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Abstract –During pandemics and epidemics, healthcare systems may respond quickly to massive increases in 
demand by establishing surge capacity in facilities. However, adding new resources may not be the most 
effective approach. Given the inherent uncertainty of demand during pandemics, this paper develops a 
stochastic optimization model designed to improve the allocation and sharing of critical resources. The 
objective is to enhance the responsiveness of healthcare systems to substantial surges in demand during 
pandemics. The model integrates warehouse selections for vendor-managed inventory (VMI), inventory 
policies, and delivery decisions to investigate a healthcare supply network configuration problem. This 
problem considers multiple sourcing, various products, multiple periods, and lateral transshipment. 
Numerical experiments are conducted to verify the advantage of the proposed stochastic model, which, 
despite its higher overall cost, demonstrates its superiority over the deterministic approach. The results 
further indicate that resource sharing can significantly improve the resilience of healthcare systems and 
enhance patients' access to care during pandemics. 
 
Keywords– Epidemics/pandemics, Healthcare supply chain, Resource sharing, Stochastic programming, 
vendor-managed inventory. 

I. INTRODUCTION 
A pandemic is the global spread of an infectious disease that affects a significant portion of the world's population. 

Throughout human history, we have experienced several catastrophic pandemics, with the Black Death and the 1918-
1919 flu pandemic being the most devastating. The Black Death, which ravaged Europe, Africa, and Asia from 1346 to 
1353 and is believed to have been caused by the plague, is estimated to have killed 75 to 200 million people. Similarly, 
the 1918-1919 influenza pandemic, often referred to as the “Spanish flu,” also caused the deaths of approximately 20 to 
40 million people (MPHonLine, 2020). 

The most recent significant global outbreak is Coronavirus Disease 2019 (COVID-19), officially declared a 
pandemic by the World Health Organization on March 11, 2020. Since its emergence in China, this pandemic has 
infected over 670 million individuals worldwide and has tragically resulted in more than 6.5 million deaths (Johns 
Hopkins Coronavirus Resource Center, 2020). The main challenge posed by the COVID-19 outbreak has been a 
significant increase in demand for vital medical resources, including personal protective equipment (PPE), medicines, 
and ventilators (Barrett et al., 2020; Li et al., 2020; Paul & Chowdhury, 2021; Remko, 2020). This surge led to a global 
shortage of healthcare resources (Chamola et al., 2020; Grimm, 2021; Litton et al., 2021; Sen-Crowe et al., 2021; 
Winkelmann et al., 2022). Therefore, suppliers face a great challenge in efficiently delivering these resources to demand sites. 

Inspired by this insight, this paper aims to design an efficient healthcare supply chain network. To minimize 
transportation costs and improve the level of service, the supplier selects specific locations for the construction of 
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warehouses for storing critical resources. These selected warehouses are then strategically allocated to surrounding 
demand locations, with the supplier retaining control over the management of the products stored within them. This 
approach involves implementing a vendor-managed inventory (VMI) strategy. Delivery of products to demand 
locations is facilitated through direct shipment services. The complexity of the task lies in simultaneously determining 
VMI storage locations within the healthcare system, assigning demand locations, creating inventory policies, and 
developing a resource distribution plan. The overarching goal is to minimize costs while effectively meeting demand 
requirements. 

Within a network of facilities, like medical centers, one effective strategy for enhancing performance is 
transshipment. Lateral transshipment involves the transfer of stocks between locations within the same tier of an 
inventory system. Essentially, this method involves redistributing inventory across the network to bring about balance. 
In essence, transshipment can be an effective means to align the existing disparity between the current or future demand 
and the inventory of products among demand sites. Furthermore, transshipment enhances demand sites' ability to 
address shortages more efficiently by utilizing nearby sites' stocks. Thus, in our problem, we consider mutual regions 
that can share a portion of their in-hand inventory with nearby demand sites in emergencies. 

The problem involves integrating strategic, tactical, and operational decisions within the healthcare network. At the 
strategic level, the decision involves determining the optimal quantity and location for warehouses, as well as assigning 
demand sites to these warehouses. Poor decisions in warehouse locations can lead to service deficiencies and increased 
overall expenses. Furthermore, the allocation of each demand site directly impacts shipping costs. 

Once established, the VMI warehouse plays a central role in stocking and delivering products to assigned locations. 
Therefore, the tactical challenge is to determine the appropriate inventory level while complying with the VMI policy. 
Excessive inventory increases storage costs and can exceed warehouse capacity, while insufficient inventory can lead to 
product shortages. The ideal inventory level is affected by various factors, including storage locations, requirements of 
the locations served, storage costs, delivery costs, and storage capacity. This tactical decision issue is intertwined with 
the strategic challenge, necessitating the supplier to consider VMI warehouse location and inventory decision 
simultaneously. The operational one involves the periodic distribution of critical resources to demand sites. 

To model this context, considering inherent demand uncertainty during a pandemic, a two-stage healthcare supply 
chain network model is adopted. 

The main contributions of this paper are summarized as follows: First, a resilient healthcare supply chain in the 
response phase of a pandemic is introduced. Second, a decision framework is proposed for optimizing facility location 
decisions in conjunction with VMI strategy, warehouse size, inventory management, lateral transshipment, and resource 
distribution plans within the healthcare supply chain network. This paper also considers some features including 
managing multiple products as well as addressing wastage and shortage. Third, a two-stage stochastic programming 
approach is applied to adapt to the uncertain demand inherent in pandemic scenarios. 

The remainder of this paper is structured as follows. Section 2 provides a review of related literature on healthcare 
supply chain network design in the epidemic/pandemic context. In Section 3,  a modeling framework is described, and 
the mathematical formulation of the two-stage stochastic programming model is presented. In Section 4, numerical 
experiments are conducted. Finally, in section 5, we concluded the paper concludes. 

II. LITERATURE REVIEW 
Optimal distribution of resources is of paramount importance in various sectors, particularly in disease control and 

disaster relief, where resources are often limited (Cao & Huang, 2012; Gupta et al., 2016; Khadem et al., 2021; 
Mohammadi et al., 2021). The urgency of this matter has been highlighted during the COVID-19 pandemic when 
critical resources such as personal protective equipment (PPE), testing kits, hospital beds, ventilators, and vaccines 
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require strategic allocation at all levels (Emanuel et al., 2020). To address the need for optimized ventilator allocation, 
Bertsimas et al. (2021) developed a deterministic optimization model. Their approach facilitates the sharing of 
ventilators between hospitals in different US states. Lampariello & Sagratella (2021) addressed a single-period 
allocation problem for COVID-19 test kits to optimize utility functions related to disease detection capabilities in 
various geographical areas. Santini (2021) examined the effective distribution of swabs and reagents to laboratories to 
maximize the volume of COVID-19 tests performed. This challenge was addressed by creating a deterministic integer 
programming model that involves sharing swabs and reagents between different laboratories over an extended planning 
horizon. By focusing attention on the distribution of personal protective equipment, particularly surgical and respiratory 
masks, in health centers struggling with extremely low supplies, Dönmez et al. (2022) developed a multi-period, multi-
objective, non-linear resource allocation model. Their goal was to reduce the deprivation costs associated with shortages 
while minimizing infections among patients and healthcare workers. 

In dealing with uncertain demand, Mehrotra et al. (2020) used stochastic programming methods and generated 
various scenarios to represent unpredictable patient numbers resulting from the uncertain spread of the disease. The 
objective was to redistribute and share medical resources between different hospitals. Yin et al. (2023) extended the 
approach to a multi-stage stochastic programming model that incorporated evolving transmission dynamics and took 
into account risk-averse considerations. It is important to note that these studies focused on resource allocation and 
redistribution among established facilities in specific regions and ignored the decision-making process regarding facility 
locations and associated capacities. Liu et al. (2023) addressed the problem of locating testing facilities to meet the 
fluctuating demand for test kits during pandemics. The introduced optimization framework was divided into two 
phases: the first phase involved pre-positioning strategies to meet predetermined fill rate requirements, and the second 
phase involved dynamically adapting capacity to changing demand. Meanwhile, Li et al. (2023) examined a mask 
production planning issue associated with uncertain demand during the COVID-19 pandemic. This problem involved 
assembly line balancing and capacitive lot sizing, which were addressed through a two-stage stochastic model from a 
risk-averse perspective. Fattahi et al. (2023) studied resource planning strategies to enhance healthcare system 
responses during epidemics and pandemics. They aimed to optimize access to patient care without extensive capacity 
expansion within pandemic time constraints by targeting different patient types and resources. The research employed a 
multi-stage stochastic program and an agent-based stochastic model to simulate uncertain parameters, providing a data-
driven rolling horizon procedure for real-time decision-making. Vahdani et al. (2023) considered two consumable and 
reusable products to address the problem of multi-period production-inventory-sharing to reduce medical product 
shortages. They suggested a customized compartmental susceptible-exposed-infectious-hospitalized-recovered-
susceptible (SEIHRS) epidemiological model with a control policy, which included an element considering the impact 
of people's behavioral responses to their awareness of appropriate precautions. The model was solved by an accelerated 
Benders decomposition-based algorithm with customized valid inequalities. Ultimately, the COVID-19 pandemic in 
France was taken into consideration as a realistic case study to assess the decomposition method's computational ability. 
In the aftermath of the COVID-19 pandemic, Alizadeh et al. (2024) presented a scenario-based two-stage stochastic 
programming model for designing a green closed-loop supply chain network. The uncertainty of greenhouse gas 
emissions was addressed in various possible scenarios. Using an accelerated Benders decomposition algorithm, the 
researchers solved the mathematical model across multiple dimensions and then analyzed and evaluated the results in 
different scenarios. Kiss & Elhedhli (2024) explored a resource pooling problem and proposed a strategy to increase 
capacity by acquiring distribution and warehousing capacity from private transport companies in exchange for 
compensation. They presented a model for capacity procurement and PPE distribution planning assuming sufficient 
supply to efficiently secure storage and distribution capacity from external sources and meet demand. For scenarios of 
inadequate supply, they developed a priority-based model that took the severity of the pandemic into account. To 
address the uncertain demand, they used a two-stage stochastic programming approach with recourse and solved the 
problem using Benders decomposition and sample average approximation techniques. 

Adopting a robust optimization approach, Manupati et al. (2021) focused on establishing convalescent plasma bank 
facilities dedicated to the treatment of COVID-19. The main objective was to identify the most effective locations for 
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plasma banks and strategically allocate plasma collection facilities to ensure optimized plasma flow while minimizing 
losses due to plasma perishability. To achieve this, they developed a robust mixed-integer linear programming (MILP) 
model that optimized both the total supply chain costs and the transportation time of plasma while taking storage costs 
into account to reduce waste. Baloch et al. (2022) shifted their focus to optimizing underutilized distribution networks 
to improve government delivery networks for critical healthcare resources. The research addressed dynamic distribution 
planning, including repurposing storage facilities, demand distribution, and timely distribution of PPE across 
jurisdictions. The goal was to maximize demand fulfillment while optimizing economic value for participating 
networks. To deal with supply uncertainty, they used a robust framework that provided a mixed-integer programming 
formulation for the adversarial problem. Shang et al. (2022) addressed a supply network configuration issue influenced 
by a real-world scenario in the healthcare supply sector. Their research incorporated optimization of warehouse 
location, inventory, and delivery routing, with a focus on vendor-managed inventory. Basciftci et al. (2023) presented a 
moment-based distributionally robust optimization approach to address uncertainty in disease transmission while 
identifying optimal locations for distribution centers as well as their capacities, shipping volumes, and inventory levels. 
Their study included numerical experiments that analyzed the distribution of COVID-19 vaccines in the United States 
and testing kits in Michigan under various possible scenarios. 

This study relates to the field of facility location under uncertain conditions. When there is knowledge or accurate 
estimation of the distribution of uncertain parameters, facility location problems are often presented as stochastic 
programs, aiming to optimize expected total costs in a risk-neutral context (Dönmez et al., 2021; Govindan et al., 2017; 
Kundu et al., 2022). However, in certain situations, like the one examined in this study, it is necessary to incorporate 
operational decisions into this strategic-level issue. This research expands upon this area by addressing decisions related 
to facility location and capacity, taking into account factors like inventory, shipments, and unmet demand, all within a 
two-stage stochastic programming framework. While prior studies have addressed uncertain demand in facility 
planning, a comprehensive decision framework for optimizing facility location decisions in conjunction with VMI 
strategy, multi-period capacity allocation, inventory management, lateral transshipment, and resource distribution plans 
within a healthcare supply chain network that handles multiple product types has not been considered. Thus, this paper 
contributes to the facility location literature by addressing this complex setting through a two-stage stochastic 
optimization approach. Table I presents a summary of the reviewed related references to give a clear overview of the 
innovations presented in this paper. 

Table I. Classification of the relevant papers. 

References Modeling method VMI Product Decisions  
L  I D T 

Mehrotra et al. (2020) Two-stage SP  Single      
Bertsimas et al. (2021) Deterministic   Single     
Lampariello and Sagratella (2021) Deterministic  Single     
Manupati et al. (2021) RO  Single     
Santini (2021) Deterministic  Single     
Baloch et al. (2022) RO  Single     
Dönmez et al. (2022) Deterministic  Single     
Shang et al. (2022) RO  Multi     
Basciftci et al. (2023) RO  Single     
Fattahi et al. (2023) Multi-stage SP  -     
Vahdani et al. (2023) SEIHRS model  Multi     
Liu et al. (2023) Two-stage SP  Single     
Yin et al. (2023) Multi-stage SP  Single - - - - 
Li et al. (2023) Two-stage SP  Single     
Alizadeh et al. (2024) Two-stage SP  Multi     
Kiss and Elhedhli (2024) Two-stage SP  Single     
This paper  Two-stage SP  Multi      

L: Location; I: Inventory; D: Distribution; T: Transshipment.  
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III. PROBLEM DEFINITION AND MODEL FORMULATION   

A. Problem description  
In a pandemic response phase, a two-echelon healthcare supply chain is considered, comprising VMI warehouses 

and medical centers. The supplier provides a variety of medical products for open VMI warehouses. Medical centers are 
assigned to specific open VMI warehouses, and emergency demands are fulfilled by their respective assigned 
warehouse. To address critical resource shortages during a pandemic, this paper also incorporates lateral transshipment, 
allowing demand sites to share emergency supplies from their inventories with other demand sites in the network. The 
planning horizon spans multiple periods. When an order is received, products are shipped directly to the demand sites. It 
is important to note that this is a multi-sourcing supply chain, meaning that a demand site can receive emergency 
supplies from one or more VMI warehouses within its coverage radius. 

Decisions are made in two stages. The first stage focuses on selecting VMI warehouse locations, determining their 
size, assigning each medical center to a VMI warehouse, and establishing order quantities. In the second stage, with the 
revelation of pandemic information, the decision-maker devises the daily distribution plan of critical resources to 
medical centers. In addition, the transshipment flow between medical centers is made to optimize the matching of 
resource supply and demand throughout the healthcare supply chain network. The objective is to minimize the total 
cost, encompassing both the first and second stages of the healthcare supply chain network within a specified planning 
horizon. 

B. Problem assumption and notation 
The modeling is based on the following assumptions: 

− A maximum service distance (𝛽𝛽) is set to ensure that all demand sites have an equal chance of receiving prompt 
service. Responsive service regions are denoted by the variable ϕ𝑖𝑖. 

− Facilities are selected with appropriate initial capacity in the first period and are not destroyed later. 
− The supplier has enough capacity to manufacture the products. 
− The demand for products in each period is stochastic.  
− The shortage of products in demand sites is permissible, which is reflected by unsatisfied demand. 
− Demand sites with excess inventory may transfer the additional portion to demand sites with additional needs. 
− Multi-sourcing is allowed; the demand site can receive products from one or more VMI warehouses within its 

coverage radius. 
 

The sets, the parameters, and the decision variables used in the model are given below. 

Table II. Sets and indices for the healthcare supply chain network problem. 

Notation Definition 

I The set of demand sites, indexed by 𝑖𝑖,ℎ ∈ 𝐼𝐼 ≔  {1,2, … , 𝐼𝐼}. 

J The set of candidate VMI warehouses sites, indexed by 𝑗𝑗 ∈ 𝐽𝐽 ∶= {1,2, … , 𝐽𝐽}. 

K The set of VMI warehouses sizes, indexed by 𝑘𝑘 ∈ 𝐾𝐾 ∶= {1,2, … ,𝐾𝐾}. 

M The set of critical medical product types, indexed by 𝑚𝑚 ∈ 𝑀𝑀 ∶= {1,2, … ,𝑀𝑀}. 

T The set of time periods, indexed by 𝑡𝑡 ∈ 𝑇𝑇 ∶=  {1,2, … ,𝑇𝑇}. 

S The set of scenarios, indexed by 𝑠𝑠 ∈ 𝑆𝑆 ∶=  {1,2, … , 𝑆𝑆}. 
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Table III. Input parameters for the healthcare supply chain network problem. 

Notation Definition 

𝐹𝐹𝑘𝑘 The fixed cost to open a VMI warehouse with capacity level 𝑘𝑘. 

𝐶𝐶𝑚𝑚 Unit ordering cost for a resource of type 𝑚𝑚. 

𝐶𝐶𝐶𝐶𝑝𝑝𝑘𝑘 The storage capacity of a VMI warehouse in size 𝑘𝑘. 

𝑑𝑑𝑗𝑗𝑖𝑖 The transportation distance between demand site 𝑖𝑖 and VMI warehouse 𝑗𝑗. 

β A maximum acceptable service distance, is defined as the maximum transportation distance that a VMI 
warehouse can serve a demand site. 

ϕ𝑖𝑖 The set of potential VMI warehouse 𝑗𝑗 capable of covering demand site 𝑖𝑖, i.e., ϕ𝑖𝑖 = {𝑗𝑗 ∈ 𝐽𝐽|𝑑𝑑𝑗𝑗𝑖𝑖 ≤ β}. 

𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚 Unit transportation cost of the resource 𝑚𝑚 from VMI warehouse 𝑗𝑗 to demand site 𝑖𝑖. 

𝑇𝑇𝐶𝐶𝑖𝑖ℎ𝑚𝑚 Unit transshipment cost of the resource 𝑚𝑚 from demand site 𝑖𝑖 to demand site ℎ. 

𝐼𝐼𝑖𝑖𝑚𝑚0  The initial inventory of resource 𝑚𝑚 at demand site 𝑖𝑖. 

𝑃𝑃𝑠𝑠 Likelihood of occurrence of scenario 𝑠𝑠. 

ξ𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  The quantity of demand for resource 𝑚𝑚 at demand site 𝑖𝑖 under scenario 𝑠𝑠. 

π The unit deprivation cost of the resource. 

ℎ The unit holding cost of the resource. 

Table IV. Decision variables for the healthcare supply chain network problem. 

Notation Definition 

The first stage  

𝑦𝑦𝑗𝑗𝑘𝑘 ∈ {0,1} 1 if a VMI warehouse with capacity level 𝑘𝑘 is opened; 0 otherwise. 

𝑞𝑞𝑗𝑗𝑚𝑚𝑖𝑖 The delivery quantity of resource 𝑚𝑚 for VMI warehouse 𝑗𝑗 during period 𝑡𝑡. 

The second stage   

𝑧𝑧𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  The quantity of resource 𝑚𝑚 transported from VMI warehouse 𝑗𝑗 to demand site 𝑖𝑖 in period 𝑡𝑡 under 
scenario 𝑠𝑠. 

𝑥𝑥𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝑠𝑠  The transshipment amount of resource 𝑚𝑚 from demand site 𝑖𝑖 to demand site ℎ in period 𝑡𝑡 under 
scenario 𝑠𝑠. 

𝐵𝐵𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  The shortage amount of resource 𝑚𝑚 at demand site 𝑖𝑖 in period 𝑡𝑡 under scenario 𝑠𝑠. 

𝐼𝐼𝑚𝑚𝑖𝑖𝑖𝑖𝑠𝑠  The on-hand inventory of resource 𝑚𝑚 at demand site 𝑖𝑖 in period 𝑡𝑡 under scenario 𝑠𝑠. 

C. Two-stage stochastic programming model 
Let 𝛏𝛏 be the vector of uncertain demand and 𝑃𝑃 denotes its probability distribution. We consider a finite set S of 

realizations of the random vector 𝛏𝛏. More specifically, for each scenario 𝑠𝑠 ∈ 𝑆𝑆, we denote the demand realization of 
resource 𝑚𝑚 at demand site 𝑖𝑖 in period 𝑡𝑡 as ξ𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  for all 𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝐼𝐼, and 𝑡𝑡 ∈ 𝑇𝑇. Therefore, 𝛏𝛏 = [ξ𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑖𝑖 ∈ 𝐼𝐼,𝑚𝑚 ∈
𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇]T. Note that this paper uses bold letters to represent vectors and matrices.  

Using the notations, the following two-stage SP model is formulated: 

min
𝑦𝑦,𝑞𝑞

���𝐹𝐹𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

+ � ��𝐶𝐶𝑚𝑚
𝑖𝑖∈𝑇𝑇𝑗𝑗∈𝐽𝐽𝑚𝑚∈𝑀𝑀

𝑞𝑞𝑗𝑗𝑚𝑚𝑖𝑖 + 𝐸𝐸[𝒬𝒬(𝑦𝑦, 𝑞𝑞, ξ𝑠𝑠)]� (1) 
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S.t: 

�𝑦𝑦𝑗𝑗𝑘𝑘
𝑘𝑘∈𝐾𝐾

≤ 1 ∀𝑗𝑗 ∈ 𝐽𝐽 (2) 

� �𝑦𝑦𝑗𝑗𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑗𝑗∈ϕ𝑖𝑖

≥ 1 ∀𝑖𝑖 ∈ 𝐼𝐼 (3) 

� 𝑞𝑞𝑗𝑗𝑚𝑚𝑖𝑖
𝑚𝑚∈𝑀𝑀

≤ �𝐶𝐶𝐶𝐶𝑝𝑝𝑘𝑘
𝑘𝑘∈𝐾𝐾

𝑦𝑦𝑗𝑗𝑘𝑘 ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇 (4) 

𝑞𝑞𝑗𝑗𝑚𝑚𝑖𝑖 ≥ 0  ∀𝑗𝑗 ∈ 𝐽𝐽;𝑚𝑚 ∈ 𝑀𝑀; 𝑡𝑡 ∈ 𝑇𝑇 (5) 

𝑦𝑦𝑗𝑗𝑘𝑘 ∈ {0,1},  ∀𝑗𝑗 ∈ 𝐽𝐽; 𝑘𝑘 ∈ 𝐾𝐾 (6) 

Where  

𝒬𝒬(𝑦𝑦, 𝑞𝑞, ξ𝑠𝑠) = 
 

 min
𝑧𝑧,𝑥𝑥,𝐼𝐼,𝐵𝐵

�𝑃𝑃𝑠𝑠
𝑠𝑠∈𝑆𝑆

��� � �𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚
𝑖𝑖∈𝑇𝑇𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝐼𝐼𝑗𝑗∈𝐽𝐽

𝑧𝑧𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 + � � � �𝑇𝑇𝐶𝐶𝑖𝑖ℎ𝑚𝑚
𝑖𝑖∈𝑇𝑇𝑚𝑚∈𝑀𝑀ℎ∈𝐼𝐼∖{𝑖𝑖}𝑖𝑖∈𝐼𝐼

𝑥𝑥𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝑠𝑠 + � � �π𝐵𝐵𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

𝑖𝑖∈𝑇𝑇𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝐼𝐼

+ � � �ℎ
𝑖𝑖∈𝑇𝑇

𝐼𝐼𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝐼𝐼

� 

 

(7) 

𝑞𝑞𝑗𝑗𝑚𝑚𝑖𝑖 ≥�𝑧𝑧𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

𝑖𝑖∈𝐼𝐼

 ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑚𝑚 ∈ 𝑀𝑀,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆 (8) 

𝐼𝐼𝑖𝑖𝑚𝑚0 + � 𝑧𝑧𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

𝑗𝑗∈ϕ𝑖𝑖

+ � 𝑥𝑥ℎ𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠

ℎ∈𝐼𝐼∖{𝑖𝑖}

+ 𝐵𝐵𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 − 𝐼𝐼𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 − � 𝑥𝑥𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝑠𝑠

ℎ∈𝐼𝐼∖{𝑖𝑖}

= ξ𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠  ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑚𝑚 ∈ 𝑀𝑀,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆 (9) 

𝑥𝑥𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝑠𝑠 , 𝑧𝑧𝑗𝑗𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ,𝐵𝐵𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 , 𝐼𝐼𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ≥ 0  ∀𝑚𝑚 ∈ 𝑀𝑀; 𝑗𝑗 ∈ 𝐽𝐽; 𝑖𝑖,ℎ ∈ 𝐼𝐼&𝑖𝑖 ≠ ℎ; 𝑡𝑡 ∈ 𝑇𝑇; 𝑠𝑠 ∈ 𝑆𝑆 (10) 

 
Here, 𝐸𝐸 is the expected value operator. Given the first-stage decisions (𝐲𝐲,𝐪𝐪) and the random input data vector ξ𝑠𝑠, 

𝒬𝒬(𝑦𝑦, 𝑞𝑞, ξ𝑠𝑠) represents the random optimal value of the second stage objective value. In the first stage, the “here-and-
now” decisions (𝐲𝐲,𝐪𝐪) are made before the stochastic parameters ξ� are realized. As captured in Equation (1), the 
objective function is to minimize the total cost, including the VMI warehouse opening cost and the ordering cost. 
Constraint (2) guarantee that at most one type of VMI warehouse can be built at each candidate location site. Constraint 
(3) ensure that each demand site can be served by at least one VMI warehouse within the coverage radius. Constraint 
(4) serve a dual purpose: restricting the resource delivered to VMI warehouse 𝑗𝑗 from exceeding its storage capacity, and 
mandating that resource ordering occurs only if a candidate site is selected as a VMI warehouse. 

In the second stage, once the stochastic parameters ξ� are realized, the “wait-and-see” decisions (𝐱𝐱, 𝐳𝐳,𝐁𝐁, 𝐈𝐈) are made. 
In the formulation model, these scenario-specific decisions are represented by the superscript 𝑠𝑠 ∈ 𝑆𝑆. Constraint (7) aims 
to minimize the total transportation cost from the VMI warehouses to the demand sites, along with the transshipment 
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cost between demand sites, penalty costs for unsatisfied demand, and holding costs. Constraint (8) establishes links 
between the first-stage variables and the second-stage recourse decisions, ensuring that the total resource transportation 
volume for each scenario remains below the total inventory in the opened VMI warehouse. Constraint (9) represents 
flow-balance constraints to reflect the changes in inventory and shortage levels, based on the quantity of resources 
received and the demand level at each site 𝑖𝑖, for each period 𝑡𝑡 in each scenario 𝑠𝑠. Finally, Constraints (5), (6) and (10) 
define the domain of first-stage and second-stage decision variables, respectively. 

IV. NUMERICAL EXPERIMENTS 
To demonstrate the performance of the proposed model, we conduct numerical experiments using a small-sized 

example. These experiments are carried out by the GAMS 24.1.2 software on a personal computer (Lenovo with 
Intel(R) Core (TM) i5-9300H 2.40 GHz CPU and 16.0 GB RAM), running on the Microsoft Windows 10 operating 
system. 

The network comprises 11 demand sites and 16 candidate VMI warehouses, as depicted in Fig. (1). In the next step, 
the sensitivity of the deterministic model is analyzed and the experiments are conducted on the two-stage stochastic 
model within the framework of a pandemic environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An illustration of a small-sized example network. 

A. Model analysis 
To conduct the experiments, the basic input data have been provided as follows. The distances between the VMI 

warehouses and demand sites �𝑑𝑑𝑗𝑗𝑖𝑖� have been detailed in Table V, and the distances between demand sites (𝑑𝑑𝑖𝑖ℎ) can be 
found in Table VI, respectively. We specify the maximum acceptable service distance (𝛽𝛽) to 512 kilometers. Three 
levels of VMI warehouse have been utilized, i.e., |𝐾𝐾| =  3. Table VII presents the fixed costs (𝐹𝐹𝑘𝑘) and storage 
capacities (𝐶𝐶𝐶𝐶𝑝𝑝𝑘𝑘) associated with each warehouse category. Three types of medical products have been considered, i.e., 
|𝑀𝑀| =  3. Table VIII displays the unit ordering cost (𝐶𝐶𝑚𝑚) and unit transportation cost �𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚� for each medical product 
from the VMI warehouse to the demand site. To account for uncertain demands (𝜉𝜉𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠 ), three scenarios have been 
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considered, i.e.,  |𝑆𝑆| =  3 for the discrete probability distribution, as listed in Table IX. The unit holding cost (ℎ) and 
the unit deprivation cost (𝜋𝜋)have been assumed to be 25 and 100, respectively. 

Table V. Distance of VMI warehouses and demand sites. 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 

D1 861 928 647 1,042 326 1,232 260 615 639 713 378 680 696 268 1,061 222 

D2 534 559 445 702 400 901 201 473 274 474 34 576 357 116 702 213 

D3 930 682 482 271 872 246 1,025 555 607 404 847 572 484 933 398 889 

D4 697 526 168 350 526 515 646 267 286 98 473 349 165 552 426 509 

D5 705 698 368 752 224 939 275 361 378 425 207 450 411 183 782 74 

D6 576 642 534 810 407 1,010 93 549 379 572 99 646 467 26 807 200 

D7 773 816 532 917 261 1,107 208 510 518 594 271 585 572 172 937 101 

D8 466 325 356 370 590 572 528 442 71 318 344 544 67 450 371 486 

D9 978 867 204 708 290 838 666 106 559 281 564 78 489 573 796 427 

D10 817 863 561 958 259 1,148 239 531 563 626 316 601 614 215 981 136 

D11 777 740 301 739 157 916 372 276 412 370 296 358 415 281 784 137 

Table VI. Distances between demand sites. 

Demand Site D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

D1 0 371 1,111 732 295 290 125 690 606 87 346 

D2 371 0 825 449 176 109 257 334 530 304 263 

D3 1,111 825 0 383 818 933 989 536 635 1,024 773 

D4 732 449 383 0 437 554 608 232 372 645 403 

D5 295 176 818 437 0 203 171 416 391 208 98 

D6 290 109 933 554 203 0 198 441 591 240 301 

D7 125 257 989 608 171 198 0 567 516 46 235 

D8 690 334 536 232 416 441 567 0 543 611 435 

D9 606 530 635 372 391 591 516 543 0 529 294 

D10 87 304 1,024 645 208 240 46 611 529 0 260 

D11 346 263 773 403 98 301 235 435 294 260 0 

Table VII. Categories, fixed costs, and storage capacity of VMI warehouses. 

Size Category (𝒌𝒌) 𝑭𝑭𝒌𝒌�𝟏𝟏𝟏𝟏𝟓𝟓� 𝑪𝑪𝑪𝑪𝒑𝒑𝒌𝒌(𝟏𝟏𝟏𝟏𝟑𝟑𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) 

1 5 70 

2 7 100 

3 10 140 
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Table VIII. Unit transportation cost and ordering cost of medical products. 

Medical Product Types (𝒎𝒎) 𝑪𝑪𝒎𝒎 𝑻𝑻𝑪𝑪𝒋𝒋𝒖𝒖𝒎𝒎 

1 2 0.8 

2 4 0.5 

3 1 0.3 
    

Table IX. Scenarios of uncertain demand. 

Demand Site 
Scenario 1 (𝒑𝒑 = 𝟏𝟏.𝟑𝟑) Scenario 2 (𝒑𝒑 = 𝟏𝟏.𝟔𝟔) Scenario 3 (𝒑𝒑 = 𝟏𝟏.𝟏𝟏) 

𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 

D1 500 1,500 1,700 4,500 25,000 20,000 30,000 40,000 45,000 

D2 1,300 1,500 2,100 9,000 12,000 20,000 30,000 65,000 50,000 

D3 1,300 3,000 1,700 4,500 12,000 15,000 30,000 65,000 45,000 

D4 1,300 3,000 2,100 9,000 25,000 15,000 20,000 65,000 50,000 

D5 1,300 1,500 2,100 9,000 25,000 15,000 20,000 40,000 45,000 

D6 1,300 3,000 2,100 4,500 25,000 20,000 30,000 40,000 50,000 

D7 500 3,000 2,100 4,500 12,000 15,000 20,000 40,000 45,000 

D8 1,300 1,500 1,700 9,000 25,000 20,000 30,000 65,000 50,000 

D9 1,300 3,000 1,700 9,000 25,000 20,000 30,000 40,000 45,000 

D10 1,300 1,500 2,100 9,000 25,000 20,000 20,000 40,000 45,000 

D11 500 1,500 2,100 4,500 25,000 15,000 20,000 65,000 50,000 
 

The optimal solution for the SP model involves selecting eight VMI warehouses for the active storage of medical 
supplies in response to disease outbreaks. The Mixed Integer Programming (MIP) model utilizes the SP second-stage 
solution to determine the quantities of medical products for direct shipment and transshipment in each pandemic 
scenario across all time periods. The detailed results can be found in Fig. (2) and Table X. 

The primary considerations in warehouse selection include operating cost, capacity, and proximity to demand sites. 
In this particular case, the chosen VMI warehouses are W5, W6, W10, W11, W12, W13, W14, and W16. Despite VMI 
warehouses 11, 14, and 16 having the highest operating costs, they are significantly closer to a large proportion of 
demand sites, allowing them to cover 82%, 73%, and 91% of demand sites, respectively. Conversely, Warehouse 6 
exhibits the lowest coverage rate, namely 9%. However, its strategic proximity to demand site 3 makes it the most cost-
effective option for serving that particular site. 

The selected VMI warehouses prioritize serving the nearest demand site, provided their resource supplies are 
adequate. On average, across various scenarios, seven out of eleven demand sites (64%) are served by a single 
warehouse. In cases where a warehouse faces a resource shortage for serving the closest demand sites, the second 
closest one is assigned to fulfill their needs. 

As an alternative way to summarize the detailed results, Table XI and Table XII provide the quantities of medical 
products directly shipped and transshipped for each scenario. To simplify our analysis, the transshipment cost can be 
disregarded in the second stage, and this assumption is justified for several reasons. Firstly, the cost associated with 
shortages is typically higher than reallocating costs, mainly due to the paramount importance of preserving human lives. 
Thus, in situations where there is a shortage of resources at certain demand sites while others have excess supplies, 
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transshipment is almost certain to occur to mitigate the shortages. Consequently, this assumption is both practical and realistic. 

Furthermore, when compared to the long-term ordering costs in the first stage, the influence of transshipment costs 
on immediate decisions, such as order quantities, can be considered negligible. Therefore, this relatively mild 
assumption does not compromise the overall modeling accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Results of VMI warehouses location and capacity limitation. 

Table X. Facility location, demand sites allocation, and order quantity in the first week. 

VMI Warehouse Capacity Level (𝒌𝒌) Demand Site 
Order Quantity �𝒒𝒒𝒋𝒋𝒎𝒎𝟏𝟏� 

𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 
W1      
W2      
W3      
W4      
W5 Level 1 {11}  24,807 45,193 
W6 Level 1 {3}   47,260 
W7      
W8      
W9      

W10 Level 1 {4} 8,850 24,779 36,371 
W11 Level 3 {2} 31,458 56,027 52,515 
W12 Level 2 {9} 10,793 41,956 47,252 
W13 Level 2 {4, 8} 9,351 29,620 61,030 
W14 Level 3 {1, 6, 7} 31,440 41,992 66,568 
W15      
W16 Level 3 {1, 5, 7, 10, 11} 9,316 64,843 65,841 
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Table XI. Quantity of direct shipment from VMI warehouses to demand sites under each scenario in the first week. 

Warehouse Demand Site 
Scenario 1 (𝒑𝒑 = 𝟏𝟏.𝟑𝟑) Scenario 2 (𝒑𝒑 = 𝟏𝟏.𝟔𝟔) Scenario 3 (𝒑𝒑 = 𝟏𝟏.𝟏𝟏) 

𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 
W5 D11     24,807 14,574  24,807 45,193 
W6 D3   1,498   14,169   47,260 
W10 D4 1,171 2,923 1,986 8,850 24,779 14,552 8,850 24,779 36,371 
W11 D2 1,247 1,459 2,094 9,353 12,512 20,936 31,458 56,027 52,515 
W12 D9 1,232 3,008 1,673 9,337 26,166 20,936 10,793 41,956 47,252 

W13 
D4         8,511 
D8 1,245 1,467 1,677 9,351 26,204 20,940 9,351 29,620 52,519 

W14 
D1      870    
D6 1,229 3,044 2,093 4,598 26,202 20,935 31,440 41,992 52,514 
D7         14,055 

W16 

D1   949       
D5 1,211 1,434 2,099 9,316 26,171 15,678 9,316 41,960 47,257 
D7 385 3,029 2,086 12,503 15,665   22,883 18,584 
D10  1,433 2,089  26,169 20,932    
D11  1,289 2,009       

B. Sensitivity analysis 
In this section, a sensitivity analysis is conducted to explore the impact of specific parameters on the configuration 

of the supply network in the proposed model. Initially, this paper focuses on understanding how key parameters affect 
decisions related to demand site allocation, inventory management, and distribution planning. These parameters 
encompass the shortage cost, transportation cost through direct shipping, and the transshipment cost. As a result, how 
variations in parameters π, 𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚, and 𝑇𝑇𝐶𝐶𝑖𝑖ℎ𝑚𝑚 impact both the total cost and the overall network structure will be 
evaluated. Figs. (3) and (4) visually depict the impact of parameters 𝑇𝑇𝐶𝐶 and π on the overall cost and the number of 
warehouses, respectively. 

Examination of these data reveals that the overall system cost rises as transportation costs �𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚� and unit shortage 
costs (π) increase. Specifically, the total cost exhibits a rapid upswing with the escalation of 𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚 when 𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚 ≤ 0.9. 
However, as 𝑇𝑇𝐶𝐶𝑗𝑗𝑖𝑖𝑚𝑚 continues to increase, the total cost experiences a slower rate of ascent. 

Additionally, the quantity of warehouses grows proportionally with the increase in unit shortage costs but 
diminishes in response to higher unit delivery costs. As π rises, the upward trajectory in the number of Vendor-
Managed Inventory (VMI) warehouses corresponds to that of the total cost. Conversely, with the augmentation of 𝑇𝑇𝐶𝐶, 
the reduction in the number of VMI warehouses is not substantial, as this decrease is also affected by the shortage cost. 

Proceeding, we will delve further into the analysis of the supply network structure. As the unit shortage cost rises, 
distinct variations in the supply network structure become apparent, as depicted in Fig. (5). The network structures for 
different values of π are illustrated in Figs. (5a) through (5d) corresponding to π = 112.5 & ℎ = 100, π = 125 & ℎ =
100, π = 137.5 & ℎ = 100, and π = 150 & ℎ = 100, respectively. Fig. (5a) features eight VMI warehouses, while Fig. 
(5b) showcases a network with nine VMI warehouses. Similarly, both Fig. (5c) and Fig. (5d) exhibit configurations with 
9 VMI warehouses each. These variations underscore the impact of the shortage cost on the evolving structure of the 
supply network. Upon comparing Figs. (5a) and (5c), it becomes evident that candidate sites 5 and 7 are strategically 
chosen to establish VMI warehouses of category size 2. This strategic placement is aimed at meeting demand 
requirements and mitigating shortage costs effectively. 
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Fig. 3. Effect of the delivery cost. 

Table XII. Quantity of transshipment between mutual sites under each scenario in the first week. 

Demand Site Demand Site 
Scenario 1 (𝒑𝒑 = 𝟏𝟏.𝟑𝟑) Scenario 2 (𝒑𝒑 = 𝟏𝟏.𝟔𝟔) Scenario 3 (𝒑𝒑 = 𝟏𝟏.𝟏𝟏) 

𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 𝒎𝒎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐 𝒎𝒎 = 𝟑𝟑 
D2 D1  73 105  626 1,047 1,573  2,626 

 D10 62   468      
D3 D4         2,363 
D4 D3 59 146 99 442 1,239 728    

D5 
D1  72 105  1,309 784    
D7        2,098  

D10 61   466     2,363 

D6 
D1  152 105  1,310 1,047 1,572   

D10 61   230     2,626 
D11       2,100   

D7 D1  151 104  625 783    
D11 19         

D8 D4 62 73 84 468 1,310 1,047   2,626 

D9 
D4        2,098  

D11 62 150 84 467 1,308 1,047   2,363 
D10 D1  72 104  1,308 1,047    
D11 D1  64 100  1,240 729    

 

 

 

 

 

 
     

 

Fig. 4. Effect of the unit deprivation cost 
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Overall, these parameters significantly impact the system cost, with the network structure showing heightened 
sensitivity to both the shortage and transportation cost through direct shipping. This increased sensitivity is logical, 
considering the direct influence of these costs on the network structure. On the flip side, the inventory holding cost and 
the delivery cost through transshipment exert an indirect impact on the network structure by shaping inventory 
management. 

Further, the significance of stochastic programming compared with the deterministic model are highlighted. Fig. (6) 
illustrates how variations in demand affect the overall cost for both the deterministic and stochastic programming 
models. Due to the stochastic programming model's consideration of the probability distribution of uncertain 
parameters, it is evident that the optimal objective values of the stochastic programming model are consistently greater 
than those of the deterministic model. However, by using a stochastic programming approach the robustness of 
decisions can be increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
              

Fig. 5. Effect of the unit shortage cost on warehouses structure. 
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Fig. 6. Model comparisons based on demand variations. 

V. CONCLUSION  
This paper studied a healthcare supply chain network design problem in a stochastic and pandemic environment. 

The problem integrated VMI warehouse selection, inventory management, and delivery decisions. It also incorporated 
features such as multi-products, multi-periods, and demand uncertainty.  In response to resource shortages during a 
pandemic, the resilient resource sharing strategy was introduced to enable demand sites to share emergency supplies 
from their inventories with other sites in the network.  

To address demand uncertainty, a stochastic programming model was proposed. In the first stage, optimal decisions 
were made for the location of the VMI warehouses as well as their size and order quantities. In this stage, ordered 
products were transported directly from the selected open VMI warehouses to demand sites via package carriers or 
third-party logistics services. The second stage involved making recourse decisions on transportation plans for each 
scenario. In this stage, by considering reallocating products among demand sites, the responsiveness of the healthcare 
system was improved to substantial surges in demand during epidemics and pandemics. Additionally, a sensitivity 
analysis of the integrated model was conducted, demonstrating the advantages of the proposed stochastic optimization 
model. Although the stochastic approach had higher total costs compared to the deterministic model, it made more 
robust decisions. Numerical experiments on a small-sized example further illustrated the model's effectiveness. In this 
regard, it was found that the proposed resource sharing strategy could reduce the required overall capacity by improving 
the allocation and distribution of products. 

While this paper focused on healthcare operations management during pandemics, the models and insights 
developed can also be applied to other service industries facing substantial increases in demand. One limitation of this 
research lies in the potential scalability issues as the supply network expands or the number of products, periods, and 
demand sites increases, making the problem size challenging for off-the-shelf solvers. Therefore, a relevant future 
endeavor would involve developing an efficient algorithm specifically tailored for solving large-scale instances. 
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