همبستگی عملکرد دانشگاهها در رتبهبندیهای جهانی تایمز و ایمپکت تایمز با نگرشهای اجتماعی درباره آنها: عقیده کاوی توییتها | ||
| پژوهش نامه علم سنجی | ||
| مقاله 6، دوره 11، (شماره 1، بهار و تابستان ) - شماره پیاپی 21، فروردین 1404، صفحه 109-140 اصل مقاله (1.03 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22070/rsci.2024.19189.1737 | ||
| نویسندگان | ||
| طاهره نجفی دورکی1؛ هاجر ستوده* 2؛ مریم یقطین3 | ||
| 1دانشجوی کارشناسی ارشد علم اطلاعات و دانششناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران. | ||
| 2دکتری علم اطلاعات و دانششناسی، استاد، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران. | ||
| 3دکتری علم اطلاعات و دانششناسی، استادیار، گروه پژوهشی سنجش علم و فناوری، موسسه استنادی و پایش علم و فناوری جهان اسلام (ISC)، شیراز، ایران. | ||
| چکیده | ||
| هدف: پژوهش حاضر با استفاده از عقیده کاوی توییتها به بررسی همبستگی میان نتایج رتبهبندیهای تایمز و ایمپکت و دیدگاههای اجتماعی در مورد دانشگاههای راهیافته به این رتبهبندیها پرداخته است. روششناسی: پژوهش حاضر، ازنظر هدف کاربردی و ازنظر روش گردآوری دادهها از نوع اسنادی و تحلیل دادهها، تحلیل محتوای کمی با رویکرد دگر سنجی و عقیده کاوی است. نمونة آماری پژوهش 355 دانشگاه از دانشگاههای رتبهبندی شده در سامانه تایمز در سالهای 2019-2021 است. توییتها و نمرات عقیدة آنها با استفاده از نرمافزار مزده و سنتیاسترنگث استخراج و محاسبه شد. دادهها با تحلیل همبستگی اسپیرمن بررسی شد. یافتهها: یافتههای پژوهش همبستگی معنیداری در حد ضعیف تا متوسط میان فراوانی توییتها دربارة دانشگاههای موردبررسی و عملکرد کلی آنها در سامانههای رتبهبندی تایمز و ایمپکت و همچنین نمرة آنها در ابعاد مختلف سامانه رتبهبندی تایمز را نشان میدهد. فراوانی توییتها قویترین همبستگی با عملکرد کل در ایمپکت و ضعیفترین همبستگی را با «درآمد از صنعت» در سامانه تایمز نشان داد. عملکرد کل دانشگاهها در رتبهبندی تایمز و ایمپکت نیز با فراوانی توییتهای مثبت و منفی همبستگی معنیداری نشان داد. همچنین، نمرة عملکرد کل در رتبهبندی تایمز و ایمپکت، با نمرة عقاید مثبت و منفی همبستگی مستقیم نشان داد. نتیجهگیری: سامانههای رتبهبندی تا اندازهای و در برخی ابعاد با دیدگاههای اجتماعی دربارة دانشگاهها -دستکم به لحاظ آنچه در توییتر منعکسشده – همسو هستند و در برخی ابعاد ناهمسویی نشان میدهند؛ بنابراین، در تفسیر نتایج سامانههای رتبهبندی باید با دقت بیشتری عمل کرد. سامانههای رتبهبندی و توجهات اجتماعی میتوانند نقش مکملی داشته باشند و در کنار هم ادراک و شناخت بهتر و عمیقتری از عملکرد یک دانشگاه ارائه دهند. ازاینرو، بهبود عملکرد این سامانهها با افزودن نظرسنجیهای اجتماعی ممکن است. | ||
| کلیدواژهها | ||
| توییتر؛ رتبهبندی دانشگاه؛ رتبهبندی ایمپکت تایمز؛ رتبهبندی تایمز؛ شبکه اجتماعی | ||
| مراجع | ||
|
پاکزاد، م.، خالدی.، آ.، و تیموری، م. (1391). بررسی تطبیقی نظامهای بینالمللی رتبهبندی دانشگاهها و مراکز آموزش عالی. رهیافت، 22(50)، 71-88. https://rahyaft.nrisp.ac.ir/article_13516.html
خانیزاد، ر.، و منتظر، غ. (1396). ارزیابی تطبیقی نظامهای رتبهبندی دانشگاههای جهان. سیاست علم و فناوری، 10(3)، 31-43. https://jstp.nrisp.ac.ir/article_12985.html
ستوده، ه.، روایی، م.، میرزابیگی، م.، و مزارعی، ز. (1396). چالشهای دگر سنجی در ارزیابی پژوهش به روش تحلیل مضمون. مدیریت اطلاعات سلامت، 14(3)، 124-129. https://him.mui.ac.ir/article_11582.html
عرفانمنش، م. ا.، حسینی، ا.، و حبیبی، س. (1397). تحلیل توییت مقالههای علمی در توییتر. فصلنامه مطالعات ملی کتابداری و سازماندهی اطلاعات، 29(3)، 93-111. https://sid.ir/paper/224327/fa
مشتاق، م.، ستوده، ه.، یقطین، م.، و جوکار، ط. (1400). همبستگی نتایج سامانههای رتبهبندی نمایه نیچر و لایدن با تایمز و کیو-اس. پژوهشنامه علمسنجی، 7(2)، 157-172.
https://doi.org/10.22070/rsci.2020.5488.1384
نورمحمدی، ح.، و صفری، ف. (1392). معرفى نظامهاى رتبهبندى جهانى دانشگاهها و بررسى شاخصهاى این نظامها. سیاستنامه علم و فناوری، 3(2)، 71-86. https://stpl.ristip.sharif.ir/article_1181.html
Abdelrazeq, A., Janßen, D., Tummel, C., Jeschke, S., & Richert, A. (2016). Sentiment Analysis of Social Media for Evaluating Universities. Automation, Communication and Cybernetics in Science and Engineering 2015/2016. (pp. 233–251). Springer.
Aguillo, I. F., Bar-Ilan, J., Levene, M., & Ortega, J. L. (2010). Comparing university rankings. Scientometrics, 85(1), 243-256. https://doi.org/10.1007/s11192-010-0190-z
Alassaf, M., & Qamar, A. M. (2020, November). Aspect-based sentiment analysis of Arabic tweets in the education sector using a hybrid feature selection method [Conference presentation]. In 2020 14th International Conference on Innovations in Information Technology (IIT) (pp. 178-185). IEEE. https://doi.org/10.1109/IIT50501.2020.9299026
Al Bashaireh, R., Sabeeh, V., & Zohdy, M. (2019). Towards a new indicator for evaluating universities based on Twitter sentiment analysis [Conference presentation]. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1398-1404). IEEE. https://doi.org/10.1109/CSCI49370.2019.00261
Al-Ghaith, W. (2023). Exploring Saudi Higher Education Issues by using Sentiment Analysis of Saudi Dialect Tweets [Conference presentation]. In Proceedings of the Future Technologies Conference, (3), (pp. 194-211). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-47457-6_13
Alsadi, M., Gülseçen, S., & Kartal, E. (2016) Top 10 Turkish Universities Twitter Analysis User Sentiment Analysis And Comparison With International Ones. Yönetim Bilişim Sistemleri Dergisi, 2(2), 129-139. https://dergipark.org.tr/en/download/article-file/270582
Altbach, P. G. (2012). The globalization of college and university rankings. Change: The Magazine of Higher Learning, 44(1), 26-31. https://doi.org/10.1080/00091383.2012.636001
Arabzade, A., Moharami, H., & Ayazi, A. (2011). Local elastic buckling coefficients of steel plates in composite steel plate shear walls. Scientia Iranica, 18(1), 9-15.
Bar-Ilan, J., Haustein, S., Peters, I., Priem, J., Shema, H., & Terliesner, J. (2012). Beyond citations: Scholars' visibility on the social Web. Arxiv Preprint.arXiv,1205.5611.
Bélanger, C. H., Bali, S., & Longden, B. (2013). How Canadian universities use social media to brand themselves. Tertiary Education and Management, 20(1), 14-29.
Bharti, S. K., Babu, K. S., & Mishra, S. K. (2019). An Improved Approach for Sarcasm Detection Avoiding Null Tweets [Conference presentation]. In Pattern Recognition and Machine Intelligence: 8th International Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings, Part II (pp. 258-266). Springer International Publishing.
Bonitz, M., Bruckner, E., & Scharnhorst, A. (1997). Characteristics and impact of the Matthew effect for countries. Scientometrics, 40(3), 407-422. https://doi.org/10.1007/BF02459289
Bornmann, L. (2014). Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime. Journal of Informetrics, 8(4), 935-950.
Bornmann, L. (2015). Alternative metrics in scientometrics: A meta-analysis of research into three altmetrics. Scientometrics, 103(3), 1123-1144. https://doi.org/10.1007/s11192-015-1565-y
Bornmann, L., & Haunschild, R. (2018). Do altmetrics correlate with the quality of papers? A large-scale empirical study based on F1000Prime data. PLOS One, 13(5), p e0197133. https://doi.org/10.1371/journal.pone.0197133
Brauer, C., & Bernroider, E. W. N. (2015). Social media analytics with the Facebook The case of higher education institutions. Lecture Notes in Computer Science (pp. 3–12). Springer International Publishing. https://doi.org/10.1007/978-3-319-20895-4_1
Woźniak, M., & Buchnowska, D. (2013). The role and use of social media by universities-ranking of universities in social media. In M. Kaczmarczyk, & D. Rott Eds.), Problemy Konwergencji Mediów T.2. Verbum, Sosnowiec-Praga (pp.319-330).
Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent systems, 28(2), 15-21.
http://doi.org/10.1109/MIS.2013.30
Césars, J., Alexis, M., & Emmanuel, E. (2021). Use of Altmetric and Bibliometric Indicators To Measure Scientific Productivity in The Fields of Life and Earth Sciences: Case Study From Haiti. European Scientific Journal, ESJ, 17(21), p. 316.
https://doi.org/10.19044/esj.2021.v17n21p316
Chamorro-Atalaya, O., Arce-Santillan, D., Morales-Romero, G., León-Velarde, C., Ramos-Salaza, P., Auqui-Ramos, E., & Levano-Stella, M. (2022). Sentiment analysis through Twitter as a mechanism for assessing university satisfaction. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 430-440.
Chawinga, W. D. (2017). Taking social media to a university classroom: teaching and learning using Twitter and blogs. International Journal of Educational Technology in Higher Education, 14(1), 1-19. https://doi.org/10.1186/s41239-017-0041-6
Cheung, M .K. (2013). Altmetrics: too soon for use in assessment. Nature, 494(7436), 176. https://doi.org/10.1038/494176d
Das, A., Roy, M., Dutta, S., Ghosh, S., & Das, A. K. (2015). Predicting trends in the Twitter social network: a machine learning approach [Conference presentation]. In Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, Revised Selected Papers 5 (pp. 570-581).
Springer International Publishing. https://doi.org/10.1007/978-3-319-20294-5_49
Darling1, E. S., Shiffman, D., Côté, I. M., & Drew, J. A. (2013). The role of Twitter in the life cycle of a scientific publication. arXiv preprint arXiv,1305.0435.
Daughton, C. G. (2014). The Matthew Effect and widely prescribed pharmaceuticals lacking environmental monitoring: Case study of an exposure-assessment vulnerability. Science of the total environment, 466-467, 315-325. https://doi.org/10.1016/j.scitotenv.2013.06.111
De Winter, J. C. F. (2015). The relationship between tweets, citations, and article views for PLOS ONE articles. Scientometrics, 102(2), 1773-1779. https://doi.org/10.1007/s11192-014-1445-x
Dicker, R., Garcia, M., Kelly, A., & Mulrooney, H. (2018). What does ‘quality’ in higher education mean? Perceptions of staff, students, and employers. Studies in Higher Education, 44(8), 1425-1441. https://doi.org/10.1080/03075079.2018.1445987
Dumpit, D. Z., & Fernandez, C. J. (2017). Analysis of the use of social media in Higher Education Institutions (HEIs) using the Technology Acceptance Model. International Journal of Educational Technology in Higher Education, 14(1), 1-16.
Erfanmanesh, M. A., Hosseini, E., & Habibi, S. (2018). Tweets of Scholarly Papers on Twitter. Librarianship and Information Organization Studies, 29(3), 93-111.
https://sid.ir/paper/224327/en [In Persian].
Eysenbach, G. (2011). Can tweets predict citations? Metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact. Journal of medical Internet research, 13(4), p. e123. https://doi.org/10.2196/jmir.2012
Fauzi, M. A., Tan, C. N. L., Daud, M., & Awalludin, M. M. N. (2020). University rankings: A review of methodological flaws. Issues in Educational Research, 30(1), 79-96.
https://www.researchgate.net/publication/339127443_University_rankings_A_review_of_methodological_flaws
Feldman, R. (2013). Techniques and Applications for Sentiment Analysis. Communications of the ACM, 56(4), 82-89. https://doi.org/10.1145/2436256.2436274
Furini, M., & Montangero, M. (2018). Sentiment analysis and Twitter: a game proposal. Personal and Ubiquitous Computing, 22(4), 771-785. https://doi.org/10.1007/s00779-018-1142-5
Gibbs, W. W. (1995). Lost Science in the Third World. Scientific American, 273(2), 92–99.
Gunduz, S., Demirhan, F., & Sagiroglu, S. (2014). Investigating sentimental relation between social media presence and academic success of Turkish universities [Conference presentation]. In 2014 13th International Conference on Machine Learning and Applications (pp. 574-579). IEEE. https://doi.org/10.1109/ICMLA.2014.95
Haustein, S., Bowman, T. D., Holmberg, K., Peters, I., & Larivière, V. (2014). Astrophysicists on Twitter: An in-depth analysis of tweeting and scientific publication behavior. Aslib Journal of Information Management, 66(3), 279–296. Emerald.
Haustein, S. (2019). Scholarly Twitter metrics. Handbook of Quantitative Science and Technology Research. Springer International Publishing, (pp. 729–760).
Herman, E., & Nicholas, D. (2019). Scholarly reputation building in the digital age: An activity-specific approach. Review article. El profesional de la información (EPI), 28(1). https://doi.org/10.3145/epi.2019.ene.02
Holmberg, K., Bowman, T. D., & Didegah, F. (2015). The meaning of impact in altmetrics. In The 2015 Altmetrics Workshop, Amsterdam.
https://www.researchgate.net/publication/291832113_The_meaning_of_impact_in_altmetrics
Ioannidis, J. P., Patsopoulos, N. A., Kavvoura, F. K., Tatsioni, A., Evangelou, E., Kouri, I., Contopoulos-Ioannidis, D. G., & Liberopoulos, G. (2007). International ranking systems for universities and institutions: a critical appraisal. BMC Medicine, 5(30), 1-9.
Irfan, A., Rasli, A., Sulaiman, Z., Sami, A., & Qureshi, M. I. (2018). Use of social media sites by Malaysian universities and its impact on university ranking. International Journal of Engineering and Technology, 7(4.28), 67-71. https://doi.org/10.14419/ijet.v7i4.28.22393
Katz, J. S. (1999). The self-similar science system. Research Policy, 28(5), 501-517.
Katz, J. S. (2000). Scale-independent indicators and research evaluation. Science and Public Policy, 27(1), 23-36. https://doi.org/10.3152/147154300781782156
Khanizad, R., & Montazer, G. (2017). A Comparative Evaluation of the World University Rankings Systems. Journal of Science and Technology Policy, 10(3), 31-43.
https://jstp.nrisp.ac.ir/article_12985.html?lang=en [In Persian].
Komotar, M. H. (2020). Discourses on quality and quality assurance in higher education from the perspective of global university rankings. Quality Assurance in Education, 28(1), 78-88. https://doi.org/10.1108/QAE-05-2019-0055
Kuzma, J. M., & Wright, W. (2013). Using social networks as a catalyst for change in global higher education marketing and recruiting. International Journal of Continuing Engineering Education and Life Long Learning, 23(1), 53-66.
Li, X., Thelwall, M., & Giustini, D. (2011). Validating online reference managers for scholarly impact measurement. Scientometrics, 91(2), 461-471. http://dx.doi.org/10.1007/s11192-011-0580-x
Mason, S. (2020). Adoption and usage of Academic Social Networks: A Japan case study. Scientometrics, 122(3), 1751–1767. https://doi.org/10.1007/s11192-020-03345-4
McCoy, C. G., Nelson, M. L., & Weigle, M. C. (2018). Mining the Web to approximate university rankings. Information Discovery and Delivery, 46(3), 173-183.
Merton, R. K. (1968) The Matthew effect in science. Science, 159(3810), 56–63.
Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. ISIS, 79(4), 607–623.
https://garfield.library.upenn.edu/merton/matthewii.pdf
Milán, P. N., Sanz, M. P., & Vázquez, Y. G. (2022). NLP technologies for analyzing user-generated Twitter data to identify the reputation of universities in the Valencian Community, Spain. International Journal of Electronic Marketing and Retailing, 13(2), 242-258. https://doi.org/10.1504/IJEMR.2022.121829
Moshtagh, M., Sotudeh, H., Yaghtin, M., & Jowkar, T. (2021). The Correlation of Nature and Leiden Index Ranking Systems with Times and QS. Scientometrics Research Journal, 7(2), 157-172. https://doi.org/10.22070/rsci.2020.5488.1384 [In Persian].
Neylon, C., Willmers, M., & King, T. (2014). Rethinking impact: Applying altmetrics to southern African research. Paper/Scholarly Communication in Africa Programme; 1, January 2014. http://hdl.handle.net/10625/53461
Nicholas, D., Herman, E., Jamali, H., Rodríguez-Bravo, B., Boukacem-Zeghmouri, C., Dobrowolski, T., & Pouchot, S. (2015). New ways of building, showcasing, and measuring scholarly reputation. Learned Publishing, 28(3), 169–183. https://doi.org/10.1087/20150303
Nourmohammadi, H. A., & Safari, F. (2013). Introduction to the global rankings of universities and review criteria of this system. Science and Technology Policy Letters, 3(2), 71-86. https://stpl.ristip.sharif.ir/article_1181.html?lang=en [In Persian].
Olcay, G. A., & Bulu, M. (2017). Is measuring the knowledge creation of universities possible? A review of university rankings. Technological Forecasting and Social Change, 123, 153-160. https://doi.org/10.1016/j.techfore.2016.03.029
O'Regan, G. (2015). Twitter. Pillars of Computing, 215-218, Springer International Publishing. https://doi.org/10.1007/978-3-319-21464-1_33
Pakzad, M., Khaledi, A., & Teimouri, M. (2012). Comparative Study of International Ranking Systems of Universities and Higher Education Centers. Rahyaft, 22(50), 71-88.
https://rahyaft.nrisp.ac.ir/article_13516.html [In Persian].
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2), 1-135. http://dx.doi.org/10.1561/1500000011
Parthasarathy, G., & Tomar, D. C. (2014). Sentiment analyzer: Analysis of journal citations from citation databases [Conference presentation]. In Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference- (pp. 923-928). IEEE. https://doi.org/10.1109/CONFLUENCE.2014.6949321
Parthasarathy, G., & Tomar, D. C. (2015). A Survey of Sentiment Analysis for Journal Citation. Indian Journal of Science and Technology, 8(35).
https://doi.org/10.17485/ijst/2015/v8i35/55134
Pavel, A. P. (2015). Global university rankings- a comparative analysis. Procedia economics and finance, 26, 54-63. https://doi.org/10.1016/S2212-5671(15)00838-2
Pavlov, V., & Pohrebniuk, M. (2020). Evaluation Framework of University based on Excellence Framework System. Asia-Pacific Journal of Educational Management Research, 5(1), 57-70. https://gvpress.com/journals/AJEMR/vol5_no1/6.pdf
Pengmin, W., Ting, C., & Xiaomei, W. (2018). The correlation between altmetrics and citations. Data Analysis and Knowledge Discovery, 2(6), 58-69.
Permatasari, H. P., Harlena, S., Erlangga, D., & Chandra, R. (2014). Effect of social media on website popularity: Differences between public and private universities in Indonesia. arXiv preprint arXiv,1403.1956. https://doi.org/10.48550/arXiv.1403.1956
Porzionato, M., & De Marco, F. (2015). Excellence and diversification of higher education institutions’ missions. The European Higher Education Area: Between Critical Reflections and Future Policies, 285-292. https://doi.org/10.1007/978-3-319-20877-0_19
Rekhter, N. (2012). Using social network sites for higher education marketing and recruitment. International Journal of Technology and Educational Marketing (IJTEM), 2(1), 26-40. http://dx.doi.org/10.4018/ijtem.2012010103
Resch, C. (2022). The influence of social interactions on innovative endeavors in online communities. Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
Robinson-Garcia, N., Arroyo-Machado, W., & Torres-Salinas, D. (2019). Mapping social media attention in Microbiology: identifying main topics and actors. FEMS microbiology letters, 366(7), fnz075. https://doi.org/10.1093/femsle/fnz075
Roshani, S., Bagherylooieh, M. R., Mosleh, M., & Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics, 126(9), 7859-7874. https://doi.org/10.1007/s11192-021-04077-9
Sandlin, J. K., & Peña, E. V. (2014). Building authenticity in social media tools to recruit postsecondary students. Innovative Higher Education, 39(4), 333-346.
Sarwar, R., Zia, A., Nawaz, R., Fayoumi, A., Aljohani, N. R., & Hassan, S. U. (2021). Webometrics: evolution of social media presence of universities. Scientometrics, 126(2), 951-967. https://doi.org/10.1007/s11192-020-03804-y
Sayed, O. H. (2019). Critical treatise on university ranking systems. Open Journal of Social Sciences, 7(12), 39-51. https://doi.org/10.4236/jss.2019.712004
Selten, F., Neylon, C., Huang, C.-K., & Groth, P. (2020). A longitudinal analysis of university rankings. Quantitative Science Studies, 1(3), 1109-1135.
Shehatta, I., Al-Rubaish, A. M., & Mahmood, K. (2020). Ranking Web of universities: is Webometrics a reliable academic ranking? Pakistan Journal of Information Management and Libraries, 22, 103-135. https://doi.org/10.47657/2631
Shehatta. I., & Mahmood, K. (2016). Correlation among top 100 universities in the major six global rankings: policy implications. Scientometrics, 109(2), 1231-1254.
Shin, J. C., Toutkoushian, R. K., & Teichler, U. (2011). University rankings: Theoretical basis, methodology and impacts on global higher education (Vol. 3). London: springer Science.1-55. https://doi.org/10.1007/978-94-007-1116-7
Shuai, X., Pepe, A., & Bollen, J. (2012). How the scientific community reacts to newly submitted preprints: Article downloads, Twitter mentions, and citations. PlOS One, 7(11), p e47523. https://doi.org/10.1371/journal.pone.0047523
Sotudeh, H., Ravaie, M., MirzaBeigi, M., & Mazarei, Z. (2017). Altmetrics challenges in research evaluation: a thematic analysis. Health Information Management, 14(3), 124-129. https://him.mui.ac.ir/article_11582.html [In Persian].
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. https://doi.org/10.1002/asi.21416
Thelwall, M., & Kousha, K. (2015). ResearchGate: Disseminating, communicating, and measuring Scholarship? Journal of the Association for Information Science and Technology, 66(5), 876–889. https://doi.org/10.1002/asi.23236
Thelwall, M., & Kousha, K. (2021). Researchers’ attitudes towards the h-index on Twitter 2007–2020: criticism and acceptance. Scientometrics, 126(6), 5361-5368.
Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PlOS One, 8(5), p. e64841.
Usher, A., & Savino, M. (2006). A World of Difference: A Global Survey of University League Tables. Canadian Education Report Series. Online Submission.
Valerio-Ureña, G., Herrera-Murillo, D., & Madero-Gómez, S. (2020). Analysis of the presence of most best-ranked universities on social networking sites. In Informatics, 7(1), p. 9.
van Raan, A. F. J. (2005). Fatal attraction: Conceptual and methodological problems in the ranking of universities by bibliometric methods. Scientometrics, 62(1), 133-143.
Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391. https://doi.org/10.1016/j.joi.2016.02.007
Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E. C. M., Tijssen, R. J. W., Van Eck, N. J., Van Leeuwen, T. N., Van Raan, A. F. J., Visser, M. S., & Wouters, P. (2012). The Leiden Ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American society for information science and technology, 63(12), 2419-2432.
Wasike, B. (2019). Citations gone# social: Examining the effect of altmetrics on citations and readership in communication research. Social Science Computer Review, 39(3), 416-433. https://doi.org/10.1177/0894439319873563
Wiechetek, Ł., & Pastuszak, Z. (2022). Academic social networks metrics: an effective indicator for university performance? Scientometrics, 127(3), 1381-1401.
Wut, T. M., Xu, J. & Lee, S. W. (2022). Does university ranking matter? Choosing a university in the digital era. Education Sciences, 12(4), 229. https://doi.org/10.3390/educsci12040229
Yan, W., & Zhang, Y. (2018). Research universities on the ResearchGate social networking site: An examination of institutional differences, research activity level, and social networks formed. Journal of Informetrics, 12(1), 385-400. https://doi.org/10.1016/j.joi.2017.08.002
Ye, Y. E., & Na, J. C. (2020). Profiling Bot Accounts Mentioning COVID-19 Publications on Twitter [Conference presentation]. In Digital Libraries at Times of Massive Societal Transition: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, November 30–December 1, 2020, Proceedings 22 (pp. 297-306). Springer International Publishing. https://doi.org/10.1007/978-3-030-64452-9_27
Yeo, R. K. (2009). Service quality ideals in a competitive tertiary environment. International journal of educational research, 48(1), 62-76. https://doi.org/10.1016/j.ijer.2009.03.004
Yu, H. (2017). Context of altmetrics data matters: an investigation of count type and user category. Scientometrics, 111(1), 267-283. https://doi.org/10.1007/s11192-017-2251-z
Zahedi, Z., Costas, R., & Wouters, P. (2014). How well-developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications. Scientometrics, 101(2), 1491-1513. https://doi.org/10.1007/s11192-014-1264-0
Zaidieh, A. J. Y. (2012). The use of social networking in education: Challenges and opportunities. World of Computer Science and Information Technology Journal (WCSIT), 2(1), 18-21. https://www.semanticscholar.org/paper/The-Use-of-Social-Networking-in-Education-%3A-and-Zaidieh/76e21d0c5cc14238463a09eec33d5d06573a32d2
Zhang, X., Wang, X., Zhao, H., Ordóñez de Pablos, P., Sun, Y., & Xiong, H. (2019). An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications. Scientometrics, 119(3), 1311-1344. https://doi.org/10.1007/s11192-019-03088-x | ||
|
آمار تعداد مشاهده مقاله: 807 تعداد دریافت فایل اصل مقاله: 1,299 |
||
