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Abstract- The establishing of a pairwise key between two nodes for 
encryption in a wireless sensor network is a challenging issue. To do 
this, we propose a new deterministic key pre-distribution scheme which 
has modified the multiple key space scheme (MKSS). In the MKSS, the 
authors define two random parameters to make better resilience than 
existing schemes. Instead of a random selection of these parameters, our 
proposal provides a combinatorial framework by substituting 
appropriate parameters to satisfy certain properties. We show that the 
proposed scheme enhances storage memory and improves performance 
or security by carefully choosing a combinatorial design. In addition, we 
propose a new key agreement mechanism by using derivative operation 
on univariate polynomials to aim a desired computational overhead. In 
this case, the computational overhead of our approach lower than the 
general case of the MKSS’s. If we choose the primitive element in our 
general formula as the special case of the MKSS, this new process has 
the same computational overhead as the MKSS.  

  
Index Terms- Combinatorial design theory, Key pre-distribution, Security, Wireless 
sensor networks.  

 

I. INTRODUCTION 

The concept of micro-sensing and wireless connection in wireless communications have been led 

many new application areas of wireless sensor networks (WSNs). A sensor network is composed of a 

large number of sensor nodes. These small devices have limited memory, battery power, bandwidth, 

transmission range, and computation power. Sensor nodes are randomly distributed in large numbers 

in a region and operate unattended for a long period of time [5]. Typically, sensor nodes consist of 

sensing, processing, power and communicating components. The WSNs collect various information 

(e.g. mechanical, thermal, biological, chemical) and have many applications in military operations, 

environment and habitat monitoring, healthcare and emergency response, etc [32]. 
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Under adversarial conditions, data in sensor nodes deployed in such hostile environments need to 

be securely operated. Thus, the security becomes a crucial issue in the WSNs. Wireless nature of 

communication in WSNs, resource limitation, and lack of a fixed infrastructure are various security 

challenges. The security services are key management, authentication, and pairwise key establishment 

[5]. The cryptographic techniques enable the sensor nodes to communicate securely with each other. 

Traditional public key protocols are infeasible in WSNs due to the resource constraints of sensor 

nodes. One of the important problems in WSNs is the key agreement mechanism, i.e. how to set up 

secret keys between communicating nodes. 

Three key agreement approaches are arbitrated keying, self-enforcing, and key pre-distribution 

schemes to establish secret keys [32]. Arbitrated keying schemes which depend on infrastructures 

using trusted third parties are impractical. Self-enforcing approaches in WSNs which use asymmetric 

cryptography are inappropriate due to the limited computational power and energy resources of sensor 

nodes. Nowadays, key pre-distribution schemes are the best practical solution for pre-distributing 

keys between sensor nodes. In this approach, secret keys are preloaded in each node prior to 

deployment [6], [24], [29], [30]. 

Key pre-distribution solutions can be probabilistic, deterministic, or hybrid [5]. In probabilistic 

approaches, a list of keys (key chain) is randomly selected from a key pool and distributed to a sensor 

node. Deterministic solutions are proposed to provide better performance. Hybrid solutions combine a 

deterministic core with a probabilistic approach to inherit benefits of both. 

A. Main Contributions 

Du et al. [13] suggest a matrix-based key pre-distribution as defined in Blom’s scheme [3]. They 

define a multiple key space scheme (MKSS) as a pair of matrices (private matrix, public matrix). The 

MKSS randomly constructs 𝜔 key spaces and selected 𝜏 (2 ≤  𝜏 <  𝜔) key spaces for each sensor 

node. If two nodes have at least a common key space, they can generate at least a pairwise key. 

Motivated by the random selection of the two parameters 𝜏 and 𝜔 in the MKSS, we propose the 

combinatorial structure for these parameters. Similarly to the MKSS, our scheme defines a public set 

of arrays and 𝜔 random symmetric private sets of arrays. The idea is to use a set system by 

substitution of its parameters with 𝜔 and 𝜏. Using suitable combinatorial designs as set systems, our 

new scheme obtains better connectivity or resilience than the MKSS’s. Furthermore, our approach 

enables reducing storage memory. 

For establishing a pairwise key in the key agreement phase, we use the derivative operation on 

univariate polynomials to achieve a desired computational overhead. The computational overhead of 

our scheme is 𝑂(𝜆𝑙𝑜𝑔𝜆). This provides better the computational overhead than the general case of the 

MKSS. Especially, similar to the MKSS, if the primitive elements are selected in the proposed 

approach, then the computational overhead in our scheme and the MKSS are equal to 𝑂(𝜆). 
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The remaining of the paper is organized as follows. Section II explains the related work and 

provides the background. In Section III, we explain our system model and adversarial model. Section 

VI describes our proposed approach with two phases in a WSN. In Section V, we evaluate 

performance and security properties of our scheme and compare it with the MKSS. We also analyze 

the main results of our proposal in section VI. Finally, we conclude the paper in Section VII. 

II. RELATED WORK AND BACKGROUND 

The uncontrolled environments for WSNs and the existence of various attacks motivate the 

designing of security protocols. Many types of research have been addressed designing security 

protocols in WSNs. A few examples have been discussed the surveys in [5], [8], [32], [34]. In most 

security protocols, all cryptographic operations involve keys. Therefore, key establishment is the first 

step to establishing a security infrastructure. Key pre-distribution schemes are assumed the best 

solution for key establishment in WSNs. There are three categories for key pre-distribution schemes: 

random, deterministic, and hybrid. 

A. Random Key Pre-distribution Schemes  

In the random key pre-distribution schemes, each node is preloaded with a list of keys from a key 

pool. In such sensor networks, we imagine a graph in which each node is a vertex. There exists an 

edge between two nodes if they have a common shared key. Such a graph is called random graph 

[17]. Based on the random graph theory, Eschenauer et al. [16] propose a random key pre-distribution 

(AKA basic scheme). In this scheme, any two neighboring use a single common key to establishing a 

secure link. The basic scheme is generalized by Chan et al. [7] in which two nodes share at least q 

common keys (q > 1) for computing a pairwise key. Ehdaie et al. [14] propose another random key 

distribution by increasing resilience for WSNs to node capture without additional computation and 

communication overheads rather than existing schemes. Other examples of random key pre-

distribution schemes have been studied in [21], [22], [33], [35]. 

B. Deterministic Key Pre-distribution Schemes 

Various types of deterministic key pre-distribution schemes have been proposed: matrix-based, 

polynomial-based, and combinatorial-based schemes. 

Blom [3] proposes a threshold matrix-based key pre-distribution which generates a public matrix 

and a private symmetric matrix for establishing pairwise keys. To increase the resilience of Blom’s 

scheme, Du et al. [13] use multiple private symmetric matrices, instead of just one. This scheme is 

called multiple key space scheme (MKSS). 

Another class of deterministic schemes is the polynomial-based approach. It can be considered an 

equivalent between polynomial-based and MKSS schemes. In polynomial-based approach, a 
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symmetric bivariate polynomial is used for establishing a common key. The elements in the second 

row of a public matrix in the MKSS can be considered as the IDs of sensor nodes in polynomial-based 

approach. Each private matrix can be considered as the coefficients of a bivariate polynomial. For the 

first time, Blundo et al. [4] suggest a 𝜆-secure polynomial-based key pre-distribution scheme. In this 

work, the setup server generates a symmetric bivariate 𝜆-degree polynomial from which each node 

establishes a common key with its neighbors. Mitra et al. [25] propose another polynomial-based 

scheme which uses three disjoint sets of distinct symmetric bivariate polynomials in the triangular 

grid. Therefore, each node enables to communicate with all nodes lying on the same straight line. In 

[2], Anzani et al. apply the combinatorial design theory in the multivariate key pre-distribution 

scheme. In this scheme, using the IDs of sensors as an 𝑑 tuple of positive integers and the 

combinatorial design, the shares of the multivariate polynomials store in sensor nodes before the 

network deployment.  

In the third class of deterministic schemes, there are several key pre-distribution schemes: 

projective planes, generalized quadrangles, transversal designs, and partially balanced incomplete 

block designs. For example, Camtepe and Yener [6] propose novel deterministic approaches which 

use projective planes and generalized quadrangles are mapped to key distribution schemes. Another 

combinatorial-based key pre-distribution scheme based on partially balanced incomplete block 

designs was proposed by Ruj et al. [31]. For more examples of combinatorial-based schemes, see [1], 

[19].  

C. Hybrid Key Pre-distribution Schemes 

To enhance the desired metrics for WSNs, the hybrid schemes merge random and deterministic 

approaches to inherit benefits of both. Camtepe et al. [6] propose two hybrid designs: hybrid 

symmetric and hybrid GQ designs. These approaches combine a deterministic core with a 

probabilistic extension. Dargahi et al. [12] modify the hybrid symmetric design to improve key share 

probability and scalability yet providing the same resilience against node capture attack. They use two 

similar key pools with some different keys in contrast to the hybrid symmetric scheme, which utilizes 

one key pool and its complement. Liu et al. [23] propose another hybrid key pre-distribution scheme 

to improve resilience and scalability in Blundo’s scheme [4]. This scheme merges polynomial-based 

approach and key pool idea in the basic scheme [16]. A few examples of hybrid schemes are [18], 

[20]. 

D. Design-theoretic background 

Definition 1. A set system is a pair (𝑋,𝐴), where 𝐴 is a finite set of subsets of 𝑋 called blocks. The 

degree of a point 𝑥 ∈  𝑋 is the number of blocks containing 𝑥. The rank of (𝑋,𝐴) is the size of the 

largest block. 
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Definition 2. A balanced incomplete block design (BIBD) or (𝑣, 𝑏, 𝑟,𝑘, µ)-BIBD is a set system 

with the following properties [9]: 

1. |𝑋| = 𝑣, |𝐴| = 𝑏, 

2. Each block of 𝐴 contains exactly 𝑘 elements, 

3. Each element occurs in exactly 𝑟 blocks, 

4. Each pair of elements comes in exactly µ blocks of 𝐴. 

In a (𝑣, 𝑏, 𝑟,𝑘, µ)-BIBD, we have: µ(𝑣 − 1) = 𝑟(𝑘 − 1) and 𝑏𝑘 = 𝑣𝑟. A BIBD is called symmetric 

design or symmetric BIBD denoted by (𝑣,𝑘, µ)-SBIBD when 𝑏 = 𝑣 and therefore 𝑟 = 𝑘 [9]. 

Definition 3. An (𝑛2 + 𝑛 + 1,𝑛 + 1,1)-SBIBD with 𝑛 ≥ 2 is called a projective plane of order 𝑛. 

Definition 4. For every prime power 𝑞 ≥ 2, there exists an (𝑞2 + 𝑞 + 1, 𝑞 + 1,1)-SBIBD (i.e., a 

projective plane of order 𝑞). 

Definition 5. Let 𝑛 ≥  2. An (𝑛2,𝑛2 +  𝑛,𝑛 +  1,𝑛, 1)-BIBD is called an affine plane of order 𝑛. 

Definition 6. For every prime power 𝑞 ≥ 2, there exists a (𝑞2,𝑞, 1)-SBIBD (i.e., an affine plane of 

order 𝑞). 

Definition 7. An (𝑠, 𝑡)-generalized quadrangle is a pair (𝑋,𝐴) in which 𝑋 and 𝐴 are disjoint 

(nonempty) sets of objects called points and lines (respectively), which satisfies the following axioms: 

(i) Each point is incident with exactly 𝑡 + 1 lines (𝑡 ≥ 1). 

(ii) Each line is incident with 𝑠 + 1 points (𝑠 ≥ 1). 

(iii) if 𝑥 is a point and 𝐿 is a line not incident with 𝑥, then there is a unique point 𝑦 ∈ 𝐿 such that 𝑥 

and 𝑦 occur on a line. 

The pair (𝑋,𝐴) is denoted by 𝐺𝑄(𝑠, 𝑡) and the integers 𝑠 and 𝑡 are the parameters of the 𝐺𝑄. The 

𝐺𝑄 with parameters 𝑠 and 𝑡 is said to have order (𝑠, 𝑡). 

Definition 8. Let 𝐺𝑄(𝑠, 𝑡) be a generalised quadrangle of order (𝑠, 𝑡), and put |𝑋| = 𝑣, |𝐴| = 𝑏. 

Then, in a 𝐺𝑄(𝑠, 𝑡), there are 𝑣 = (𝑠 + 1)(𝑠𝑡 + 1) points and 𝑏 = (𝑡 +  1)(𝑠𝑡 +  1) lines where 

each line includes 𝑠 + 1 points and each point appears on 𝑡 + 1 lines. 

Definition 9. A projective space 𝑃𝐺(𝑑, 𝑞) of dimension d over a field 𝐹 (order 𝑞) is constructed 

from the vector space of dimension 𝑑 + 1 over 𝐹 such that objects are all subspaces of the vector 

space and two objects are incident if one contains the other. 

Remark 1. There are three known GQs as defined in [28]: 1) 𝐺𝑄(𝑞, 𝑞) from projective space 

𝑃𝐺(4,𝑞); 2) 𝐺𝑄(𝑞, 𝑞2) from projective space 𝑃𝐺(5, 𝑞); and 3) 𝐺𝑄(𝑞2, 𝑞3) from projective space 

𝑃𝐺(4,𝑞2) with 𝑞 as an arbitrary prime power. 

III. SYSTEM MODEL AND ADVERSARIAL THREAT 

A. System model 

We consider a WSN with 𝑁 sensor nodes which randomly distributed in the field. The base station 
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first generates a key pool of different arrays and then constructs the public subset and the private 

subsets of the key pool. Each sensor node is preloaded with a list including the node’s id and various 

key spaces which will be explained in the next section. Our scheme is divided into two phases: setup 

and key agreement. In the first phase, one array of the public set and one array of some private sets are 

preloaded in each node. After deployment, any pair of two neighboring nodes exchanges a list 

including the node’s id, the indices of their key spaces, and the array of the public set to establish at 

least one common key. If two neighboring nodes do not share any common key, they can find a 

secure path in the network to establish a common key through other nodes. This approach will be 

discussed in more detail in Section IV. 

B. Adversarial threat 

The setup phase of our scheme is performed before the deployment of the network. Therefore, an 

adversary cannot recover the key pool and any subset of it. Thus, the setup phase is secure. After 

deployment, any pair of two nodes exchanges a list which includes the node’s id, the indices of their 

key spaces, and the array of the public set. In a standard attack assumption (e.g. [6]), an adversary 

chooses a number of sensor nodes randomly. To obtain any information about the keys, he or she 

needs to capture the key spaces to access the keys stored in those nodes. Therefore, all links of 

captured node, which were communicated to other nodes, will be broken which do not include 

specific array. For example, suppose that 𝑁𝑖 ,𝑁𝑗,𝑁𝑘 are three nodes, where they have a common array 

𝑈. Suppose that the node 𝑁𝑘 is compromised. Then the secrecy of the common key between 𝑁𝑖 and 𝑁𝑗 

which is generated by the common array 𝑈 is broken. In this situation, the capture of the common key 

corresponded with 𝑈 affects the links from 𝑁𝑖 to 𝑁𝑗.  

In other attack assumption, we assume that a wise attacker monitors the whole network and 

captures a number of sensor nodes selectively. Then, he or she has the ability to compromise the same 

specific array in their key spaces of selected nodes and recovers the key pool. 

The unattended operation of sensors in uncontrolled environments increases the various types of 

attacks. For example, the adversary might reveal all the keys or information stored in the nodes. Then, 

the adversary can use this information to eavesdrop on other links between uncompromised nodes. 

The adversary can obtain some secret information by appending additional hostile nodes into the 

sensor network. Thus, an adversary can control the entire network with clones of the captured node. 

This is the clone attack [16]. Another scenario of a particularly harmful attack on WSN is the Sybil 

attack [15], where an attacker generates multiple sensor identities and handles the Sybil identities to 

the sensor networks. To do this, he may attempt to capture a set of legitimate nodes and extracts the 

keys for communicating with the rest of the network. However, the first step to further attacks is that 

the adversary gains the full physical control of a sensor node and removes that node from the network 

in a way such that the node cannot communicate with the other nodes in the network. This attack is  
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TABLE I. LIST OF USED NOTATION 

 

 

called the node capture attack as a serious threat in WSNs [10].  

 

IV. OUR PROPOSED SCHEME 

In this section, we have modified the MKSS and investigate various metrics such as performance, 

security, storage memory, and computational overhead. The used notations are summarized in Table I. 

Our framework for key pre-distribution is divided into two phases: setup and key agreement. 

A. Setup phase 

In this phase, the base station uniquely assigns identifiers and key spaces to sensor nodes. Let 𝛴 be 

a finite non-empty set of elements. We set 𝛴 = 𝐺𝐹(𝑞′) = 𝐹𝑞′ where 𝑞′ =  𝑝𝑛 for some prime number 

𝑝. An array is defined to be a finite string of elements in 𝛴. We define the length of an array 

𝑢 = 𝑎1. . .𝑎𝑚 to be |𝑢| = 𝑚. Let 𝛴∗ be a set of all arrays with different lengths over 𝛴. We pick a key 

pool 𝑃 ⊆ 𝛴∗. In our framework, we choose a random parameter 𝜆 such that 𝜆 + 1 is the length of each 

array. The base station constructs a set 𝐺 as a subset of key pool 𝑃 with 𝑁 arrays.  

𝐺 = �𝑏11𝑏12 …𝑏1(𝜆+1)�����������
𝐺(1)

, … , 𝑏𝑁1𝑏𝑁2 …𝑏𝑁(𝜆+1)�����������
𝐺(𝑁)

�,                                                                                       (1) 

where 𝐺(𝑖) ≠ 𝐺(𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁(𝑖 ≠ 𝑗). Similar to the MKSS, the set 𝐺 is public information. An 

adversary and each sensor are able to know the contents of 𝐺. 

An Example of Set 𝑮 

We present an example of set 𝐺. Let 𝑠 be a primitive element of the finite field 𝐺𝐹(𝑞′) (𝑞′ is a 

prime power); namely, each nonzero element in 𝐺𝐹(𝑞′) can be expressed by some power of 𝑠. Also, 

Notation Definition 

𝛴 A finite nonempty set of elements 

𝛴∗ A set of all arrays with different lengths over 𝛴 

𝐺𝐹(𝑞′) A Galois field with a prime order 𝑞′ 

𝑠 A primitive element which each nonzero element in 𝐺𝐹(𝑞′) can be represented by some power of 𝑠 

𝑁 The total number of sensor nodes in the network 

𝑃𝐺𝑄 The probability of establishing a common key between two nodes in the 𝐺𝑄 design 

𝑃𝑀𝐻𝑆 The probability of establishing a common key between two nodes in the modified hybrid symmetric design 

𝑃𝑎𝑐𝑡𝑢𝑎𝑙 The probability of establishing a common key between two nodes in the MKSS 

𝐿 Event that a link is compromised 

𝐶𝑥 Event that the adversary captures 𝑥 nodes and thus 𝑥 key chains 

𝑃{𝐿|𝐶𝑥} The probability that a link is compromised when an attacker captures 𝑥 key chains 
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each key is represented by a primitive element in 𝐺𝐹(𝑞′), where |𝑞′| is larger than the desired key 

size. An example of 𝐺 can be designed as follows. 
 

𝐺 = �1𝑠𝑠2 … 𝑠𝜆�������
𝐺(1)

, 1𝑠2(𝑠2)2 … (𝑠2)𝜆�����������
𝐺(2)

, … , 1𝑠𝑁(𝑠𝑁)2 … (𝑠𝑁)𝜆�������������
𝐺(𝑁)

�.                                                                 (2) 

Based on the property of primitive elements, 𝑠𝑖 ≠ 𝑠𝑗 if 𝑖 ≠ 𝑗 mod 𝑞′. Therefore, 𝑠, 𝑠2, 𝑠3, . . . , 𝑠𝑁 are all 

distinct. Also, 𝐺 can be generated by the primitive element 𝑠 of 𝐺𝐹(𝑞′). For storing the 𝑖th array of 𝐺 at node 𝑖, 

we only need to store the element 𝑠𝑖 at this node. 

Du et al. [13] randomly generate 𝜔 symmetric matrices 𝐷1 , . . . ,𝐷𝜔 of size (𝜆 + 1) × (𝜆 + 1). The tuple 

𝑆𝑖 =  (𝐷𝑖 ,𝐺), where 𝑖 = 1, . . . ,𝜔, is called a key space in which 𝐺 is a public matrix of size (𝜆 + 1) × 𝑁. To 

achieve better resilience than Blom’s scheme [3], they set two parameters 𝜔 and 𝜏, where 2 ≤ 𝜏 < 𝜔. They 

randomly pick 𝜏 distinct key spaces from the 𝜔 key spaces for each sensor node. 

Instead of a random selection of the parameters 𝜏 and 𝜔, we now use combinatorial structures for these 

parameters to satisfy certain properties. According to Definition (1), we obtain a set system (𝑋,𝐴) by 

substitution of the parameters 𝜔 = 𝑣 and 𝜏 = 𝑘. By this definition, the base station creates 𝑣 random symmetric 

sets 𝐷𝑙  as follows. 

𝐷𝑙 = �𝑎11𝑙 𝑎12𝑙 …𝑎1(𝜆+1)
𝑙

�����������
𝐷𝑙(1)

, … ,𝑎(𝜆+1)1
𝑙 𝑎(𝜆+1)2

𝑙 …𝑎(𝜆+1)(𝜆+1)
𝑙

�������������������
𝐷𝑙(𝜆+1)

�𝑎𝑡𝑠𝑙 = 𝑎𝑠𝑡𝑙 ∈ 𝐺𝐹(𝑞′)�,                            (3) 

where 𝑙 ∈ {1, . . . , 𝑣} and 1 ≤ 𝑡, 𝑠 ≤ 𝜆 + 1. For each 𝑙, the 𝐷𝑙 is a symmetric set of arrays. Similar to 

the MKSS, adversaries or sensor nodes should not disclose the content of the set 𝐷𝑙. This set has 

𝜆 + 1 arrays of length 𝜆 + 1. 

Example 1. Assume that a network with 𝑁 = 6 nodes. An (7,3,1)-SBIBD can be used as 

 a set system. This design generates 𝑏 = 7 blocks out of 𝑣 = 7 objects where block size is 

 𝑘 = 3. The associated blocks of this design for sensor nodes can be 

𝐷𝐵 = {{𝐷1,𝐷2,𝐷3}, {𝐷1,𝐷4,𝐷5}, {𝐷1,𝐷6,𝐷7}, {𝐷2,𝐷4,𝐷6}, {𝐷2,𝐷5,𝐷7}, {𝐷3,𝐷4,𝐷7}, {𝐷3,𝐷5,𝐷6}}. 

Therefore, the base station uses 6 of 7 blocks for 6 nodes, randomly. 

Let 𝑀 be a finite set of arrays. We now introduce the following map on the set 𝑀. 

�
ϕ𝑖 ∶ 𝑀 → 𝐹𝑞′[𝑥]

𝑤𝑖𝑗 = 𝑎𝑖1𝑎𝑖2 …𝑎𝑖𝑗
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯� ∑ 𝑎𝑖𝑠𝑥𝑠−1

𝑗
𝑠=1

                                                                                                          (4) 

where  𝐹𝑞′[𝑥] is a polynomial ring over a finite field 𝐹𝑞′  [25]. The map 𝜙𝑖 can be used on the sets 𝐺 and 𝐷𝑙  as 

follows. 

𝜙𝑖|𝐺 =  𝑔𝑖(𝑥) =  ∑ 𝑏𝑖𝑠𝑥𝑠−1 𝜆+1
𝑠=1           𝑠. 𝑡.        1 ≤ 𝑖 ≤ 𝑁, 𝑏𝑖𝑠 ∈  𝐹𝑞′ ,                                                            (5) 

where 𝑔𝑖(𝑥) is the corresponding polynomial to the array 𝐺(𝑖) in 𝐺. Since 𝐺(𝑖) ≠ 𝐺(𝑗), then two arbitrary 

outputs of the function 𝜙𝑖|𝐺 will not be equal. As a result, it must be to uniquely assign any node with the key 

array. Similarly,  



Journal of Communication Engineering, Vol. 6, No. 1, January-June 2017 61 
 
 𝜙𝑗�𝐷𝑙

= 𝑓𝑗
𝑙(𝑥) =  ∑ 𝑎𝑗𝑡𝑙 𝑥𝑡−1 𝜆+1

𝑡=1           𝑠. 𝑡.        1 ≤ 𝑗 ≤ 𝜆 + 1, 𝑎𝑗𝑡𝑙 ∈  𝐹𝑞′ ,                                                        (6) 

where 𝑓𝑗𝑙(𝑥) is the corresponding polynomial to the array 𝐷𝑙(𝑗) in 𝐷𝑙.  

We now construct multiplication of two polynomials 𝑔𝑖(𝑥) and 𝑓𝑗𝑙(𝑥). In what follows, the 

derivative operation is used for this multiplication to achieve a desired computational overhead. 

Therefore, ℎ𝑖𝑗(𝑥) = [𝑔𝑖(𝑥) · 𝑓𝑗
𝑙(𝑥)]′ = 𝑔𝑖(𝑥) · (𝑓𝑗

𝑙(𝑥))′ + 𝑔′𝑖(𝑥) · 𝑓𝑗
𝑙(𝑥) for 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝜆 + 1. 

We obtain new sets 𝐴𝑙 by computing ℎ𝑖𝑗(𝑥) in 𝑥 = 1 as follows. 

𝐴𝑙 = �ℎ11(1)ℎ12(1) …ℎ1(𝜆+1)(1)�����������������
𝐴𝑙(1)

, … ,ℎ𝑁1(1)ℎ𝑁2(1) … ℎ𝑁(𝜆+1)(1)�������������������
𝐴𝑙(𝑁)

�,                                                (7) 

where 1 ≤ 𝑙 ≤ 𝑣. Note that each 𝐴𝑙  has 𝑁 arrays of length 𝜆 +  1. According to Equation (4), every array in 𝐴𝑙  
corresponds with a polynomial. 

Theorem 1. Let ℎ𝑖(𝑥) and 𝑔𝑗(𝑥) be the corresponding polynomials for arrays 𝐴𝑙(𝑖) and 𝐺(𝑗) in 𝐴𝑙 

and 𝐺, respectively. Then, 

 �ℎ𝑖(𝑥) ·  𝑔𝑗(𝑥)�′�
𝑥=1

= �ℎ𝑗(𝑥) ·  𝑔𝑖(𝑥)�′�
𝑥=1

             ∀ 1 ≤  𝑖, 𝑗 ≤  𝑁.                                               (8) 

Proof. Consider two nodes 𝑚 and 𝑛 want to find a common pairwise key. Therefore, 

the base station generates the polynomials ℎ𝑚(𝑥)  = ∑ [𝑔𝑚(1). 𝑓𝑖′(1) + 𝑔𝑚′ (1). 𝑓𝑖(1)]𝑥𝑖−1𝜆+1
𝑖=1  and 

ℎ𝑛(𝑥)  = ∑ [𝑔𝑛(1). 𝑓𝑖′(1) + 𝑔𝑛′ (1). 𝑓𝑖(1)]𝑥𝑖−1𝜆+1
𝑖=1 , respectively, where 𝑓𝑖(𝑥)  = ∑ 𝑎𝑖𝑡𝑥𝑡−1𝜆+1

𝑡=1 . Suppose that 

𝑔𝑚(𝑥) and 𝑔𝑛(𝑥) are their corresponding polynomials to the arrays 𝐺(𝑚) and 𝐺(𝑛) in 𝐺, respectively. We must 

show [ℎ𝑚(𝑥) ·  𝑔𝑛(𝑥)]′|𝑥=1 = [ℎ𝑛(𝑥) ·  𝑔𝑚(𝑥)]′|𝑥=1.   

[ℎ𝑚(𝑥) ·  𝑔𝑛(𝑥)]′|𝑥=1 = ℎ𝑚(1).𝑔𝑛
′ (1) + ℎ𝑚′ (1). 𝑔𝑛(1) = � � 𝑎𝑖𝑡𝑔𝑚

′ (1). 𝑔𝑛
′ (1)

𝜆+1

𝑡=1

𝜆+1

𝑖=1�������������������
+

𝐴

 

� � (𝑡 − 1)𝑎𝑖𝑡𝑔𝑚(1).𝑔𝑛
′ (1)

𝜆+1

𝑡=2

𝜆+1

𝑖=1
+ � � (𝑖 − 1)𝑎𝑖𝑡𝑔𝑚

′ (1).𝑔𝑛(1)
𝜆+1

𝑡=1

𝜆+1

𝑖=2
 

+� � (𝑖 − 1)(𝑡 − 1)𝑎𝑖𝑡𝑔𝑚(1). 𝑔𝑛(1)
𝜆+1

𝑡=2

𝜆+1

𝑖=2�����������������������������
𝐴′

. 

Similarly, 

[ℎ𝑛(𝑥) ·  𝑔𝑚(𝑥)]′|𝑥=1 = ℎ𝑛(1).𝑔𝑚
′ (1) + ℎ𝑛′ (1).𝑔𝑚(1) = � � 𝑎𝑖𝑡𝑔𝑛

′ (1).𝑔𝑚
′ (1)

𝜆+1

𝑡=1

𝜆+1

𝑖=1�������������������
+

𝐵

 

� � (𝑡 − 1)𝑎𝑖𝑡𝑔𝑛(1). 𝑔𝑚
′ (1)

𝜆+1

𝑡=2

𝜆+1

𝑖=1
+ � � (𝑖 − 1)𝑎𝑖𝑡𝑔𝑛

′ (1).𝑔𝑚(1)
𝜆+1

𝑡=1

𝜆+1

𝑖=2
 

+� � (𝑖 − 1)(𝑡 − 1)𝑎𝑖𝑡𝑔𝑛(1).𝑔𝑚(1)
𝜆+1

𝑡=2

𝜆+1

𝑖=2�����������������������������
𝐵′

. 

In above two expressions, the summands 𝐴 and 𝐴′ are equal to 𝐵 and 𝐵′, respectively. Since 𝑎𝑖𝑡  =  𝑎𝑡𝑖, the 

other summands are equal to each other. Therefore, the proof is complete. 

Example 2. Assume that 𝛴 = 𝐺𝐹(7) = 𝐹7 and let 𝑃 ⊆ 𝛴∗ = ⋃ 𝐹7𝑛∞
𝑛=0  be a key pool and 
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 4 = 𝑁, 𝑞′ = 7, 𝜆 = 2 , 𝑠 = 3. According to Equation (2), we can generate a set 𝐺 = {132�
𝐺(1)

, 124�
𝐺(2)

, 161�
𝐺(3)

, 142�
𝐺(4)

} 

with 𝑁 = 4 arrays of length 𝜆 + 1 = 3. 

 

 

Set 𝑙 = 1. Next, we randomly generate a symmetric set 𝐷 = 𝐷1 = { 120�
𝐷1(1)

, 245�
𝐷1(2)

, 052�
𝐷1(3)

} with 𝜆 + 1 = 3 

arrays of length 𝜆 + 1 = 3. We now compute the polynomials in Equations (5) and (6). 

𝑔1(𝑥) = 1 + 3𝑥 + 2𝑥2, 𝑔2(𝑥) = 1 + 2𝑥 + 4𝑥2,  

 𝑔3(𝑥) = 1 + 6𝑥 + 𝑥2, 𝑔4(𝑥) = 1 + 4𝑥 + 2𝑥2 , 

𝑓1(𝑥) = 1 + 2𝑥, 𝑓2(𝑥) = 2 + 4𝑥 + 5𝑥2, 𝑓3(𝑥) = 5𝑥 + 2𝑥2. 

According to Equation (7), we now calculate the arrays 𝐴(𝑖), 1 ≤ 𝑖 ≤ 4, of set 𝐴 = 𝐴1. For instance, 

for 𝐴1(1) we have: 

ℎ11(1) = [𝑔1(𝑥) · 𝑓1(𝑥)]′|𝑥=1 = 5, 

ℎ12(1) = [𝑔1(𝑥) · 𝑓2(𝑥)]′|𝑥=1 = 0, 

ℎ13(1) = [𝑔1(𝑥) · 𝑓3(𝑥)]′|𝑥=1 =  5. 

Thus, 𝐴1(1) = 505. Similarly, 𝐴1(2) = 250,𝐴1(3) = 542, and 𝐴1(4) = 340. Then, 

 𝐴 = {505,250,542,340}. Assume that nodes 𝑖 = 1 and 𝑗 = 4 want to compute their pairwise secret 

key. Thus, node 1 sends 𝐺(1) to node 4 and node 4 sends 𝐺(4) to node 1. Finally, by Theorem (1), 

𝐾14 = 𝐾41 = 3. The other shared secret keys between the other nodes are achieved in similar method. 

B. Key agreement 

After deployment, each node broadcasts a message including the node’s identifier and the indices of 

the key spaces on the network. Assume that nodes 𝑖 and 𝑗 are neighbors. If they find at least one 

common array, they can establish a pairwise key by using Theorem (1): they first exchange their array 

in 𝐺 and then compute a common key 𝐾𝑖𝑗 = �ℎ𝑖(𝑥) ·  𝑔𝑗(𝑥)�′�
𝑥=1

= �ℎ𝑗(𝑥) ·  𝑔𝑖(𝑥)�′�
𝑥=1

= 𝐾𝑗𝑖. If 

they cannot find a common key between them, they can find a secure path. For example, let 

𝑖 = 𝑣0, 𝑣1, . . . , 𝑣𝑡 , 𝑗 = 𝑣𝑡+1 be a path in the network in which every pair consecutive nodes 𝑣𝑟−1 and 

𝑣𝑟 (1 ≤ 𝑟 ≤ 𝑡 + 1) on the path has a secure link during the setup phase using the common keys in 

their key rings. Let 𝐿 be the number of such paths that are disjoint and do not have any common link. 

Node 𝑖 then generates 𝐿 random keys 𝑘1, . . . ,𝑘𝐿 and sends each one to node 𝑗 along a different path to 

node 𝑗. When node 𝑗 has received all 𝐿 keys, node 𝑖 and node 𝑗 compute the new link key as 

𝑘𝑖𝑗 =  ℎ𝑎𝑠ℎ(𝑘1||. . . ||𝑘𝐿).  

Here we are interested in obtaining the computational overhead of our scheme. In the key 

agreement phase, the computational overhead of the multiplication of two 𝜆-degree polynomials is 

𝑂(𝜆2). By choosing the Fast Fourier Transform (FFT) method [11], the computational overhead is 
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𝑂(𝜆𝑙𝑜𝑔𝜆). According to Equation (2), by using the primitive element for the construction of the 

public set 𝐺 in our scheme, the computational overhead is equal to 𝑂(𝜆). 

 

V. EVALUATION OF THE PROPOSED SCHEME 

There are various metrics to evaluate the performance and security properties in a WSN. A network 

designer must find suitable tradeoffs between the various metrics in a network. Some of these metrics 

are summarized as follows. 

–Connectivity: Probability that two nodes share at least one common key. 

–Resilience against node capture: Resilience against node capture is the fraction of total links 

which compromise by capturing x nodes which are not including the compromised links. 

–Storage memory: Limitation of the number of keys which can be stored in each sensor node. 

–Computational overhead: The amount of computation required to establish a key. 

In this section, we compare our scheme and the MKSS in terms of connectivity, resilience, storage 

memory, and computational overhead. To do this, we employ two types of combinatorial design: 

generalized quadrangles (GQ) [6] and modified hybrid symmetric [12]. 

We implemented the MKSS and our proposed scheme based on the MHS and the 𝐺𝑄 designs. We evaluated 

the behavior of the aforementioned schemes through the simpler Matlab simulations. 

To simulate the behavior of the MKSS, we use the parameters 𝜏,𝜔, and 𝜆, where 2 ≤ 𝜏 < 𝜔 and 𝜆 is the 

security parameter in the Blom's scheme [3]. We construct 𝜔 key spaces using Blom's scheme and assign 𝜏 

randomly selected key spaces to each sensor node. 

According to definition (8) and Remark (1), we find 𝑣 = (𝑠 + 1)(𝑠𝑡 + 1) points to construct a 𝐺𝑄(𝑠, 𝑡) 

design and use two pairs (𝑠, 𝑡) = (𝑞, 𝑞) and (𝑠, 𝑡) = (𝑞2, 𝑞3) to simulate the behavior of the proposed 

combinatorial property of the 𝐺𝑄 design for parameters 𝜏 and 𝜔. 

For a sensor network with size 𝑁, we simulated the behavior of the proposed scheme based on the MHS 

design where we construct two similar key pools with 𝑑 different keys between these. We use symmetric BIBD 

with parameter (𝑞2 + 𝑞 + 1, 𝑞 + 1,1) [12] to generate 𝑏 blocks of size 𝑞 + 1 and assign these 𝑏 blocks that 

are generated from the first key pool to 𝑏 nodes, where 𝑏 < 𝑁. Finally, 𝑁 − 𝑏 blocks generated from the second 

key pool are randomly assigned to the remaining 𝑁 − 𝑏 nodes. 

For any given choice of 𝜏,𝜔,𝜆, 𝑠, 𝑡,𝑑, 𝑞, and network size 𝑁, we performed our simulations in the following 

subsections.   

A. Connectivity 

Let 𝐺𝑄(𝑠, 𝑡) be a generalized quadrangle of order (𝑠, 𝑡). According to Definition (8), there are 

𝑏 = (𝑡 + 1)(𝑠𝑡 + 1) lines where each line intersects with 𝑡(𝑠 + 1) other lines. Thus, in a 𝐺𝑄 design, 

the probability that any pair of nodes share at least a common key is 
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𝑃𝐺𝑄 = 𝑡(𝑠+1)
(𝑡+1)(𝑠𝑡+1)

.                                                                                                                                            (9) 

According to Remark 1, we can use 𝐺𝑄(𝑞, 𝑞),𝐺𝑄(𝑞, 𝑞2), and 𝐺𝑄(𝑞2,𝑞3) designs, where 𝑞 ≥ 2 is an 

integer. 

For a sensor network with 𝑁 nodes, Dargahi et al. [12] have modified the hybrid design [6] which 

uses symmetric BIBD with parameters (𝑞2 + 𝑞 + 1,𝑞 + 1,1) to generate 𝑏 blocks (key chains) of size 

𝑞 + 1 such that 𝑞2 + 𝑞 + 1 < 𝑁 for the largest prime number 𝑞. In [12], the authors generate two key 

pools and introduce a parameter 𝑑 which denotes the number of different keys between them. 

According to the analysis in [12], the probability 𝑃𝑀𝐻𝑆 that any pair of blocks shares one or more 

objects in the MHS design is 

𝑃𝑀𝐻𝑆 = 𝑏(𝑏 − 1) + (𝑁 − 𝑏)(𝑁 + 𝑏 − 2𝑑 − 1)
𝑁(𝑁 − 1)

.                                                                                                      (10) 

In the MKSS, the authors select the parameters 𝜏 and 𝜔, where 2 ≤ 𝜏 < 𝜔, to determine the 

performance and security in their scheme. They use the actual probability 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 that any two 

neighboring nodes sharing at least one key space. Therefore, 

𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = 1 − �(𝜔−𝜏)!�
2

(𝜔−2𝜏)!(𝜔)!
.                                                                                                                            (11) 

In what follows, we investigate these probabilities to compare the connectivity between the existing 

schemes. 

Fig. 1 compares the connectivity between the MKSS and the proposed scheme based on 

combinatorial properties of various combinatorial frameworks (e.g., the MHS and the GQ designs) for 

parameters ω and τ. We assume that 𝜔 ≤ 𝑁. In the proposed scheme based on the combinatorial 

property of the MHS design for parameters 𝜔 and 𝜏, we select 𝑑 = 1 and 𝑑 = 7. The parameters in 

the MKSS are 𝜏 = 6,8 and 𝜏 < 𝜔 ≤ 100. For 𝜏 = 6 and 𝜏 = 8, the probability of key share from 

Equation (10) for 𝑑 = 1 is greater than from Equation (11) when 𝜔 > 20. Similarly, for 𝑑 = 7 in the 

proposed scheme based on the MHS, 𝑃𝑀𝐻𝑆 > 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 when 𝜔 > 40 for 𝜏 = 6 and 𝜏 = 8. The value 

of 𝑑 has a considerable role in the MHS design because small values of 𝑑 lead to higher connectivity. 

When 𝜏 is very approximate to 𝜔, the probability of key share for the MKSS increases. As a result, it 

shows that the parameter 𝑑 in the MHS design has more effects than the parameters 𝜔 and 𝜏 in the 

MKSS for improving the connectivity metric. Note that the selection of a combinatorial design for 

parameters 𝜔 and 𝜏 in our scheme plays an important role in evaluating the proposed scheme. The 

connectivity metric of the proposed scheme based on 𝐺𝑄 design is lower than the other schemes. 

B. Resilience 

In terms of resilience, we consider the probability that a link is compromised when an attacker 

captures x randomly nodes and thus x key chains. In this subsection, the resiliencies of the existing 

schemes are compared together. 
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Fig. 1 Probability of sharing at least one key (connectivity) when two nodes each randomly chooses 𝜏 spaces from 𝜔 spaces 

in the MKSS and the proposed scheme based on combinatorial properties of various combinatorial frameworks for 

parameters ω and τ. 

 

According to the analysis in [6], a key can be in 𝑡 + 1 of 𝑏 blocks and if a link is included in key 

chains of both nodes of the link, then that link secured with a key 𝑗. Thus, the probability that a link is 

compromised when an attacker captures 𝑥 key chains in 𝐺𝑄(𝑠, 𝑡) with 𝑏 blocks can be defined as 

𝑃{𝐿|𝐶𝑥} ≈ 1 −
�𝑏−𝑡−1𝑥 �

�𝑏𝑥�
,                                                                                                                                 (12) 

where 𝐿 and 𝐶𝑥 denote the events that a link is compromised and 𝑥 nodes (𝑥 key chains) are 

compromised, respectively. For fair comparison, according to Remark (1), we select the parameters 

𝑠 = 𝑞2 and 𝑡 = 𝑞3. 
 

In [12], each key appears in 𝑞 + 1 key chains and let 𝐶𝑥 be the event that the adversary captures 𝑥 

nodes and thus 𝑥 key chains. Therefore, the probability that link 𝐿 is compromised when an attacker 

captures 𝑥 key chains is computed for the MHS scheme as 

𝑃{𝐿|𝐶𝑥} ≤ 1 −
�2𝑞

2
𝑥 �+2�𝑞

2
𝑥 �

�2𝑞
2+2𝑞+2
𝑥 �

.                                                                                                                          (13) 

To evaluate the resilience of the MKSS, the authors consider how the capture of 𝑥 nodes by an 

adversary affects the fraction of communication among uncaptured nodes. To compute this fraction, 

they calculate the probability of a link being broken given 𝑥 nodes are compromised as 

𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = ∑ �𝑥𝑗� �
𝜏
𝜔
�
𝑗
�1 − 𝜏

𝜔
�
𝑥−𝑗

.𝜆+1
𝑗=1                                                                                                       (14) 

In this part, we compare the resilience between the MKSS and the proposed scheme based on 

combinatorial properties of various combinatorial frameworks (e.g., the MHS and the 𝐺𝑄 designs) for 

parameters ω and τ. Assume that the MKSS given parameters (𝜔 = 7, 𝜏 = 2, 𝑚 = 200, 𝜆 = 99,   
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Fig. 2 Fraction of compromised links versus number of compromised nodes in the MKSS 

and the proposed scheme based on various combinatorial designs. 

 

𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = 0.5). Fig. 2 shows that the fraction of compromised links in the proposed scheme based 

on the 𝐺𝑄 design always has better than the MKSS’s when the number of compromised nodes is 

higher than about 300 (over 30% compromised links). When the number of compromised nodes is 

higher than about 650 (over 65% compromised links), our scheme has better resilience than the 

MKSS given parameters (𝜔 = 11, 𝜏 = 2, 𝑚 = 200, 𝜆 = 99, 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = 0.33). Note that if suitable 

values are chosen for (𝜔, 𝜏), then the proposed scheme based on the 𝐺𝑄 design has only slightly 

significant resilience. The fraction of compromised links in the proposed scheme based on the MHS 

design scheme performs less than the other approaches in the network. 

C.  Storage memory 

Another important factor in a WSN is storage memory at sensor nodes. The overall storage memory 

at sensor nodes in our scheme based on the MHS design becomes 

𝑚 = (λ +  1)k,                                                                                                                                               (16) 

where 𝑘 is key ring size. For the proposed scheme based on the 𝐺𝑄 design, 𝑘 is replaced by 𝑠. The 

overall storage memory at sensor nodes in the MKSS becomes 

𝑚 = (λ +  1)τ,                                                                                                                                               (17) 

where 𝜏 is the number of random key spaces. Note that the parameter 𝑘 for our scheme is fixed while 

the parameter 𝜏 in the MKSS changes between 2 to 𝜔 − 1. In both schemes, set 𝜆 << 𝑁. Fig. 3 

shows that for 𝜏𝑚𝑖𝑛 =  2, the overall storage memory in the MKSS is better than our scheme. For 

instance, �𝑁, 𝜆,𝜔,𝑚𝜏𝑚𝑖𝑛� = (200,23,20,48) and �𝑁, 𝜆,𝜔,𝑚𝜏𝑚𝑖𝑛� = (700,76,70,154) while 

(𝑁, 𝜆,𝑘,𝑚) = (200,23,14,336) and (𝑁, 𝜆,𝑘,𝑚) = (700,76,26,2002) in our scheme. Note that 
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Fig. 3 Storage memory in the MKSS and our scheme. 

 

providing suitable connectivity in the MKSS, the parameter 𝜏 must be close to 𝜏𝑚𝑎𝑥 = 𝜔 − 1. In the 

latter case, for 𝜏𝑚𝑎𝑥 > 𝑘, Fig. 3 shows that the storage memory for our scheme is 

better than the MKSS’s. For example, �𝑁, 𝜆,𝜔,𝑚𝜏𝑚𝑎𝑥� = (400,49,40,1950) and �𝑁, 𝜆,𝜔,𝑚𝜏𝑚𝑎𝑥� = 

(900,105,90,9434) while (𝑁, 𝜆,𝑘,𝑚) = (400,49,20,1000) and (𝑁, 𝜆,𝑘,𝑚) = (900,105,30,3180) 

in our scheme. In general, our scheme provides better storage memory than the MKSS’s when 

𝑘 < 𝜏 ≤ 𝜏𝑚𝑎𝑥. 

D. Computational overhead 

Du et al. [13] construct an algorithm based on the multiplication of two matrices for establishing a 

key between two fixed nodes. The computational overhead, in this case, is 𝑂(𝜆3). Using Strassen’s 

algorithm for matrix multiplication [11], the computational overhead can be 𝑂(𝜆𝑙𝑜𝑔 7)  =  𝑂(𝜆2.81). 

To reduce the computational overhead, Du et al. choose the Vandermonde matrix as the public matrix 

which can be generated by a primitive element. Consequently, the computational overhead of their 

scheme is 𝑂(𝜆). Our scheme provides better the computational overhead than the general case of the 

MKSS’s [13] because it is 𝑂(𝜆𝑙𝑜𝑔𝜆). Similar to the MKSS, if we use the primitive element, then the 

computational overhead of our scheme and the MKSS are equal to 𝑂(𝜆). 

VI. DISCUSSION 

In this section, we summarize the main results from our scheme. 

—Our scheme proposes a modification of the MKSS which uses combinatorial properties for some 

parameters instead of a random selection of them. In the MKSS, the authors randomly select the 

parameters 𝜏 and 𝜔, where 2 ≤ 𝜏 < 𝜔. In this work, we use an arrangement of 𝜏 and 𝜔 to satisfy 
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combinatorial properties. We consider two combinatorial designs: the 𝐺𝑄 design and the MHS design. 

Using these designs, we analyze performance, security, storage memory, and computational overhead 

in our scheme and compare our result with the MKSS. 

—The MHS design has the highest connectivity when the parameter 𝑑 is small. In the MKSS, fix 

the parameter 𝜏. Observe that when 𝜏 is very close to 𝜔 (e.g. 𝜏 = 𝜔 − 1), the connectivity of the 

MKSS increases. To provide the better connectivity, the MHS design (with a small value of 𝑑) or the 

MKSS (with a large value of 𝜏) would be preferred to the GQ design or the MHS design (with a large 

value of 𝑑) or the MKSS (with a small value of 𝜏). 

—The resilience of the MKSS exhibits interesting tradeoff with the resilience of the GQ design. For 

example, consider the MKSS with parameters (𝜔 = 7, 𝜏 = 2, 𝑚 = 200, 𝜆 = 99, 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = 0.5). 

The GQ design has better resilience than the MKSS’s when over 30% links are compromised. If the 

MKSS is selected with parameters (𝜔 = 11, 𝜏 = 2, 𝑚 = 200, 𝜆 = 99, 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 = 0.33), then the 

GQ design has only slightly better resilience. The MHS design has the lowest resilience. 

—There is a trade-off between connectivity and storage memory. The storage memory in our 

scheme linearly increases, while this metric in the MKSS is related to 2 ≤ 𝜏 ≤ 𝜔 − 1. To achieve 

higher connectivity in the MKSS, the parameter 𝜏 must be close to 𝜏𝑚𝑎𝑥 = 𝜔 − 1. Consequently, 

storage memory in the MKSS increases. Hence, for 𝜏𝑚𝑎𝑥 ≥ 𝜏 > 𝑘, our scheme is better storage 

memory than the MKSS’s. 

—In the key agreement phase, the computational overhead of our scheme has better than the 

general case of the MKSS. Furthermore, if we use the primitive element similar to the MKSS, then 

the computational overhead of these schemes are equal. 

VII. CONCLUSION 

In this paper, we have proposed a deterministic key pre-distribution scheme for a wireless sensor 

network based on combinatorial structures such as designs. To achieve suitable tradeoffs between 

various metrics of interest in the wireless sensor network, we analyzed the general framework of the 

resulting schemes. In addition, we obtained a new key agreement phase by using derivative operation 

on univariate polynomials to aim a desired computational overhead. This deterministic process has a 

lower computational overhead than the general case of the MKSS’s. Using the primitive element, the 

computational overhead in our scheme and the MKSS are equal. Finally, our analysis and 

experimental results show that our approach has lower storage memory than the MKSS’s. 
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