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Abstract- In this paper, our objective is maximizing total sum-rate 
subject to power constraints on total relay transmit power or individual 
relay powers, for amplify-and-forward single-antenna relay-based 
wireless communication networks. We derive a closed-form solution for 
the total power constraint optimization problem and show that the 
individual relay power constraints optimization problem is a quadratic 
programming which does not have a closed-form solution. To solve it, 
we propose a closed-form low-complex technique which introduces 
suboptimal solution as an upper bound of system sum-rate.    

The performance of two new proposed algorithms are evaluated in 
the view of average achievable sum-rate and energy efficiency in 
different signal to noise ratios (SNRs). Considering the effect of the 
number of relays, the effect of channel gains of the source-relay as well 
as the relay-destination, and also the impact of the level of imperfect 
CSI are investigated. According to the simulation results, higher sum-
rate can be achieved in total power constrained scenario for all SNRs 
but energy efficiency is approximately the same for both of them. In 
addition, higher sum-rate is achievable by increasing the number of 
relays and/or improving the quality of uplink and downlink channels as 
well as decreasing uncertainty of channels.  

Index Terms- Cooperative, MIMO relay network, AF relay, Beamforming, Power 

control, Sum-rate. 

I. INTRODUCTION  

Providing wireless communications anytime anywhere needs bandwidth-efficient technologies. To 

improve the performance of these technologies, various diversity techniques in frequency, time, code, 

space or a combination of them may be applied. An interesting type of space diversity, namely 

cooperative diversity is considered in [1]–[3]. A three-node network is studied in [4], where the relay 

nodes between the sources and destinations help to have a non-direct reliable transmission by making 

virtual array antennas. This method, avoids the problems related to implementing antenna arrays such 
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as, physical limitations, mutual coupling of array elements and so on. In addition, it makes the 

possibility of taking diversity and other advantages of multiple-input multiple-output (MIMO) systems 

and also applying two important ideas, namely power control and beamforming in MIMO systems. 

It should be mentioned that for long distance communications between transmitter and receiver, the 

direct link between source and destination faces large attenuation. Hence, using relay-based networks, 

transceiver nodes can communicate with each other in two hops. In the first hop, transmitter sends 

signal to relay and relay makes a process on it. This process depends on the type of relay. Thereafter, 

in the second hop, the relay sends the processed signal to the receiver. 

In terms of the type of processing, relays can be classified into different modes such as, amplify-

and-forward (AF) [3], decode-and-forward (DF) [5], and compress-and-forward (CF) [6] which the 

simplest and popular one is AF but it is not as effective as DF and CF ones. AF relay linearly amplifies 

the signal and sends the amplified signal to the receiver. Unlike regenerative relays, AF relay has no 

impact on the noise because decoding is not performed. Although AF relays have no effect on 

decreasing error [7], AF relay proffers less complexity and lower delay associated with relay 

processing rather than the other schemes. Also, the AF relay has introduced a distributed space-time 

coding research area in relay-based networks [8]–[14].  

The problem of resource allocation for different relaying schemes has been studied in [15]. In [16], 

joint beamforming and power control in receiver for MIMO relay networks are used to reduce co-

channel interference (CCI). In [17], assuming the instantaneous Channel State Information (CSI) is 

known at relays and both end nodes, an AF strategy is investigated. Considering a predefined power 

constraint for each relay node, the relay nodes try to maximize the received signal to noise ratio 

(SNR), by adjusting their phase of the received signal and transmit powers according to the quality 

(gain) of channels. As shown in [17], by maximizing SNR at the receiver, some of the relay powers 

may be lower than their maximum allowable power. In usual wireless communication networks just 

one source and one destination communicate with each other through multi relays [18, 19, 20]. In the 

most of research works, there is no direct link between the source and the destination. In contrast, in 

some investigations such as [17], the direct link is also considered but this link is the dominant one. 

When the number of source-destination pairs is more than one, the proposed method in [18] is not 

valid. In [21, 22], the power consumption is minimized while the required signal to interference plus 

noise ratio (SINR) for each link is guaranteed. Authors use Semidefinite Relaxation (SDR) technique 

to change this problem to a Semidefinite Programming (SDP) problem which can be solved by using 

Interior Point (IP) methods. Total Leakage (TL) minimization algorithm which aims at minimizing the 

sum of powers of the interferers and noise from the relays was introduced in [23]. They maximized 

system sum-rate with total relay transmit power constraint for both AF and DF strategies. In [24], 
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general MIMO relay network was considered. The authors of [24] proved that an inequality exists 

between sum-rate and total signal to total interference plus noise ratio (TSTINR). Instead of sum-rate, 

they maximized TSTINR and proposed a low complexity algorithm to optimize the users’ encoders 

and decoders as well as relay beamforming matrices. Moreover, two algorithms were proposed in [25] 

to maximize total signal to total leakage ratio (TSTLR) by maximizing the numerator for the first 

approach and the difference between the numerator and the denominator for the second one. SDR 

technique was used to turn the problem into a SDP problem and MATLAB CVX toolbox was used to 

solve the problem.  

Different relay-assisted problems in D2D communications and 5G systems were presented in [26]-

[29]. In such cases, relays assist D2D users to have a high performance communication when the 

quality of direct link between D2D users are not good enough or D2D users are far from each other. 

The authors in [26] addressed an optimal relay selection algorithm in D2D transmission. Joint relay 

selection and power allocation problem under AF relaying protocol was proposed in [27] and a 

solution based on iterative Hungarian algorithm was proposed. Under DF relaying, [28] investigated 

the power allocation at the source and relay nodes to maximize the sum throughput of the system. 

They also formulated a joint power optimization problem for orthogonal frequency division 

multiplexing (OFDM) based transmission. Two low-complex energy efficiency-based optimization 

problems for the uplink of a cooperative multi-point 5G system were proposed in [29] which uses 

fractional programming methods. One of them maximizes the network global energy efficiency and 

the other one does it for the worst-case energy-efficient design.   

Here, a network consisting of multi pairs of single-antenna source-destination that communicate 

with each other using multi non-regenerative single-antenna relays is considered. By considering the 

problem of distributed beamforming, it is assumed that the Second-Order Statistics (SOS) of the 

channel coefficients for both source-relay and relay-destination links are known. Two new 

optimization problems are proposed which maximize sum-rate subjecting to two types of relay’s 

power constraints, totally and individually. It is shown that in total relays power constraint we can find 

a closed-form solution. We also show that for individual relay power constraints the problem has not a 

closed-form solution but by using semidefinite programming (SDP) and relaxation technique the 

problem is turned into a convex one, so it can be approximately solved by interior point methods. This 

optimization problem is solved by convex optimization (CVX) MATLAB toolbox. Also, in the case of 

individual relay power constraints, we recommend a closed-form and low-complex technique which 

can be used as the upper bound of system sum-rate. The proposed schemes are compared to [22], TL 

[23], [24] and TSTLR [25] schemes. 
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Fig 1. 𝑑 source-destination system consisting of R relays 

First, the performance of two new proposed algorithms are compared to that for algorithms of [22]-

[25] in terms of average achievable sum-rate and energy efficiency in different noise powers. 

Considering the effect of the number of relays, the impact of channel gains (qualities) of the first hop 

as well as the second hop, and also the impact of the level of channel uncertainty are investigated. 

The remainder of this paper is organized as follows. After illustrating the system model in Section 

2, the maximization problems are formulated in Section 3, which present our proposed approaches 

with more details. Simulation results for the different scenarios of the system are presented in Section 

4. Finally, conclusions and some suggestions for further research works are presented in Section 5. 

II. SYSTEM MODEL 

As shown in Figure 1, a system consisting of 𝑑 source-destination pairs with R relays are 

considered that there is no direct link between the source and the destination. By weighting (adjusting 

the amplitude and phase) of received signal in each relay, relay multiplies its received signal by a 

weight and then sends it to the destination. 

We assume that the coefficient matrix of the channel between the pth transmitter and the rth relay 

and also between the rth relay and the pth receiver are 𝑓𝑟𝑝 and 𝑔𝑟𝑝 respectively, the received signal at 

the rth relay can be formulated as (1) [22] 

𝑥𝑟 = ∑ 𝑓𝑟𝑝𝑠𝑝 + 𝑣𝑟𝑑
𝑝=1                                                              (1) 

where 𝑠𝑝 is the transmitted symbol by the pth source and 𝑣𝑟 is the zero-mean Additive White Gaussian 

Noise (AWGN) at the rth relay node. 
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Considering the following assumptions in this section, (1) can be reformulated as (2). 

1- The noise in relay is AWGN, i.e.,𝐸{𝑣𝑟𝑣𝑟∗} = 𝜎𝑣2𝛿𝑟𝑟, , where 𝜎𝑣2 shows the noise power. 𝐸{. } 

represents the statistical expectation, (. )∗ represents complex conjugate operator and 𝛿𝑟𝑟,  denotes 

Kronecker’s delta function. 

2- The power of the pth source is 𝑝𝑝, i.e.,  𝐸 ��𝑠𝑝�
2� = 𝑝𝑝. 

3- The symbols for different sources are not correlated, i.e., 𝐸�𝑠𝑝𝑠𝑝∗� = 𝑝𝑝𝛿𝑝𝑞 . 

4- The symbols and the noise in rth relay are statistically independent.  

                                                   𝒙 = ∑ 𝒇𝑝𝑠𝑝 + 𝒗𝑑
𝑝=1                                                                           (2) 

where 𝒙 = [𝑥1 𝑥2 … 𝑥𝑅]𝑇, 𝒗 = [𝑣1 𝑣2 … 𝑣𝑅]𝑇 and 𝒇𝑝 = �𝑓1𝑝 𝑓2𝑝 …𝑓𝑅𝑝�
𝑇. Here,  ) (.  T denotes the 

transpose operator. 

The received signal in the rth relay will be multiplied by a complex coefficient 𝑤𝑟∗. Transmitted 

signal by relays are given as (3). 

𝒕 = 𝐖𝐻𝒙                                                                      (3) 

where  ) (.  H represents Hermitian transpose operator, 𝐖 = diag([𝑤1,𝑤2, … ,𝑤𝑅]T)  and 𝒕 is an R × 1 

vector. 

Denoting 𝒈𝑘 = [𝑔1𝑘  𝑔2𝑘 …𝑔𝑅𝑘]𝑇 as the coefficients for channels between the relays and the kth 

destination, the received signal at kth receiver is given as (4).                                      

𝑦𝑘 = 𝒈𝑘𝑇 𝒕 + 𝑛𝑘  

= 𝒈𝑘𝑇 𝐖𝐻∑ 𝒇𝑝𝑠𝑝 + 𝒈𝑘𝑇 𝐖𝐻𝒗𝑑
𝑝=1  + 𝑛𝑘                                                          (4) 

=  𝒈𝑘𝑇 𝐖𝐻𝒇𝑘𝑠𝑘���������
desired signal component

+  𝒈𝑘𝑇 𝐖𝐻∑ 𝒇𝑝𝑠𝑝 𝑑
𝑝=1,𝑝≠𝑘���������������

interference component

+   𝒈𝑘𝑇 𝐖𝐻𝒗 + 𝑛𝑘���������
noise component

  

where 𝑛𝑘 is a Gaussian (normal) distributed noise at the kth receiver as 𝑁(0,𝜎𝑛2) . 

As noted in (4), the first term represents the desired information part of the received signal, the 

second one is the interference signals made by the other users, and finally two parts in the last term 

represent the noise. It shows that there are three unwanted signal groups at each destination: 

1- Interference 

2- Amplified noises from the relays to destinations 

3- Receiver noise  

In this research, it is supposed that all channel coefficients between sources and relays, the 
coefficients for the channels between relays and destinations, the transmitted signals, the noise signals 
in the relay and receiver are independent from each other. Table I summarizes the notations used in 
this paper as a quick reference. 
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Table I. Description of symbols used in analytical modeling and simulations 

 

III. SUM-RATE MAXIMIZATION CONSIDERING RELAY POWERS 

In general, there are two ways to control the power of relays:  

1- Case 1: Total sum of powers at all relays constraint.   

2- Case 2: A set of individual power constraints at the relays 

Symbol Definition 

d Number of source-destination pairs 

R Number of relays 

𝑓𝑟𝑝 Coefficient matrix of the channel between the pth transmitter and the rth relay 

𝑔𝑟𝑝 Coefficient matrix of the channel between the rth relay and the pth receiver 

𝑠𝑝 Transmitted signal by the pth source 

𝑣𝑟 Zero-mean additive white Gaussian noise (AWGN) at the rth relay node 

𝑝𝑝 Transmit power of the pth source 

𝑥𝑟 Received signal at the rth relay 

𝐖 Beamforming matrix 

𝑛𝑘 Gaussian noise at the kth receiver 

𝑝𝑥,𝑟
𝑚𝑎𝑥 Maximum transmit power at the rth relay 

𝑝𝑥𝑚𝑎𝑥 Maximum total transmit power at relays 

𝐑𝑥 Correlation matrix of the signal received at the relay 

𝐑𝑓𝑃 Correlation matrix of the first hop channel gains 

𝐑𝑔𝑃  Correlation matrix of the second hop channel gains 

𝑝𝑠𝑘 kth desired signal power 

𝑝𝑖𝑘 Interference power at kth destination 

𝑝𝑛𝑘 Noise power at kth destination 

𝒉𝑘 Total path gain between the kth source and its corresponding destination 

 𝜎𝑓2 Variance of the first hop channel coefficient (𝒇) 

 𝜎𝑔2 Variance of the second hop channel coefficient (𝒈) 

 𝜎𝑛2 Noise variance 

𝑓�̅�𝑝 Mean value of 𝑓𝑟𝑝 

𝑒𝑓𝑟𝑝 Unknown part of 𝑓𝑟𝑝 

 𝜎𝑒𝑓2  Variance of 𝑒𝑓𝑟𝑝 

�̅�𝑟𝑞 Mean value of 𝑔𝑟𝑞  

𝑒𝑔𝑟𝑞 Unknown part of 𝑔𝑟𝑞 

 𝜎𝑒𝑔2  Variance of 𝑒𝑔𝑟𝑝 
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The first one is often considered in the cellular system literature while the second one is often 

considered in an ad-hoc network to extend the battery-powered relays’ lifetime [23]. Assuming 

𝑝𝑥,𝑟
𝑚𝑎𝑥 as the maximum transmit power at the rth relay and 𝑝𝑥𝑚𝑎𝑥 as the maximum total transmit power 

at relays and considering power control, the first set of constraints are [23]: 

                                             ∑ 𝑝𝑥,𝑟
𝑚𝑎𝑥𝑅

𝑟=1 ≤ 𝑝𝑥
𝑚𝑎𝑥                                                           (5) 

and the second constraint (Individual Relays' Powers Constraints) is: 

𝑝𝑥,𝑟 ≤ 𝑝
𝑥,𝑟
𝑚𝑎𝑥    , 𝑟 = 1, 2, . . ,𝑅                                                (6) 

 First, we study the first case in the subsection A and then investigate the second case in the 

subsection B. 

A. Case 1 (Total Relay Power Constraint) 

In the case 1, our objective is to achieve the weight of optimum beamforming {𝑤𝑟∗}𝑟=1𝑅 , in such a 

way that sum-rate become maximized while the total transmitted (consumed) power in relays is lower 

than the certain predefined threshold. Thus, the optimization problem can be written as: 

max        Sum− rate                                                              

       subject to  ∑ 𝑝𝑥,𝑟
𝑚𝑎𝑥𝑅

𝑟=1 ≤ 𝑝𝑥
𝑚𝑎𝑥                                                     (7) 

where 𝑝𝑥
𝑚𝑎𝑥 is the predefined threshold as maximum allowable total transmitted power and 𝑝𝑇 =

∑ 𝑝𝑥,𝑟
𝑚𝑎𝑥𝑅

𝑟=1  is the total transmitted power in all relay nodes. From (3), total transmitted power in relays 

can be given as (8). 

𝑝𝑇 = 𝐸{𝒕𝐻 𝒕}            

                                                                    = 𝐸{𝒙𝐻 𝐖𝐖H𝒙}                                                             (8) 

= 𝑡𝑟{ 𝐖H𝐸{𝒙𝒙𝐻}𝐖}  

where  ) (.  tr represents the trace of a matrix. Now, the total transmitted power can be rewritten of the 

form (9): 

      𝑝𝑇 = 𝑡𝑟{ 𝐖H𝐑𝑥𝐖} = ∑ |𝑤𝑟|2[𝐑𝑥]𝑟,𝑟 = 𝒘H𝐃 𝒘𝑅
𝑟=1                                                           (9) 

where 𝐑𝑥 = 𝐸{𝒙𝒙𝐻} is the correlation matrix of the signal received at the relay, 𝒘 = diag(𝐖) and 

𝑫 = diag([𝐑𝑥]1,1  , [𝐑𝑥]2,2  , … , [𝐑𝑥]𝑅,𝑅) . Here, the vector diag(𝐀) contains the diagonal entries of 

the square matrix A and diagonal matrix diag(𝐚)  is produced by the elements of the vector 𝐚. 
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 Using (2) and respected assumptions 1-4, 𝐑𝑥 can be reformulated as 

𝐑𝑥 = ∑ 𝐸�𝒇𝑝𝒇𝑞𝐻� 𝐸�𝑠𝑝𝑠𝑞∗� + 𝜎𝑣2 𝐈𝑑
𝑝,𝑞=1   

                                       = ∑ 𝑃𝑝𝐸�𝒇𝑝𝒇𝑞𝐻�  + 𝜎𝑣2 𝐈𝑑
𝑝=1                                                             (10) 

= ∑ 𝑃𝑝𝐑𝑓𝑃  + 𝜎𝑣2 𝐈𝑑
𝑝=1   

where I  is the identity matrix, sp and sq are respectively the symbols transmitted by the 𝑝th and 𝑞th 

sources, and 𝑹𝑓𝑃 is as (11):             

                                                                           𝐑𝑓𝑃 = 𝐸�𝒇𝑝𝒇𝑞𝐻�                                                                        (11) 

 It is clear from (9) that the total transmit power of relays depends on the noise powers in relays and 

variance of the coefficients of the source-relay channel [22].  

According to the variables that we described in the previous equations, sum-rate for the system shown 

in Figure 1 can be obtained from (12) [24]: 

𝑅sum = 1
2
∑ log2 det(1 + 𝐅𝑘−1𝐓𝑘𝑘𝐓𝑘𝑘𝐻 )𝑑
𝑘=1                                                  (12) 

where 𝐓𝑘𝑞 = ∑ 𝑔𝑘𝑟𝑤𝑟𝑓𝑟𝑞𝑅
𝑟=1  ,�̅�𝑘𝑟 = 𝑔𝑘𝑟 𝑤𝑟 and 𝐅𝑘 = ∑ 𝐓𝑘𝑞 𝐓𝑘𝑞𝐻 +  ∑ �̅�𝑘𝑟  �̅�𝑘𝑟𝐻 + 𝜎𝑛2𝑅

𝑟=1𝑞∈𝑑 ,𝑞≠𝑘  .                

1/2 coefficient is appeared in (12) because two-phase scenario is considered. Authors of [23] and [24] 

showed that optimization of sum-rate is more complicated. According to theorem 1 expressed in [24], 

by introducing a lower bound as (13), the problem would be optimized more easily compared to the 

first problem, but the solution is suboptimal. Maximizing the lower bound compared to the previous 

research works [22-25] offers higher sum-rate which is the main idea of this investigation.   

 
log2(1 + TSTLR) ≤ 2 𝑅sum                                                    (13) 

   In our investigation, destinations have single-antenna, so the condition of theorem 1 in [24] is 

satisfied. 

TSTLR is defined as the total power of desired signals to total leakage power ratio, i.e., 

TSTLR = ∑  𝑝𝑠𝑘𝑑
𝑘=1

∑  ( 𝑝𝑛𝑘 +𝑝𝑖
𝑘)𝑑

𝑘=1
                                                       (14) 

 The desired signal power 𝑝𝑠𝑘, interference power 𝑝𝑖𝑘, and noise power 𝑝𝑛𝑘, can be achieved in terms 

of {𝑤𝑟
∗}𝑟=1
𝑅 . Using (4), for the noise power at the kth receiver, we have [22]: 

𝑝𝑛𝑘 = 𝐸�𝒗𝐻 𝐖 𝒈𝑘∗  𝒈𝑘𝑇 𝐖H 𝒗� + 𝜎𝑛2  

= 𝑡𝑟�𝐖H 𝐸{𝒗𝒗𝐻}  𝐖  𝐸�𝒈𝑘∗  𝒈𝑘𝑇�  � + 𝜎𝑛2                                         (15) 
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= 𝜎𝑣2 𝑡𝑟� 𝐖H 𝐑𝑔𝑘  𝐖    � + 𝜎𝑛2  

where 𝐑𝑔𝑘 = 𝐸�𝒈𝑘𝒈𝑘𝐻�. 

The kth receiver noise power can be rewritten as: 

𝑝𝑛𝑘 = 𝜎𝑣2 ∑ |𝑤𝑟|2�𝐑𝑔𝑘�𝑟,𝑟
+ 𝜎𝑛2𝑅

𝑟=1                                       

                            = 𝒘𝐻𝐃𝑘𝒘 + 𝜎𝑛2                                                               (16) 

where  𝐃𝑘 = 𝜎𝑣2 𝑑𝑖𝑎𝑔 (�𝐑𝑔𝑘�1,1
 , �𝐑𝑔𝑘�2,2

 , … , �𝐑𝑔𝑘�𝑅,𝑅
). 

The kth desired signal power can be expressed as:  

𝑝𝑠𝑘 = 𝐸�𝒈𝑘𝑇 𝐖H 𝒇𝑘 𝒇𝑘𝐻 𝐖 𝒈𝑘∗   �𝐸{|𝑠𝑘|2}  

= 𝑝𝑘𝐸�𝒘H diag(𝒈𝑘) 𝒇𝑘 𝒇𝑘𝐻 diag(𝒈𝑘∗ )𝐖   �                                    (17) 

= 𝑝𝑘𝐸�𝒘H (𝒈𝑘 ⊙ 𝒇𝑘) (𝒇𝑘𝐻⨀𝒈𝑘𝐻)𝒘   �  

= 𝑝𝑘  𝒘H 𝐸�  𝒉𝑘𝒉𝑘𝐻 �𝒘  

= 𝒘H 𝐑ℎ𝑘  𝒘  

where ⊙ is element-wise Schur-Hadamard multiplication of two matrices. 

𝒉𝑘 = (𝒈𝑘 ⊙ 𝒇𝑘) = [𝑔1𝑘 𝑓1𝑘 ,𝑔2𝑘𝑓2𝑘  , … ,𝑔𝑅𝑘  𝑓𝑅𝑘]𝑇  

𝐑ℎ
𝑘 = 𝑝𝑘𝐸�  𝒉𝑘𝒉𝑘𝐻 �                                                             (18) 

As shown in (18), 𝒉𝑘 contains the total path gains between the kth source and its corresponding 

destination considering different relays. Also, using (4) and denoting { } { }kdAk −= ,...,2,1 , the 

interference power is given by [22]:  

𝑝𝑖𝑘 = 𝐸�𝒈𝑘𝑇 𝐖H �∑ 𝒇𝑝𝒇𝑞𝐻𝑝,𝑞∈𝐴𝑘  𝑠𝑝𝑠𝑞∗�𝐖 𝒈𝑘∗ �  

= 𝐸� 𝒘H diag (𝒈𝑘)�∑ 𝑝𝑝𝒇𝑝𝒇𝑝𝐻𝑝∈𝐴𝑘 � diag(𝒈𝑘∗ ) 𝒘 �  

= 𝐸� 𝒘H �∑ 𝑝𝑝(𝒈𝑘 ⊗ 𝒇𝑝)(𝒈𝑘𝐻 ⊗ 𝒇𝑝𝐻𝑝∈𝐴𝑘 � ) 𝒘 �  

= 𝒘H 𝐐𝑘  𝒘                                                                 (19) 

 

where 𝒉𝑘
𝑝 and 𝐐𝑘are defined as: 

𝒉𝑘
𝑝 = (𝒈𝑘 ⊗ 𝒇𝑝)  

𝐐𝑘 = 𝐸 �∑ 𝑝𝑝 𝒉𝑘
𝑝�𝒉𝑘

𝑝�
𝐻

𝑝∈𝐴𝑘 �                                                 (20) 
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By using (16), (17) and (19), we can rewrite (14) as (21):  

TSTLR =
𝒘H �∑ 𝑹ℎ

𝑘𝑑
𝑘=1 � 𝒘

𝒘H �∑ 𝐐𝑘
𝑑
𝑘=1 � 𝒘 +  𝒘H �∑ 𝐃𝑘𝑑

𝑘=1 � 𝒘 +𝒅 𝜎𝑛2 
=

𝒘H �∑ 𝑹ℎ
𝑘𝑑

𝑘=1 � 𝒘

𝒘H �∑ (𝐐𝑘+𝐃𝑘) 𝑑
𝑘=1 � 𝒘 + 𝑑𝜎𝑛

2

 

                          (21) 

The direct optimization of the system sum-rate is complicated. Therefore, we approximate 

it by the TSTLR and maximize it. Hence, the optimization problem can be rewritten as: 

max       TSTLR  

    subject to   𝑝𝑇 ≤ 𝑝𝑥
𝑚𝑎𝑥                                                        (22) 

Using the previous equations, we can write: 

max       
𝒘H �∑ 𝐑h

k𝑑
𝑘=1 � 𝒘

𝒘H �∑ (𝐐𝑘+𝐃𝑘) 𝑑
𝑘=1 � 𝒘 + 𝑑𝜎𝑛

2                               

   subject to   𝒘H 𝐃 𝒘 ≤ 𝑝𝑥
𝑚𝑎𝑥                                                       (23) 

There is no efficient method to deal directly with (23) because the objective function is a fractional 

relationship. This makes (23) to be a hard problem because it is a non-convex problem with high 

complexity solution.     

We exploit a SDP relaxation approach to find a relaxed version of (23). By defining 𝐗 = 𝒘 𝒘𝐻 

[21, 22], the problem (23) can be changed to (24):  

max       tr (𝐙𝐗)   

subject to   𝑡𝑟 (𝐃𝐗) ≤ 𝑝𝑥
𝑚𝑎𝑥  

                                        rank (𝐗) = 1 ,   𝐗 ≥ 0                                                        (24) 

where 𝐗 ≥ 0 means that 𝐗 is a positive semi definite (PSD) matrix, and rank (.) denotes the rank of a 

matrix. 

To fix this problem, there are three ways as: 

1. Minimizing the denominator (𝐙 = ∑ (𝐐𝑘 +𝐃𝑘𝑑
𝑘=1 )) 

2. Maximizing the numerator (𝐙 = ∑ 𝐑h
k𝑑

𝑘=1 ) 

3. Maximizing the difference between the numerator and the denominator (𝐙 = ∑ {𝐑hk − (𝐐𝑘 +𝑑
𝑘=1

𝐃𝑘)}).  

According to simulation results [25], maximizing TSTLR by maximizing the difference between 

the numerator and the denominator, (𝐙 = ∑ {𝐑hk − (𝐐𝑘 + 𝐃𝑘)}𝑑
𝑘=1 ), introduces higher sum-rate with 
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respect to two other ones in all SNRs. Hence, the difference between the numerator and the 

denominator is considered as objective function. 

As the next problem, the rank constraint in (24) is non-convex. By removing this non-convex 

constraint using SDR we have: 

max       tr (𝐙𝐗)   

subject to   𝑡𝑟 (𝐃𝐗) ≤ 𝑝𝑥
𝑚𝑎𝑥  

                                        𝐗 ≥ 0                                                                          (25) 

Indeed, the problem (25) is convex and can be solved efficiently using convex optimization (CVX) 

MATLAB toolbox [30].  

The rank-one property for the solution of problem (25), the matrix 𝐗opt, is not guaranteed. It means 

that the solution for problem (25) only provides an upper bound for problem (24). Proof of this is 

available in [22]. As shown in [31], the rank-one solution for problem (25) can be found as long as 

3≤d . For the case 3>d , to obtain a suboptimal rank-one solution, randomization techniques should be 

used. Here, Xopt is used to make suboptimal weight vectors 𝒘 from which the best solution will be 

selected [32, 33, 34]. 

In order to solve (23), assume 𝒘 as: 

𝒘 = �𝑝 𝐃−𝟏𝟐 𝒘�                                                                  (26) 

where 𝒘�H𝒘� = 𝟏.The optimization problem (23) can be represented as: 

max       𝑝𝒘�H𝐑� 𝒘�
𝑝𝒘�H𝐇�  𝒘�  + 𝑑 𝜎𝑛2

   

    subject to   ‖𝒘�‖2 = 1    , 𝑝 ≤ 𝑝𝑥
𝑚𝑎𝑥                                           (27) 

where 𝐑� = 𝐃−
𝟏
𝟐�∑ 𝐑ℎ

𝑘𝑑
𝑘=1 �𝐃−

𝟏
𝟐 and  𝐇� = 𝐃−

𝟏
𝟐�∑ (𝐐𝑘 + 𝐃𝑘)𝑑

𝑘=1 �𝐃−
𝟏
𝟐 .  

This objective function will be maximized for 𝑝 =  𝑝𝑥𝑚𝑎𝑥 because the objective function in (27) is 

monotonically increasing in 𝑝. So, we can simplify the problem (27) as: 

max       𝑝𝑥𝑚𝑎𝑥 𝒘�H𝐑� 𝒘�
𝑝𝑥𝑚𝑎𝑥 𝒘�H𝐇�  𝒘�  + 𝑑 𝜎𝑛2

   

subject to   ‖𝒘�‖2 = 1                                                              (28) 

Or we can equivalently write: 

max       𝑝𝑥𝑚𝑎𝑥 𝒘�H𝐑� 𝒘�
𝑝𝑥𝑚𝑎𝑥𝒘�H�𝐇�  + 𝑑 𝐈 𝜎𝑛2� 𝒘�  

   

subject to   ‖𝒘�‖2 = 1                                                        (29) 
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It is well known [35] that the objective function in (29) is globally maximized when 𝒘�  is chosen as 

the principal generalized eigenvector of �𝐑� ,  𝑑 𝐈 𝜎𝑛2 +  𝑝𝑥𝑚𝑎𝑥 𝐇��, or, equivalently, as the principal 

eigenvector of the matrix � 𝑑 𝐈 𝜎𝑛2 + 𝑝𝑥𝑚𝑎𝑥 𝐇��−1𝐑�. In order to satisfy the unit-norm constraint in (29), 

the normalized version of problem (29) will be considered which it has the following solution 

𝒘� = 𝑝. 𝑒. 𝑣 � � 𝑑 𝐈 𝜎𝑛2 +  𝑝𝑥𝑚𝑎𝑥 𝐇��−1𝐑��                                                            (30) 

where {}⋅vep ..  is the normalized principal eigenvector of a matrix. Finally, we have  

𝒘 = �𝑝𝑥𝑚𝑎𝑥 𝐃−
𝟏
𝟐 𝑝. 𝑒. 𝑣 � � 𝑑 𝐈 𝜎𝑛2 +  𝑝𝑥𝑚𝑎𝑥 𝐇��−1𝐑��                                                    (31) 

B. Case 2 (Individual Relays' Powers Constraints) 

In this subsection, we consider the case that relay transmit power for each relay node is 

constrained. When the battery lifetime for relay nodes is limited, this case is more appropriate. So, our 

goal is finding the solution for problem (32). 

max        Sum − rate  

𝑝𝑥,𝑟 ≤ 𝑝𝑥,𝑟
𝑚𝑎𝑥    , 𝑟 = 1, 2, . . ,𝑅                                                         (32) 

By comparing optimization problems (22) and (32), it is clear that the total sum of relay powers 

constraint is replaced by R individual relay power constraints. Again using (19), we can write: 

max        TSTLR  

𝑝𝑥,𝑟 ≤ 𝑝𝑥,𝑟
𝑚𝑎𝑥    , 𝑟 = 1, 2, . . ,𝑅                                                        (33) 

Using (21), we can rewrite (33) as: 

max       
𝒘H �∑ 𝐑h

k𝑑
𝑘=1 � 𝒘

𝒘H �∑ (𝐐𝑘+𝐃𝑘) 𝑑
𝑘=1 � 𝒘 + 𝑑𝜎𝑛2

                                          

         subject to    𝐃ii |𝑤𝑖|2 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥    𝑖 = 1,2, … ,𝑅                                         (34) 

where 𝐃ii is the ith diagonal entry of the matrix and 𝑝𝑥,𝑖
𝑚𝑎𝑥 is the maximum allowable power of the ith 

relay.  

Denoting 𝐗 = 𝒘 𝒘𝐻, 𝐇t = ∑ (𝐐𝑘 + 𝐃𝑘𝑑
𝑘=1 ) and 𝐑t = ∑ 𝐑h

k𝑑
𝑘=1  

,(34) can be reformulated as 

max       tr (𝐑t 𝐗)
 tr (𝐇t 𝐗)+ 𝑑𝜎𝑛2

                                          

subject to    𝐃ii |𝑤𝑖|2 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥    𝑖 = 1,2, … ,𝑅  

rank (𝐗) = 1,𝐗 ≥ 0                                                           (35) 
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We can use IP-based methods to solve the convex form of the non-convex problem (35). For 

example, the CVX [30] as an IP-based software package produces a feasibility certificate for feasible 

problems. In SDR, the solution is not rank-one in general but we can find a bound. To do it, we 

consider the problem (36) 

max       
𝒘H �∑ 𝐑h

k𝑑
𝑘=1 � 𝒘

𝒘H �∑ (𝐐𝑘+𝐃𝑘) 𝑑
𝑘=1 � 𝒘 + 𝑑𝜎𝑛2

   

                       subject to     𝒘H𝐆i𝒘 ≤ 1    𝑖 = 1, 2, … ,𝑅                                        (36) 

where 𝐆i is a matrix which the elements located on the ith diagonal are 𝐃𝑖𝑖
𝑝𝑥,𝑖
𝑚𝑎𝑥

 
and the others are zero.  

As before, considering the above-mentioned assumptions, (36) can be rewritten as: 

max       tr (𝐑t 𝐗)
 tr (𝐇t 𝐗)+ 𝑑𝜎𝑛2

                                         

subject to    tr (𝐆i𝐗) ≤ 1    𝑖 = 1,2, … ,𝑅  

               rank (𝐗) = 1 ,   𝐗 ≥ 0                                                        (37) 

Using the SDP relaxation, we can write: 

max       tr (𝐑t 𝐗)
 tr (𝐇t 𝐗)+ 𝑑𝜎𝑛2

                                          

subject to    tr (𝐆i𝐗) ≤ 1    𝑖 = 1,2, … ,𝑅  

               𝐗 ≥ 0                                                                         (38) 

In order to make an optimal 𝐗∗ ≥ 0, the SDP relaxation can be solved in polynomial time by using 

bisection. In addition 

tr (𝐑t 𝐗∗) = µ∗( tr (𝐇t 𝐗∗) +  𝑑𝜎𝑛2)                                                         (39) 

It is obvious that µ∗ is an upper bound for the problem (36). Here, the nonconvex quadratic 

problem can be changed to: 

max       𝒘H 𝐑t 𝒘− µ∗�𝒘H 𝐇t 𝒘 +  𝑑𝜎𝑛2�  

 

subject  to     𝒘H 𝐆i 𝒘 ≤ 1    𝑖 = 1,2, … ,𝑅                                      (40) 

Now, we can write its SDP relaxation as: 

 max      tr (𝐑t 𝐗)− µ∗( tr (𝐇t 𝐗) +  𝑑𝜎𝑛2)                                                

subject to    tr (𝐆i𝐗) ≤ 1    𝑖 = 1,2, … ,𝑅 

               𝐗 ≥ 0                                                                       (41) 
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It follows that 𝐗∗ ≥ 0

 

is a global optimal solution for (41). By considering a complex Gaussian 

distribution 𝑁(0,𝐗∗) and according to [36], we can find an approximate solution for 𝒘�   in randomized 

polynomial time which satisfies: 

𝒘�𝑯 𝐑t 𝒘�  − µ∗𝒘�𝑯 𝐇t𝒘� ≥ 𝑐 (𝑡𝑟 (𝐑t 𝐗∗)− µ∗ 𝑡𝑟(𝐇t𝐗∗))                                               (42) 

where 𝑐 = Ο((log𝑅)−1)   is a constant. According to (38), we obtain: 

 

𝒘�𝑯 𝐑t 𝒘�  − µ∗𝒘�𝑯 𝐇t𝒘� ≥ 𝑐µ∗ 𝑑𝜎𝑛2                                               (43) 

Indicates that 

𝒘�𝑯 𝐑t 𝒘�  − µ∗𝒘�𝑯 𝐇t𝒘� ≥ 𝑐µ∗ 𝑑𝜎𝑛2 + (1 − 𝑐)µ∗𝒘�𝑯 𝐇t𝒘� ≥ 𝑐µ∗ 𝑑𝜎𝑛2                                   (44) 

where the last step follows from the positive semidefiniteness of 𝐇t. Rearranging the terms, we obtain: 

           
𝒘�𝑯 𝐑t 𝒘�

𝒘�𝑯 𝐇t𝒘�+ 𝑑𝜎𝑛2
 ≥ 𝑐µ∗                                                     (45) 

It indicates that 𝒘�  is an optimal solution of (36) in order c [37]. It means that by using SDP 

relaxation technique, an 𝑐 = Ο((log𝑅)−1) approximation would be found for nonconvex fractional 

quadratic optimization problem (36). 

As mentioned above, the optimization problem for sum-rate maximization considering individual 

relay power constraints can be feasible by using an iterative procedure where a convex feasibility 

problem would be solved in each step. We are looking for a solution with reasonable computational 

complexity instead of solving (35) or (36) directly. More details are available in appendix 1. One 

simple solution is to turn (34) into a low-complex problem. Hence, by ignoring  𝑑𝜎𝑛2  in (34), the 

following problem should be solved: 

max       
𝒘H �∑ 𝐑h

k𝑑
𝑘=1 � 𝒘

𝒘H �∑ (𝐐𝑘+𝐃𝑘) 𝑑
𝑘=1 � 𝒘 

                                          

         subject to    𝐃ii |𝑤𝑖|2 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥    𝑖 = 1,2, … ,𝑅                                         (46) 

Indeed, the objective function of problem (46) is an upper bound for the objective function of 

problem (34) which is globally maximized for 

𝒘 = 𝜂𝝂                                                                            (47) 

where 𝝂 denotes the normalized principal eigenvector of the matrix 𝐇t
−1𝐑t and 𝜂 is any scalar 

parameter [38] which can be chosen as  

𝜂 = 1

��𝐃𝑘,𝑘 |𝜈𝑘|/�𝑝𝑥,𝑘
𝑚𝑎𝑥�

                                                         (48) 
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where 𝜈𝑘 denotes the kth entry of 𝝂 and 

𝑘 = arg max   𝐃𝑖,𝑖   𝝂𝑖
𝟐

𝑝𝑥,𝑖
𝑚𝑎𝑥      1 ≤ 𝑖 ≤ 𝑅

 
                                                 (49) 

Therefore, the global maximum for (47) is the good solution for (46). 

IV. SIMULATION RESULTS 

In this section, the impact of various factors on the performance of the proposed schemes is shown 

for both total power constraint and individual relay power constraints. Also, assume that after solving 

the optimization problem and finding the beamforming weights as well as proper relay powers, 

communication between source-destination pairs through respected relay nodes can be done. 

Beamforming weights and relay powers are fixed up to the end of connection. It means, there is no 

need to further updating the relay powers and do the optimization problem during service time. In 

actual scenario, this case is valid if the source-destination and relay nodes are stationary or quasi-

static. 

     In all simulations, it is assumed that maximum total power consumption at relays is equal to unit 

(𝑝𝑥𝑚𝑎𝑥 = 1). Also, in individual power constrained case, we set the maximum allowable power 

consumption equal to 1
𝑅

 (i.e., 𝑝𝑥,𝑟
𝑚𝑎𝑥 = 1

𝑅
  𝑟 = 1, 2, . . ,𝑅). 

The channel coefficients 𝒇 and 𝒈 are generated as identically independent distribution (i.i.d) 

complex Gaussian random variables with variances  𝜎𝑓2 and 𝜎𝑔2, respectively. It is also assumed that all 

transmitters have equal unit powers. All simulation results are averaged over 500 independent channel 

realizations. All MATLAB simulation codes are run on a PC with RAM=4GB, Processor: Intel (R) 

Core ™ i5-2400 CPU @ 3.1GHz, System Type: 64bit. 

A. Comparison of Sum-Rate Maximization Methods 

In the first experiment, five methods to maximize sum-rate are compared in the case of the two 

pairs of source-destination (d=2) considering 20 relays (R=20) and 𝜎𝑓2 =  𝜎𝑔2 = 10 𝑑𝐵 . As depicted in 

Figure 2, the proposed total power constrained method offers the highest sum-rate with respect to the 

other methods in all SNRs.  

It should be noted that for low SNRs (high noise variances), the performance of total power 

constrained methods (proposed and [24], [25]) is the same and also their values are greater than the 

performance of two others. This gain is due to having more freedom in power allocation in the sum-

power constrained case as relays may transmit at a higher value than the maximum transmit power at a 

relay in the individual power constrained case. This means that extra constraints added by the 

individual power constraints at the relays have little impact on the end-to-end sum-rate performance of  
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Fig 2. Average achieved sum-rate versus noise variance for different relay power constrained  
sum-rate maximization methods. 

 
the proposed algorithms (the relay sum power constraint is replaced by R individual power 

constraints). In contrast, for high SNRs (low noise variances), the performance of the proposed total 

power constrained method is effectively greater than that for [23]-[25].   

In order to have a fair comparison, the energy efficiency versus noise variance for our proposed 

algorithms and schemes in [22], [23], [24] and [25] are plotted in Fig 3. As shown in this figure, our 

proposed algorithms are more energy-efficient than the others. For example, when  σn2 is 0 dB, the 

energy efficiency gap between the proposed algorithms and schemes proposed in [22] , [23] ,[24] and 

[25] is respectively about 1.3 (b/s/Hz/W), 3.2 (b/s/Hz/W) ), 1.1 (b/s/Hz/W) and 1 (b/s/Hz/W), which 

shows about 30%, 70%, 70%, and 22% improvements, respectively. 

In order to have a view on running time, computational complexity of the proposed schemes are 

compared to two algorithms proposed in [23] and [25]. Table II shows this comparison when two pairs 

of source-destination (d=2) communicate with each other through 20 relays (R=20) in the case of 

 𝜎𝑓2 =  𝜎𝑔2 = 10 𝑑𝐵 and  𝜎𝑛2 = 0 𝑑𝐵. 

As it is shown in Table II, the complexity of the proposed algorithms (total and individual relay 

power constraints schemes) are lower than TSTLR and TL algorithms. Considering the simulation 

results of Fig. 2 and Table II, TL algorithm [23] offers lower performance and needs higher running 

time respect to the other algorithms. Therefore, in the next experiments this method is not examined. 
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Fig 3. Energy efficiency versus noise variance for different schemes 

 
Table II. Relative running time of different sum-rate maximization schemes 

Optimization algorithm Relative running time  

(Compared to reference one) 

The proposed scheme 1: Total relay power constraint 1 (reference) 

The proposed scheme 2: Individual relay power constraints 3.34 

TL scheme [23]: Total relay transmit power constraint 705.34 

Scheme [24]: Total relay transmit power constraint 712.59 

TSTLR scheme [25]: Total relay transmit power constraint 693.45 

 

B.  The Effect of the Number of Relays in the Performance of the Proposed Algorithms 

Figure 4 illustrates sum-rate in terms of noise power,  𝜎𝑛2, for different numbers of relays, when 

d=2 and  𝜎𝑓2 =  𝜎𝑔2 = 10 𝑑𝐵 . It is obvious that if the number of relays increases, the achievable sum-

rate will be increased.  

In addition, higher number of relays provides additional higher diversity. It should be mentioned 

that higher number of relays introduces more computational complexity. It is interesting to note that 

although we obtain higher sum-rate for a specific noise variance using higher number of relays, the 

sum-rate improvement for the same difference number of relays are not the same. For example, 

in 𝜎𝑛2 = −10 𝑑𝐵, the sum-rate improvement for higher number of relays is summarized in Table III. 
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Fig 4. Average achieved sum-rate versus noise variance for different number of relays. 

 

Table III. Sum-rate improvement for different number of relays 

Method Sum-rate improvement (b/s/Hz) 

R=20  

compared to R=10 

R=30  

compared to R=20 

Total power constrained 0.8869 0.6314 

Total power constrained, TSTLR [25] 0.8306 0.4701 

Individual relay power constrained 0.4645 0.1949 

 

 

C. The Effect of Channel Quality 

In two following experiments, the effect of the uplink and downlink channel qualities is examined. 

By increasing channel variance or equivalently the quality of channel, average received signal power 

will be increased. It is obvious that when the channel variance (gain) of channel is increased, the 

average received signal power will be increased too. 

In Figure 5, average achievable sum-rate is plotted versus  𝜎𝑛2where R=20, d=2 and  𝜎𝑔2 = 10 𝑑𝐵 

for different values of  𝜎𝑓2 . As shown in this Figure, by increasing 𝜎𝑓2 sum-rate will be increased. In 

the case of R=20, d=2 and  𝜎𝑓2 = 10 𝑑𝐵  for different values of  𝜎𝑔2, the average achieved sum-rate  
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Fig 5. Average achieved sum-rate versus noise variance for different values of  𝜎𝑓2. 

versus  𝜎𝑛2 is depicted in Figure 6. As shown, increasing the quality of downlink or uplink causes 

increasing the achievable sum-rate.   

D. The Effect of Imperfect CSI 

In the next experiment, the effect of imperfect CSI in our proposed algorithm is investigated. We 

assume a network consisting 20 relays (R=20). Also, It is supposed that the channel coefficients 𝑓𝑟𝑝  

and 𝑔𝑟 ,𝑞 are independent from each other for any p, q, r and 𝑟’. Also, we assume that the channel 

coefficient 𝑓𝑟𝑝 can be written as 𝑓𝑟𝑝 = 𝑓�̅�𝑝 + 𝑒𝑓𝑟𝑝  where 𝑓�̅�𝑝 is the known mean value of 𝑓𝑟𝑝 and 𝑒𝑓𝑟𝑝 

is a zero-mean random variable with variance  𝜎𝑒𝑓2  [22]. It is assumed that 𝑒𝑓𝑟𝑝 and 𝑒𝑓𝑟,𝑝 are 

independent for any 𝑟 ≠ 𝑟’. We generate 𝑓�̅�𝑝 = �1 −  𝜎𝑒𝑓2  𝑒𝑗𝜃, where 𝜃 is uniformly distributed in the 

interval [ ]π2,0 . Since  𝐸 ��𝑓𝑟𝑝�
2� = 1, by increasing  𝜎𝑒𝑓2  ,  the mean value, 𝑓�̅�𝑝 will be decreased. It 

means that the uncertainty in the channel coefficient 𝑓𝑟𝑝 is increased. Similarly, we model the channel 

coefficient 𝑔𝑟𝑞 as 𝑔𝑟𝑞 = �̅�𝑟𝑞 + 𝑒𝑔𝑟𝑞 where �̅�𝑟𝑞 is the known mean value of 𝑔𝑟𝑞and 𝑒𝑔𝑟𝑞 is  a zero-

mean random variable with variance  𝜎𝑒𝑔2 . It is assumed that 𝑒𝑔𝑟𝑞 and 𝑒𝑔𝑟 ,𝑞 are independent for any 

𝑟 ≠ 𝑟’. We consider �̅�𝑟𝑞 = �1 −  𝜎𝑒𝑔2  𝑒𝑗𝛼, where 𝛼 is a uniformly distributed random variable belong 

to the interval [ ]π2,0 . Here,  𝜎𝑒𝑔2  shows the level of uncertainty in the channel coefficient,  𝑔𝑟𝑞. Based 

on this channel modeling, we can write the (𝑟, 𝑟’) entry matrices as: 
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 Fig 6. Average achieved sum-rate versus noise variance for different values of  𝜎𝑔2. 

 

𝐑𝑓
𝑝 = 𝒇�  𝒇�𝐻 +  𝜎𝑒𝑓2 𝐈                                                                 (49) 

  𝐑𝑔
𝑝 = 𝒈� 𝒈�𝐻 +  𝜎𝑒𝑔2 𝐈                                                                (50) 

𝐑ℎ
𝑘(𝑟, 𝑟 ,) = 𝑝𝑘𝐑𝑓𝑘(𝑟, 𝑟 ,).𝐑𝑔𝑘(𝑟, 𝑟 ,)                                                       (51) 

    𝐐𝑘(𝑟, 𝑟 ,) = ∑ 𝑝𝑝𝐑𝑓
𝑝(𝑟, 𝑟 ,).𝐑𝑔𝑘(𝑟, 𝑟 ,) 𝑑

1,𝑘≠𝑝                                                 (52) 
 

In this experiment, we choose the source power equal to 0dB. The average sum-rate versus  𝜎𝑛2 is 

plotted in the case of R=20 and d=2 for different values of   𝜎𝑒𝑓2  and  𝜎𝑒𝑔2  in Figure 7. This figure 

shows that increasing the uncertainty of the channels,  𝜎𝑒𝑓2  and  𝜎𝑒𝑔2 , is the reason for decreasing the 

achievable sum-rate. 

 

V. CONCLUSION 

In this investigation, the problem of distributed beamforming in a network consisting of two pairs 

of transmitter-receiver and R relay nodes was solved by maximizing the achievable sum-rate subject to 

constraints on total and individual relay powers. Herein, we found a closed-form solution for the 

optimization problem with the total power constraint and showed that the problem with individual 

relay power constraints is a quadratic programming optimization problem which does not have a 

closed-form solution. We developed and presented a low-complex simplified suboptimal technique for 

solving the optimization problem including individual relay power constraints. 
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Fig 7. Average achieved sum-rate versus noise variance for imperfect CSI. 

 

Simulation results showed that increasing the number of relays and the quality of uplink and 

downlink channels, and also decreasing the uncertainty of channels is the reason for increasing the 

achievable sum-rate. Although higher sum-rate can be achievable in total relay transmit power 

constraint scenario, the power consumption in different relays are approximately equal for individual 

relay power constraints scenario. It means that the received signals at destinations have the same 

quality which offers a higher diversity gain. In contrast, in total relay transmit power constraint 

scenario, meanwhile the summation of relay powers is lower than a predefined value some relays may 

consume very high or very low powers. Therefore, in this case, proper diversity cannot be accessed 

because some paths may experience very high or very low gains. 

As the future works, sum-rate maximization problem considering multi-antenna nodes (source-

destination pairs as well as relays), total and individual relay power constraints in a joint state can be 

investigated. Developing new methods to solve counterpart problem when destination nodes are 

mobile is the next problem. Finally, optimal relay node placement, in such a way that the achievable 

sum-rate is maximized may lead to finding the optimal number of relay nodes and achieving the best 

way to clustering the relay nodes. 

APPENDX  

Solving the optimization problem (34) is as the following procedure: 
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Let 𝐗 = 𝒘𝒘H. We can write: 

                                                       

 

max       tr (𝐑t 𝐗)
 tr (𝐇t 𝐗)+ 𝑑𝜎𝑛2

   

subject to    𝐃ii 𝐗𝐢𝐢 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥    𝑖 = 1,2, … ,𝑅                                (A-1) 

rank (𝐗) = 1 , 𝐗 ≥ 0  

   

 

or similarly, as follows [39]: 

                                              

 

max       𝑡    

subject to     tr � 𝐗(𝐑t − 𝑡𝐇t )� ≥ 𝑡 𝑑𝜎𝑛2                                     (A-2)

     𝐃ii 𝐗𝐢𝐢 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥     𝑖 = 1,2, … ,𝑅   

rank (𝐗) = 1  ,𝐗 ≥ 0   

This optimization problem is non-convex and may not be solved by a computationally efficient 

solution. In order to use semi definite relaxation technique, the optimization problem (A-2) can be 

changed to the problem (A-3) by ignoring rank constraint: 

                                                 

 

max       𝑡    

subject to     tr � 𝐗(𝐑t − 𝑡𝐇t )� ≥ 𝑡 𝑑𝜎𝑛2                                      (A-3) 

                                          𝐃ii 𝐗𝐢𝐢 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥     𝑖 = 1,2, … ,𝑅   

 𝐗 ≥ 0   

 

As expected, the matrix 𝐗∗ obtained by solving the problem (A1-3) may be rank one or not. If 𝐗∗ is 

rank one, its solution is the optimal solution for (A-2). 
It should be noted that the above-mentioned optimization problem is quasi-convex. It means that 

the feasible set for any t is convex. Supposing that 𝑡𝑚𝑎𝑥 is the maximum value for problem (A1-3), if 

the convex feasibility problem [35] (A-4) is feasible (for any given t), then we have  𝑡𝑚𝑎𝑥 ≥ 𝑡. : 

                                           

find       𝐗    

subject to     tr � 𝐗(𝐑t − 𝑡𝐇t )� ≥ 𝑡 𝑑𝜎𝑛2                                           (A-4) 

    𝐃ii 𝐗𝐢𝐢 ≤ 𝑝𝑥,𝑖
𝑚𝑎𝑥     𝑖 = 1,2, … ,𝑅   

 𝐗 ≥ 0  
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In contrast, if the problem (A-4) is not feasible, 𝑡𝑚𝑎𝑥 < 𝑡. Therefore, we can find  𝑡𝑚𝑎𝑥 of problem 

(A-3) by solving the problem (A-4). Hence, a simple algorithm can be used to solve the quasi-convex 

optimization problem (A-3) at each step by using bisection technique. 

Assuming the problem is feasible and starting with an interval [𝑙 ,𝑢] known to contain the optimal 

value  𝑡𝑚𝑎𝑥, we solve the problem at its midpoint 𝑡 = (𝑙 + 𝑢)/2, to check that the optimal value is 

upper or lower than 𝑡. The interval will be updated accordingly to find a new interval. We set 𝑙 = 𝑡 for 

feasible case and 𝑢 = 𝑡  for non-feasible case and solve the problem (A-4) again. 

It is clear that this approach takes more time with respect to two proposed schemes in this research. 

Thus, we propose to formulate three new design problems that have exactly the same constraints with 

sum-rate maximization problems but with better-behaved objective functions to find more-efficient 

solutions for maximizing sum-rate.   
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