | 1.1424878 | 39 | 1.0267487 | 14 | 3.452889 | 39 | 3.4545514 | 14 | 8.9928517 | 39 | 9.0840461
15 | 1.0884905 | 40 | 0.9815903 | 15 | 3.4387344 | 40 | 3.5599691 | 15 | 9.0363211 | 40 | 8.9101182
16 | 1.0048764 | 41 | 0.9736904 | 16 | 3.4100636 | 41 | 3.4167325 | 16 | 8.9064975 | 41 | 9.0085826
17 | 0.9078209 | 42 | 0.9723019 | 17 | 3.4709754 | 42 | 3.5408192 | 17 | 9.0393555 | 42 | 8.889213
18 | 0.932115 | 43 | 0.9669982 | 18 | 3.4658994 | 43 | 3.5046304 | 18 | 8.9348671 | 43 | 9.0734015
19 | 0.9748496 | 44 | 0.9872295 | 19 | 3.5778104 | 44 | 3.4811008 | 19 | 9.0142058 | 44 | 9.0635523
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Continue Table X. Simulated data for 50 capable line-width profiles (Pakzad et al., 2024)

NO. Y, NO. Y, NO. Y, NO. Y, NO. Y NO. Y

20 | 1.0348915 | 45 | 0.9889815 | 20 | 3.467453 | 45 | 3.4942175| 20 | 9.0505656 | 45 | 9.0101721

21 | 0.9031758 | 46 | 1.0370407 | 21 | 3.4168868 | 46 | 3.3858196 | 21 | 9.0303875 | 46 | 9.005706

22 | 0.8412783 | 47 | 1.0805184 | 22 | 3.5823625 | 47 | 3.477656 | 22 | 9.0772558 | 47 | 8.8558758

23 | 0.8959125 | 48 | 1.0147627 | 23 | 3.5594871 | 48 | 3.5823928 | 23 | 9.072507 | 48 | 9.0461501

24 | 1.0064877 | 49 | 0.9727915 | 24 | 3.4686563 | 49 | 3.4890005 | 24 | 8.9697242 | 49 | 8.8741033

25 | 1.0100757 | 50 | 1.0245806 | 25 | 3.3894729 | 50 | 3.4854664 | 25 | 9.0260452 | 50 | 8.866235

For the first data set with & = 0.099 (incapable process), the values of MC is estimated as 0.1238. Since the index
MCpy is less than one, the process is deemed incapable. For the second data set with o = 0.06203 (capable process),
The MCpy index is equal to 1.2362, for the profile with o = 0.06203, which indicates a capable process.

It should be noted that these obtained results agree with those reported by (Pakzad et al., 2024). However, the
proposed method has the ability to represent SLP capability by one number jointly instead of calculating two separate

indices Cpmboand Cpmbl.

B. Example 2

To demonstrate the practical application of our proposed method, we analyzed a real-world dataset from the leather
industry, as presented by (Amiri, 2011). Leather quality is crucial in shoe production, and the dyeing process
significantly impacts this quality. When shoe temperatures rise, sweat can cause the dye to stain socks. Therefore,
evaluating the performance of the leather dyeing process is essential. The relationship between color effluent and
temperature can be modeled in this process as the SLP. The response variable is color effluent, and the explanatory
variable is temperature, with five levels: 25, 32, 39, 46, and 53 degrees Celsius (°C). A set of historical data, presented
in Table XI, shows that based on 11 in-control profile samples, the reference profile is ¥ = —0.0505 + 0.0034 X,
where &;;~N(0,0.0005). The functional SLs for color effluent at each temperature level are defined as LSLy(X) =
—0.09 4+ 0.0035X and USLy (X) = —0.01 + 0.0035X, as described by (Karimi Ghartemani et al., 2016).

Table XI In-control leather industry dataset (Amiri, 2011)

Profile lemperatuce 25 kY 39 46 53
1 0.02180 0.02878 0.09083 0.10111 0.12566
2 0.03020 0.05422 0.07183 0.11716 0.13127
3 0.02880 0.02868 0.08575 0.09310 0.13549
4 0.03060 0.07571 0.01011 0.11624 0.12850
5 0.04880 0.02806 0.08549 0.11812 0.11880
6 0.03100 0.09438 0.07157 0.11922 0.14965
7 0.02310 0.07626 0.08093 0.13988 0.15714
8 0.04550 0.09253 0.15109 0.08746 0.14101
9 0.02090 0.04746 0.10231 0.12651 0.12299
10 0.05780 0.05227 0.11557 0.11261 0.11202
11 0.04630 0.06435 0.08679 0.07877 0.10632
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To apply the proposed method in section 1ll, we obtained a transformed model as Y = 0.0821 — 0.0034 X’ with
profile SLs as USL; = 0.1265 + 0.0035X; and LSL; = 0.0465 + 0.0035X;. Then, based on Equations (12) and (13),
the SLs of intercept and slope parameters are obtained as —0,0005 < b, < 0,1735 and 0,0027 < b; < 0,0043,
respectively. Then, based on Equations (4) and (7), the p,, = 1, and p,, = 0.5943 are obtained indicated. Finally, the
value of MCy is estimated as 0.0795. Thus, as the index MCpy is less than one, we state that the SLP is not capable.
The estimated values of the Cpmboand Cpmy,, Were also obtained as 2.6665 and 0.2772, respectively. Given that the
process is deemed incapable due to incapability in the slope parameter, this finding aligns with the proposed method’s
prediction of a higher nonconformity rate for slope compared to intercept.

VI. CONCLUSION

In this paper, the composite capability index, MCpy, for SLP parameters was introduced. A comprehensive
simulation study was conducted to evaluate the performance of the proposed and existing indices in terms of accuracy
and precision. The simulation results demonstrated the superior performance of the proposed index estimation
compared to existing methods across all simulated scenarios. This is confirmed by smaller MAE and MSE values,
which indicate have closer values to their true values. The superiority of the proposed index is particularly pronounced
in scenarios with limited data, making it a valuable tool for practical applications. Two real-world case studies were
provided to demonstrate the proposed index’s applicability. Future research will focus on the extension of the proposed
index for more complex profiles, such as multivariate, polynomial, non-linear profiles, as well as in multi-stage
processes with profile quality characteristics.
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