

 Journal of Quality Engineering and Production Optimization

 Vol. 8, No. 1, Winter & Spring 2023

 http://jqepo.shahed.ac.ir

Manuscript Received: 1-September-2022 & Revised: 19-November-2022 & Accepted: 9-January-2023

ISSN: 2423-3781

Research Paper

DOI: 10.22070/jqepo.2024.16744.1244

Optimizing Open Shop Scheduling: Minimizing Makespan through Whale
Optimization Algorithm and Transportation Time Consideration

Morteza Enayati 1 , Mahdi Yousefi Nejad Attari *2 , Fahime Lotfian Delouyi 3

1 Department of Industrial Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2

Department of Industrial Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran
3 Department of Mechanical Engineering, Faculty of Engineering, University of Zabol, Zabol

* Corresponding Author: Mahdi Yousefi Nejad Attari (Email: mahdi108108@gmail.com)

Abstract – This paper addresses the open shop scheduling problem, considering parallel machines within
each stage and integrating job transportation times between stages, independent of job specifics. In this
scheduling problem, all jobs traverse each stage, and once a job commences on a machine, it must complete
without machine breakdowns. To meet this challenge, a mixed-integer linear programming (MILP) model is
introduced to minimize the makespan, which represents the maximum job completion time. Given the NP-
hard nature of the open-shop scheduling problem, this study employs the whale metaheuristic algorithm to
solve instances across various dimensions, spanning small, medium, and large scales. The algorithm
parameters are systematically optimized using the Taguchi Method. Results from comparing the whale
algorithm with the linear model implemented in GAMS highlight its exceptional efficiency in handling
randomly generated small and medium-sized instances. Moreover, in a comparative analysis with other
algorithms such as PSO and DE, the whale algorithm not only competes effectively but, in some instances,
outperforms its counterparts. This observation underscores the algorithm's prowess in maintaining efficiency
and high performance, particularly when addressing large-scale open-shop scheduling challenges. It excels
in achieving a delicate balance between exploration and exploitation, thereby avoiding local optimal
solutions.

Keywords– Open shop-scheduling, Parallel machines, Transportation time, Mixed-integer linear
programming, Whale optimization algorithm.

I. INTRODUCTION
In today's realm of operations research, scheduling has emerged as a paramount concern. Scheduling, the process of

systematically arranging incoming requests (tasks) to ensure the efficient utilization of available resources (Gawali &
Shinde, 2018), holds pivotal significance.

A scheduling program embodies a timetable that coordinates jobs and machines in a manner that specifies the
assignment of each job to its respective machine and delineates the commencement time for each task. Scheduling not
only increases efficiency, optimizes production capacity, and bolsters profitability but also significantly reduces job
completion durations, thereby conserving time—the most precious resource of all.

http://jqepo.shahed.ac.ir/
https://jqepo.shahed.ac.ir/article_4436.html
https://jqepo.shahed.ac.ir/article_4436.html
mailto:mahdi108108@gmail.com

134 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

One prominent scheduling model is shop scheduling, which involves the allocation of a set of tasks to a specific set
of machines. Suppose there is a set of machines 𝑆𝑆 (𝑖𝑖 = 1,2, … , 𝑠𝑠), that must process a set of jobs 𝑁𝑁 (𝑗𝑗 = 1,2, … ,𝑛𝑛). A
schedule can be defined as the allocation of time periods for processing these jobs across the machines. Notably, the
open shop system, an important stream of shop scheduling, has its origins in large automotive garages specializing in
vehicle repairs (Gonzalez & Sahni, 1976). In this problem, a system including a set of work stages 𝑆𝑆 is considered that
dynamically receives a set of jobs 𝑁𝑁 over a given planning horizon. Since employing a single machine at each stage can
lead to bottlenecks in the work stages, it is uncommon in practical scenarios to encounter a workshop where there is
only one machine available at each stage (Rastgar et al., 2021; Rezvan et al., 2021), the work stage 𝑖𝑖 could encompass a
set of parallel machines 𝑚𝑚𝑖𝑖. In this regard, the extended open shop replaces a single machine at each stage with a
collection of identical parallel machines (Kubiak, 2022). An open shop system with parallel machines is depicted in Fig. (1):

Fig. 1. Open shop scheduling with parallel machines

It is worth noting that in this context, the term 'machine' refers to any non-depletable resource capable of
performing operations. The parallel machines within a particular work stage 𝑖𝑖 may conduct similar types of operations
(Abdelmaguid, 2020b). The open shop scheduling problem with parallel machines finds applications across diverse
industrial sectors, including healthcare, automotive maintenance, electronics manufacturing, and quality control
operations. Conversely, the proportionate case is predominantly prevalent in healthcare, especially medical testing,
where each test requires a uniform amount of time, regardless of the number of patients involved (Adak, 2021).
Importantly, there is no predetermined order for job processing. In other words, each job 𝑗𝑗 must be visited exactly once
in each work stage 𝑖𝑖 and be processed by a single machine 𝑟𝑟 within that stage. A job is considered completed once all
its required operations have been executed (Kubiak, 2022). In the open shop scheduling problem, no fixed processing
route is predefined for each job, and there is no predetermined sequence of jobs assigned to each machine.
Consequently, for each job 𝑗𝑗, it is essential to determine the order of visits to the work stages and the corresponding
machines to be employed. Similarly, for each machine in the system, it is imperative to determine the order in which
jobs are processed. It is important to note that a job cannot be processed by more than one machine simultaneously, and
each machine is limited to executing one job at a time. Furthermore, the processing times for jobs are considered
deterministic positive integers and are contingent on both the specific job and the machine involved. Any interruptions
during processing are strictly prohibited.

 The primary objective in addressing the open shop scheduling problem is to minimize the makespan, defined as the
maximum completion time of the jobs.

To the best of our knowledge, prior research on the open shop scheduling problem has traditionally overlooked a
crucial factor: transportation times between machines. In these earlier studies, it was assumed that the initiation of a
job's processing on a machine could commence immediately following the completion of the previous machine's
operation. However, it is well-established that transportation times are a fundamental consideration within the field of

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 135

scheduling (Ahmadizar & Shahmaleki, 2014). In practical production scenarios, the completion of a job on one machine
often necessitates its transfer to subsequent machines. Notably, in some domains, transportation times can exert a direct
influence on product quality (Zhang et al., 2019). Consequently, in this paper, considerable emphasis is placed on
incorporating transportation time considerations into our mathematical model.

Gonzalez & Sahni (1976) established the NP-hardness of the open shop scheduling problem when involving more
than two processors, intending to minimize the makespan. Hence, the demand for efficient metaheuristic approaches is
paramount to yield solutions within computationally acceptable time frames. Various research endeavors have utilized
metaheuristic approaches to address scheduling issues (Esmaeili et al., 2021; Sharifzadegan et al., 2021). This study
applies the whale optimization algorithm (WOA) to address the open shop scheduling problem to minimize the
makespan. The novelty of our proposed model lies in its consideration of transportation times between machines within
an open shop scheduling problem featuring parallel machines.

The subsequent sections of this paper are meticulously organized to facilitate an in-depth exploration of the topic.
Section 2 presents a comprehensive review of pertinent prior studies. In Section 3, a mixed-integer linear programming
model is introduced to address the open shop scheduling problem. Section 4 is dedicated to a detailed exposition of the
metaheuristic algorithm, the whale optimization algorithm. Section 5 elaborates on our metaheuristic approach. In
Section 6, the results and analysis of our computational experiments are unveiled. Concluding our work, Section 7
offers valuable insights and recommendations for future research endeavors.

II. LITERATURE REVIEW
In recent years, open shop scheduling problems have gained increasing attention among researchers. In this context,

Barzegar et al. (2012) employed a hybrid approach that combines a genetic algorithm (GA) and tabu search (TS) to
address the open shop scheduling problem. The primary objectives of this approach were to minimize both the
maximum completion time and the total completion time. Naderia and Roshanaei (2014) considered an open shop
scheduling problem that involves no-idle time scheduling to minimize the makespan. Initially, they introduced a mixed-
integer linear programming model to tackle the problem. Furthermore, to address large-scale instances, the researchers
developed and presented two metaheuristic approaches, namely the genetic algorithm (GA) and the simulated annealing
(SA) algorithm. Rahmani Hosseinabadi et al. (2019) investigated the impact of operator selection, focusing specifically
on crossover and mutation, within the framework of GA for optimizing the open shop scheduling problem. Their
proposed algorithm was compared with other pre-existing algorithms to evaluate its effectiveness. Gu et al. (2019)
proposed a hybrid whale optimization algorithm (WOA) aimed at minimizing the makespan in open shop scheduling
problems. Abdelmaguid (2020b) conducted an in-depth investigation into a static and deterministic variation of the
multiprocessor open shop scheduling problem, where processing times are influenced by both the job and the machine.
The primary objective of this study was to minimize the makespan. Within the scope of this paper, two distinct
neighborhood exploration functions and two solution combination functions were developed and effectively applied as
part of a scatter search with path relinking metaheuristic. In a related research study, Abdelmaguid (2020a) explored the
dynamic multiprocessor open shop scheduling problem (DMOSSP) with a focus on two concurrent objective functions:
the reduction of the makespan and the mean weighted flow time. Subsequently, an exact algorithm founded on the ε-
constraint method was introduced to produce optimal Pareto front solutions. It is worth noting that this algorithm is
particularly well-suited for addressing smaller problem instances. Mejía and Yuraszeck (2020) explored open shop
scheduling problems encompassing travel times between machines and sequence-dependent setup times using a variable
neighborhood search (VNS) algorithm. Notably, this paper also incorporates a self-tuning routine to optimize the key
algorithm parameters. Behnamian et al. (2021) addressed a flexible open shop scheduling problem characterized by two
objective functions, specifically minimizing the makespan and total tardiness, along with independent setup times. Their
approach involved the development of a mixed-integer nonlinear programming model. To tackle the inherent multi-
objective nature of the problem, they employed the weighted LP-metric method. Additionally, they introduced a scatter
search algorithm designed to yield near-optimal solutions within a reasonable computational timeframe.

136 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

In another research endeavor, Abdelmaguid (2021) conducted an investigation into the dynamic multiprocessor open
shop scheduling problem focusing on minimizing both the mean weighted flow time and the makespan. This study led
to the development of two metaheuristic approaches based on NSGA-II and the multi-objective grey wolf optimizer
(MOGWO). Significantly, both metaheuristics were further enhanced through hybridization with a simulated annealing
local search. Shareh et al. (2021) investigated the open shop scheduling problem to minimize makespan. They
employed the bat algorithm (BA) based on a two-fold approach. The first component involves a heuristic function
known as ColReuse, designed to quantify the difference between a randomly generated solution and the best solution.
The second component employs substitution meta-heuristic functions to create a new permutation, which replaces the
previous permutation if deemed suitable. Adak (2021) studied a novel solution representation design for a proportionate
multiprocessor open shop aimed at minimizing makespan, where proportionality implies that processing times depend
only on workstations and are independent of jobs. Additionally, Adak et al. (2022) applied an ant colony optimization
(ACO) algorithm to reduce makespan in an open shop environment featuring parallel machines. This algorithm employs
a randomized exploration of the solution space, enabling the efficient identification of favorable solution features in a
time-efficient manner. Kurdi (2022) proposed an ACO algorithm for optimizing the open shop scheduling problem
(OSSP). They introduced a new exploratory heuristic information approach (ACONEH) to minimize makespan. Their
approach incorporates three key exploratory features. Firstly, it leverages randomness by generating heuristic
information in a stochastic manner. Secondly, it prioritizes diversity, ensuring that each ant acquires distinct
information. Finally, it emphasizes adaptability, with each ant periodically enhancing its acquired information.

Table Ⅰ. Provides a summary of the research conducted on the open shop scheduling problem.

TABLE I. PREVIOUS STUDIES ON OPEN SHOP SCHEDULING PROBLEM

Reference Modelling
approach

Single/parallel
machine

Transportation
time Solving approach

Gu et al. (2019) MILP Single - Whale optimization

Shareh et al. (2021) MIP parallel - An improved bat optimization algorithm

Mejía and Yuraszeck (2020) MIP Parallel - Self-tuning variable neighborhood search algorithm

Mafarja and Mirjalili (2018) MILP single - Whale optimization

Kurdi (2022) MILP Parallel - Ant colony optimization

Bezoui et al. (2023) MILP Parallel Multi-objective genetic algorithm

Ying and Lin (2023) MILP Parallel - Iterated epsilon-greedy algorithm

Torres-Tapia et al. (2022) MILP Parallel - Ant colony system

Schworm et al. (2023) MILP Parallel - Quantum annealing

Current research MILP Parallel √ Whale optimization

This paper endeavors to address a notable gap in the current literature pertaining to the open shop scheduling

problem. Specifically, this study delves into the often-neglected aspect of transportation time for jobs between
machines, which holds pivotal importance. The research leverages the whale optimization algorithm (WOA) to
optimize the makespan in an open shop environment featuring parallel machines. Given the relatively scarce application
of this optimization algorithm within the domain of open shop scheduling problems, a comparative analysis will be
conducted with well-established algorithms to evaluate its effectiveness and performance.

III. MIXED-INTEGER LINEAR PROGRAMMING MODEL
This section introduces a mixed-integer linear programming (MILP) model under the following assumptions:

• There are a minimum of two parallel machines at each stage.

https://www.mdpi.com/2071-1050/15/12/9506#table_body_display_sustainability-15-09506-t001

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 137

• The processing times are considered as positive integers.
• All jobs are initially available independently, with equal importance.
• Each job can be processed at a maximum of one workstage at any given time.
• Each machine is capable of processing only one job concurrently.
• Each job must be processed by one of the parallel machines.
• All jobs traverse through all stages, with the possibility of zero processing time on some stages (Pinedo, 2008).
• Each job can be processed in any sequence.
• Processing interruptions are not permitted.
• The transportation time of jobs between workstations, independent of specific jobs, is also taken into account.

In this context, two primary decisions need to be made in the process of minimizing the makespan: determining the
processing route for each job across the machines and establishing the sequence of jobs on each machine.

The notations used in this model is outlined as follows:

Sets

S Set of work stages = {1,2, . . . , 𝑠𝑠}

𝑁𝑁 Set of jobs = {1,2, … ,𝑛𝑛}

Indexes

i, l Stage indexes form set S

j, k Job indexes form set N

r Parallel machines index at each stage: 𝑟𝑟 ∈ {1,2, … ,𝑚𝑚𝑖𝑖}

Parameters

𝑃𝑃𝑖𝑖𝑖𝑖 Processing time of the ith job in the jth stage (a positive integer)

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
Transportation time of jobs between the machines in the ith and lth work stages, ∀𝑖𝑖, 𝑙𝑙 ∈ 𝑆𝑆 , 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙 = 0 , 𝑖𝑖 ≠ 𝑙𝑙 ; 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙 ≠ 0

𝑚𝑚𝑖𝑖 The number of parallel machines in the ith stage, (𝑚𝑚𝑖𝑖 ≥ 2)

𝑠𝑠 The number of work stages

𝑀𝑀 A very large positive number

Decision
variables

Oij
A binary variable that equals 1 if the operation of the j th job is decided to be processed in the i th
stage, and equals 0 otherwise

Xijk A binary variable that equals 1 if the operation Oik is processed after the operation Oij, and equals 0
otherwise

138 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

Yijk A binary variable that equals 1 if the starting time of the operation Oij is before the operation Oik while
having interference with each other, and equals 0 otherwise

Zilj A binary variable that equals 1 if the operation Olj is exactly processed after the operation Oij, and
equals 0 otherwise

Virj A binary variable that equals 1 if the jth job is decided to be processed on the rth machine in the ith
stage, and equals 0 otherwise

Stij The start time when the jth job begins processing in the ith stage (or entry time of the jth job into the
ith stage)

Cij The time that the processing of the jth job in the ith stage is completed

Cj The time that the jth job is fully processed and completed

Accordingly, the open shop scheduling problem is modeled as a mixed-integer linear programming problem with the

aim of minimizing the makespan as follows:

Min 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝑗𝑗 (1)

S.T.

𝐶𝐶𝑗𝑗 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (2)

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑃𝑃
𝑖𝑖𝑖𝑖

 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (3)

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑀𝑀(1– 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖) ; ∀𝑖𝑖, 𝑙𝑙 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 , 𝑖𝑖 ≠ 𝑙𝑙 (4)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑙𝑙𝑙𝑙 + 𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙 − 𝑀𝑀�1– 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙� ; ∀𝑖𝑖, 𝑙𝑙 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 , 𝑖𝑖 ≠ 𝑙𝑙 (5)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝑀𝑀�1–𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (6)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝑀𝑀�1–𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (7)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑀𝑀�1–𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (8)

𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 1 − 𝑀𝑀�1– 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (9)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑀𝑀�1–𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (10)

𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 1 − 𝑀𝑀�1– 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (11)

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 139

� 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝑆𝑆−{𝑖𝑖}

≤ 1 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (12)

� 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑆𝑆−{𝑙𝑙}

≤ 1 ; ∀𝑙𝑙 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (13)

� � 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝑆𝑆−{𝑖𝑖}𝑖𝑖∈𝑆𝑆−{𝑙𝑙}

= 𝑠𝑠 − 1 ; ∀𝑗𝑗 ∈ 𝑁𝑁 (14)

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (15)

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 2 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑟𝑟 ∈ 𝑀𝑀𝑖𝑖 , ∀𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (16)

 �𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑟𝑟=1

= 1 ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (17)

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑗𝑗 ∈ 𝑍𝑍+ ∪ {0} ; ∀𝑖𝑖 ∈ 𝑆𝑆 , ∀𝑗𝑗 ∈ 𝑁𝑁 (18)

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} , 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} , 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} , 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} (19)

The objective of minimizing the makespan is formulated by Eq. (1). Constraint (2) denotes the final completion

time of the jth job. The equality in constraint (3) guarantees uninterrupted and continuous job processing. Constraints
(4) and (5) articulate the sequential progression of stages for a given job, specifying stages that immediately follow one
another. Constraints (6) and (7) express the sequencing of jobs within a specific stage. Constraints (8) to (11) indicate
that the next job starts after begins the current job and before its completion. The presence of '1' in Constraints (9) and
(11) indicates that one job does not start immediately after the completion of another job because, otherwise, this
scenario would be addressed by Constraints (6) and (7) since the minimum difference between two integers is one.

Constraint (12) ensures that the jth job after the ith stage is only transferred to one of the remaining stages,
indicating that it doesn’t simultaneously enter two or more stages. Alternatively, the job will not proceed after the
current, indicating that the current stage is the last. Furthermore, Constraint (13) guarantees that the jth job will enter the
lth stage from only one of the existing stages, or it will not enter the current stage from any stage, implying that the
current stage is the initial stage. Equation (14) ensures that both Constraints (12) and (13) cannot simultaneously be zero
for each job. When Constraint (12) equals zero, it signifies the final stages, and when Constraint (13) equals zero, it
implies the initial stage.

Constraint (15) ensures that only one of the variables within this constraint can take a value of one.. Constraint (16)
ensures that if multiple jobs commence simultaneously in a certain stage or if their processes overlap within the same
stage, the machine assigned to one job will not be assigned to another. Finally, constraint (17) guarantees that each
machine at each stage is assigned to only one job at any given moment.

IV. METAHEURISTIC APPROACH
In this study, a recently developed population-based metaheuristic algorithm known as the "Whale Algorithm" has

been employed to address the problem. Inspired by the social behavior of humpback whales, this algorithm proves
particularly effective in solving complex optimization challenges. The Whale Algorithm begins with an initial set of
random solutions. In each iteration, the search agents adjust their positions based on either a random search agent or the

140 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

best solution obtained thus far. Humpback whales employ two distinct hunting strategies: direct attack within a narrow
siege or pursuit of prey along a spiral path. In the following sections, we elaborate on the modeling of these two
strategies.

A. Prey siege modeling
Humpback whales engage in a randomized search process based on the positions of their fellow whales. They

continuously update their locations and directions while considering the movements of other whales. This behavior can
be described by the following equations proposed by Mirjalili and Lewis (2016):

𝐷𝐷 = �𝐶𝐶. 𝑋⃗𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑋⃗𝑋(𝑡𝑡)� (20)

𝑋𝑋��⃗ (𝑡𝑡 + 1) = 𝑋𝑋��⃗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐴𝐴.𝐷𝐷 (21)

The 𝑋𝑋��⃗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 vector represents a randomly selected position vector, which corresponds to a random whale chosen from

the current population. In this context, "t" denotes the current iteration number, and 𝑋𝑋��⃗ represents the position vector of
a particular solution. The values of "A" and "C" can be calculated as described by Mirjalili and Lewis (2016):

𝐴𝐴 = 2.𝑎𝑎. 𝑟𝑟 − 𝑎𝑎 (22)

𝐶𝐶 =

2. 𝑟𝑟 (23)

During the course of the algorithm's iterations, the parameter "a" decreases linearly from 2 to 0. Simultaneously, "r"

represents a random value within the range [0, 1] . To promote the dispersion of search agents away from a reference
whale, the parameter "A" is randomized to fall within the range [−1, 1]. By adopting this mechanism and ensuring
that |A| ≥ 1, the algorithm facilitates exploration, enabling a comprehensive search.

Following the search process and the identification of solutions in each iteration, the whales operate under the
assumption that the best solution attained by the current candidate is either the optimal solution or close to it. Once the
best search factor is identified, other search agents endeavor to adjust their positions in the direction of this best factor.
This dynamic is mathematically represented by the following equations, as described by Mirjalili and Lewis (2016):

𝐷𝐷
= �𝐶𝐶. 𝑋⃗𝑋∗(𝑡𝑡) − 𝑋⃗𝑋(𝑡𝑡)� (24)

𝑋𝑋��⃗ (𝑡𝑡 + 1) = 𝑋𝑋��⃗
∗(𝑡𝑡) − 𝐴𝐴.𝐷𝐷 (25)

The vector 𝑋𝑋��⃗

∗
 represents the position of the best solution obtained up to the current iteration. It is crucial to update

𝑋𝑋��⃗
∗
 when a superior solution is acquired during each iteration. Consequently, in order to update the positions of search

agents, the "random search agent" is selected when |A|≥1, while "best solution" is selected when |A|<1.

B. Logarithmic helix modeling
This method initiates by computing the distance between the whale positioned at X and the prey situated at 𝑋𝑋∗,

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 141

subsequently generating a spiral equation that connects the whale's location to the prey. This process mimics the attack
strategy of humpback whales, as outlined below (Mirjalili & Lewis, 2016):

𝐷𝐷′ = �𝑋𝑋��⃗
∗
(𝑡𝑡) − 𝑋𝑋��⃗ (𝑡𝑡)� (26)

𝑋𝑋��⃗ (𝑡𝑡 + 1) = 𝐷𝐷′. 𝑒𝑒𝑏𝑏.𝑙𝑙. 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋) + 𝑋𝑋��⃗
∗(𝑡𝑡) (27)

The vector 𝐷𝐷′ represents the distance between the ith whale and the prey (the best solution obtained thus far). Here,

"b" serves as a constant defining the logarithmic spiral shape, while "𝑙𝑙" signifies a random number within the range
[−1, 1].

The whale algorithm seamlessly transitions between two strategies based on the value of the random number "p",
which varies within the range [0, 1]. If p ≥ 0.5, then the algorithm opts for the spiral motion strategy, whereas a
shrinking siege strategy is employed when p < 0.5. Ultimately, the whale algorithm concludes its execution upon
meeting the predefined termination conditions. The pseudocode for WOA is depicted in Fig. (2).

Input data, Number of maxiter and population etc.
Initialize the whales’ population 𝑋𝑋𝑖𝑖 (𝑖𝑖 = 1, 2, ..., n)
Initialize a, A, C, l and p
Calculate the fitness of each search agent
X* = the best search agent
while (𝑡𝑡 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)
 for each search agent
 if (𝑝𝑝 < 0.5)
 if (|𝐴𝐴| < 1)
 Update the position of the current search agent by the equation:
 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗(𝑡𝑡) − 𝐴𝐴.𝐷𝐷
 else if (|𝐴𝐴| ≥ 1)
 Select a random search agent (𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟);
 Update the position of the current search agent by the equation:
 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐴𝐴.𝐷𝐷
 end
 else if (𝑝𝑝 ≥ 0.5)
 Update the position of the current search by the by the equation:
 𝑋𝑋(𝑡𝑡 + 1) = 𝐷𝐷′. 𝑒𝑒𝑏𝑏.𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋) + 𝑋𝑋∗(𝑡𝑡)
 end if
 end for
Calculate the fitness of each search agent
Update X* if there is a better solution
t=t+1
Update a, A, C, l and p
end while
return X*

Fig. 2. Pseudo-code of WOA (Mafarja & Mirjalili, 2018)

142 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

V. SUGGESTED METHOD
Evidently, the prudent choice of algorithm specifications, encompassing solution representation, initial population

generation, solution evaluation during each iteration, and termination criteria, significantly impacts its overall
efficiency. The ensuing sections expound upon the method employed in the whale algorithm to address these crucial
aspects.

A. Representation of solutions
In the context of the open shop scheduling problem under investigation in this research, a set of parallel machines is

designated at each stage. This entails the allocation of the first "type" of machines in the initial stage, followed by the
allocation of the second "type" of machines in the subsequent stage, and so forth. Each "type" of machine possesses
distinct performance characteristics, and at each stage, each job is processed by only one of the parallel machines. With
these considerations in mind, the solution vector for the open shop scheduling problem comprises two parts, as outlined
in Table Ⅱ: the sequence of operations and the allocation of parallel machines at each stage.

Table II. Vector of solutions

Allocation of Parallel Machines Sequence of Operations

To represent the sequence of operations, one common approach is to employ a "permutation list", which is generated

randomly. For a system consisting of "n" jobs and "m" work stages, the permutation list encompasses a total of n*m
operations. These permutations are denoted as 𝑂𝑂𝑗𝑗𝑗𝑗, where the index "j" represents the job, and the index "i" represents
the work stage.

To encode each of these permutations, a natural number is assigned based on their order and sequence from left to
right. An example of this assignment is shown in Table Ⅲ for permutations involving 2 jobs and 3 stages:

Table III. Correlation of permutations and natural numbers for 2 jobs and 3 stages

𝑶𝑶𝟐𝟐𝟐𝟐 𝑶𝑶𝟐𝟐𝟐𝟐 𝑶𝑶𝟐𝟐𝟐𝟐 𝑶𝑶𝟏𝟏𝟏𝟏 𝑶𝑶𝟏𝟏𝟏𝟏 𝑶𝑶𝟏𝟏𝟏𝟏 Permutation 𝑶𝑶𝒋𝒋𝒋𝒋

6 5 4 3 2 1 Natural Number

The second step involves the assignment of parallel machines, with the number of permutations in this step being

proportional to those generated in the first step. For each permutation in the first step, a corresponding permutation is
created in the second step for the assignment of parallel machines. As in the the previous step, this step is created
randomly.

Now, the general representation method of a possible solution is illustrated through an example in Table Ⅳ:

Table IV. An example of representing a possible solution for the problem

3 6 1 4 5 2 1 2 2 3 1 1

B. Producing the initial population
To randomly generate the initial population, a permutation list equal to the initial population is generated.

Essentially, a series of whales is randomly created, each with distinct and random characteristics. This process is
repeated to match the population size.

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 143

C. Modeling the algorithm
Let time 𝑡𝑡1 represent the completion time of the last operation for the current job up to the current moment in stage

A. Additionally, suppose that after this operation in stage A, the job will proceed to another new operation in a different
stage, such as stage B. Consequently, the transportation time 𝑡𝑡𝑡𝑡 between stages A and B will be added to the completion
time.

a= 𝑡𝑡1 + 𝑡𝑡𝑡𝑡 (28)

Let's assume that in stage B, the machine responsible for processing this job becomes available at time 𝑏𝑏 = 𝑡𝑡2.

Consequently, the start time for processing this job in this stage is determined as follows:

𝑆𝑆𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑀𝑀 {a, b} (29)

The completion time of a job at each stage is then calculated as follows:

𝐹𝐹𝐹𝐹 = 𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃 (30)

Here, 𝑃𝑃𝑃𝑃 represents the processing time of the job at each stage.

To illustrate, consider the random permutation for the sequence of operations shown in Table Ⅳ:

Permutation {3 × 2}= (3, 6, 1, 4, 5, 2)

Where, the first operation of this permutation, represented by the number 3, corresponds to operation 𝑂𝑂13. This
signifies that the processing of the first job in the third stage is assigned to machine 1, as indicated in Table Ⅳ. This
operation has a time duration 𝑃𝑃𝑃𝑃:

j=1, s=3, m=1

Assume operation 𝑂𝑂13 is the initial operation of the respective job at time 𝑡𝑡1 = 0. Furthermore, since this operation
is the first one in stage 3 and no prior operations have taken place, then 𝑡𝑡2 = 0, Consequently:

𝑆𝑆𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑀𝑀 {a, b}= 𝑀𝑀𝑀𝑀𝑀𝑀 {0, 0}=0 (31)

𝐹𝐹𝐹𝐹 = 𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃 (32)

D. Cost function
The objective is to minimize the final completion time of jobs. Therefore, the cost function is defined as the final

completion time of jobs. In the proposed algorithm, this function indicates the degree of compliance or competence of
each whale or solution and is defined as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (33)

E. Algorithm Termination condition
The termination criterion in this research is based on the number of algorithm iterations.

144 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

VI. COMPUTATIONAL EXPERIMENTS AND RESULTS
To evaluate the performance of the proposed algorithm in addressing the open shop scheduling problem under

investigation, first, the parameters of this algorithm are introduced. Following this, the optimization of these parameters
is delved into using the Taguchi method and the computational evaluation of the problem is subsequently conducted
using the whale algorithm.

A. Tuning metaheuristics parameters
The whale algorithm operates with two key parameters: population size and the number of algorithm iterations.

Selecting optimized values for these parameters can positively influence the algorithm's performance.

In this study, the parameters of the whale algorithm undergo optimization via the Taguchi method, facilitated by
Minitab software. To accomplish this, a large-scale instance with dimensions of 10 ⨯ 10 is considered. The processing
times of jobs in this model adhere to a uniform distribution of integers within the range of 1 to 10. Designing
experiments for this instance entails considering of various parameter values. Therefore, three different levels have been
designated for each parameter, as outlined in Table Ⅴ:

Table V. Level of parameters

Level 3 Level 2 Level 1

40 30 20 Npop

500 400 300 Maxiter

Subsequently, the Minitab software generates the proposed scenarios based on the number of parameters and levels.

This is achieved through the design of experiments using the Taguchi method, and the resulting scenarios are presented
in Table Ⅵ.

Table VI. Scenarios suggested for adjustment of parameters

 Sen 1 Sen 2 Sen 3 Sen 4 Sen 5 Sen 6 Sen 7 Sen 8 Sen 9

Npop Level 1 Level 1 Level 1 Level 2 Level 2 Level 2 Level 3 Level 3 Level 3

Maxiter Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Each of these scenarios is then subjected to resolution by the whale algorithm through five distinct implementations.

The average (𝑐𝑐𝑚̅𝑚𝑚𝑚𝑚𝑚) is calculated and displayed from these five implementations for each scenario, as outlined in Table
Ⅶ:

Table VII. Average results of the suggested scenarios

Sen 9 Sen 8 Sen 7 Sen 6 Sen 5 Sen 4 Sen 3 Sen 2 Sen 1

109.8 114.8 114.6 109.8 107.8 108.4 104.6 110.6 112.8 𝒄𝒄�𝒎𝒎𝒎𝒎𝒎𝒎

Through the analysis of the results using Minitab, the signal-to-noise ratio (SNR) for both parameters is calculated

based on the average outputs (c�max). The diagram presented in Fig. (3) illustrates the software's output.

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 145

Fig. 3. Diagram of Signal-to-Noise Ratio of Parameters

In Fig. (3), the horizontal axis corresponds to the number of levels of both algorithm parameters, while the vertical
axis represents the average signal-to-noise ratio (S/N). The term "signal" generally refers to the desirable value (average
response variable), and "noise" denotes the undesirable value (standard deviation). The objective is to maximize the S/N
ratio. As depicted in Fig. (3), the optimal value for the population size parameter is at level 2, which is equivalent to 30,
and for the number of iterations parameter, it is at level 3 with a value of 500, as indicated in Table Ⅷ:

Table VIII. Algorithm parameters & their corresponding values

Parameter Value

Population Size 30

Algorithm Iterations Number 500

B. Computational results
To assess the efficiency of the presented algorithm, two categories of problems are considered: the first category

comprises small and medium instances, while the second one deals with large instances. In the initial phase, random
instances with small and medium sizes are used to solve the presented linear model and measure the efficiency of the
whale algorithm, benchmarked against the optimal solution generated by the model using GAMS 24.8.3 software. The
algorithm is implemented via MATLAB software on a personal computer with Intel Core 2 Quad 2.50 GHz
specifications and 4 GB of RAM.

For small and medium-sized instances, the processing times follow a homogenous distribution of integers within the
range of [1,99], generated using the GAMS uniformint() function. At each stage, the number of parallel machines
ranges from 2 to 3, and the number of jobs and stages varies from 2, 3, 4, and 5. To evaluate the algorithm's efficiency,
the results are presented for ten random small and medium-sized instances. The average outcomes of five algorithm
implementations for these instances are compared with the optimal solutions obtained through GAMS as shown in
Table Ⅸ.

The analysis highlights the exceptional efficiency of the algorithm in handling randomly generated small and

146 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

medium-sized instances. This efficiency is underscored by the consistent alignment of the whale algorithm's minimum
values and the average results from five algorithm runs with those achieved by GAMS. Essentially, the whale algorithm
consistently attains the same optimal solutions as GAMS, thus affirming its reliability in obtaining general optimal
solutions.

Table IX. Computational results of linear model & algorithm for small & medium-sized problems

Instance
No.

Number
of Jobs

Number of
Stages

Number of
Parallel

Machines at
each Stage

GAMS WOA

Objective
Function

Solution
Time (s)

The Minimum Value
of Objective Function

Solution Time of
Minimum Value (s)

The Average
of 5 Runs

1 2 2 (2,2) 130 0.09 130 79.59 130

2 2 3 (2,3,2) 152 0.16 152 82.65 152

3 3 2 (2,2) 162 0.23 162 83.58 162

4 3 3 (2,2,2) 186 0.3 186 90.34 186

5 3 4 (3,2,2,3) 193 1.22 193 95.82 193

6 4 3 (2,2,2) 212 0.89 212 95.79 212

7 4 4 (2,3,2,3) 290 2.96 290 101.93 290

8 5 3 (3,2,3) 202 1.08 202 100.49 202

9 5 4 (2,2,3,3) 281 2.34 281 108 281

10 5 5 (2,3,3,2,2) 354 7.48 354 161.4 354

Table X. A Comparison of the averages of five runs for three algorithms on each instance

DE PSO WOA Number of Parallel
Machines at Each Stage

Number of
Stages

Number of
Jobs Instance No.

415 415 415 (2,3,2,3,2) 5 6 1

496 496.3 496.2 (2,3,2,3,2,2) 6 6 2

424 424 424.2 (2,3,2,3,2,2) 6 7 3

533.5 534.6 533 (2,3,2,3,2,2,3) 7 7 4

537.2 539.4 537.8 (2,3,2,3,2,2,3) 7 8 5

548.9 551.2 547.6 (2,3,2,3,2,2,3,2) 8 8 6

598.25 598.7 596.5 (2,3,2,3,2,2,3,2) 8 9 7

600.8 600.4 600.8 (2,3,2,3,2,2,3,2,3) 9 9 8

614.8 617.6 605.9 (2,3,2,3,2,2,3,3,3) 9 10 9

676.7 682.4 680.8 (2,3,2,3,2,2,3,3,3,2) 10 10 10

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 147

However, to comprehensively assess its performance, the Whale Algorithm (WOA) has been benchmarked against
other significant optimization algorithms, namely Differential Evolution (DE) and Particle Swarm Optimization (PSO),
particularly on larger instances. All of these algorithms have been meticulously simulated in MATLAB software.

For these large-scale instances, processing times that follow a uniform distribution of integers within the range of [1,
99] have been chosen, generated using the MATLAB randi() function. Each stage is equipped with 2 to 3 parallel
machines, and the total number of jobs and stages ranges from 5 to 10. To conduct this comparative analysis, ten
randomly generated large-sized instances have been employed, each of which has been subjected to optimization by
WOA, DE, and PSO algorithms. The average of the results from five implementations for each algorithm applied to
each instance, have been computed. The comparative findings are presented in Table Ⅹ.

Fig. 4. Comparative diagram of the average of five runs of all three algorithms in Table Ⅹ

The numerical results obtained from Table Ⅹ are depicted in Fig. (4). In this comparative diagram, the horizontal
axis represents the instance number, while the vertical axis displays the average value of the objective functions derived
from five runs of each algorithm.

When comparing the average results obtained from five runs of the whale algorithm with those of two alternative
algorithms, PSO and DE, it was observed that the whale algorithm excels in solving large instances. Particularly, in
instances 4, 6, 7, and 9, the whale algorithm outperforms both PSO and DE. This highlights the algorithm's remarkable
efficiency and high-performance capabilities in addressing large-scale open shop scheduling problems. It emphasizes its
proficiency in navigating the trade-off between exploration and exploitation, thereby effectively circumventing local
optima.

VII. CONCLUSIONS AND FUTURE WORK
The open shop scheduling problem (OSSP) stands as a widely acknowledged scheduling challenge with significant

implications for diverse industries. Achieving an optimal and practical scheduling solution within this domain holds the
potential to enhance industrial operations. This paper specifically tackled the open shop scheduling problem within the

148 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

context of parallel machines, integrating the consideration of transportation times between workstations — an aspect
that has not been extensively explored in existing literature. To address this gap, a mixed-integer linear programming
(MILP) model was formulated, primarily aimed at minimizing the makespan in systems of this nature. Given the NP-
hard nature of the OSSP, the study employed the emerging metaheuristic technique known as the whale algorithm for
effective problem-solving.

Based on the analysis that was conducted, which involved comparing the results obtained from implementing the
linear model in GAMS with those from the whale algorithm, it is evident that the algorithm operates very efficiently
when handling randomly generated small and medium-sized instances. This is supported by the observation that the
minimum values obtained by the whale algorithm, as well as the average results from five runs of this algorithm,
consistently align with the outcomes of GAMS. Essentially, the whale algorithm consistently achieves the same optimal
solution as GAMS, showcasing its reliability in obtaining general optimal solutions.

Furthermore, in the comparative analysis of the average results from five runs of the whale algorithm with those
from two other algorithms, PSO and DE, it was found that the whale algorithm's performance in solving large instances
was not only competitive, but in specific instances (4, 6, 7, and 9), surpassed the results achieved by the other two
algorithms. This suggests that the whale algorithm retains its efficiency and high performance when tackling large-scale
open shop scheduling problems. This highlights its ability to strike a balance between exploration and exploitation,
thereby avoiding local optimal solutions.

As a basis for future research in this domain, it is recommended to explore scenarios where distinct machines are
allocated to each workstation instead of identical ones. Additionally, the inclusion of multiple vehicles for job
transportation, each with its own unique transportation times, can offer new insights. Another avenue for research is to
investigate situations where machines are mobile and jobs are stationary. It would also be beneficial to explore the
application of alternative metaheuristic algorithms and optimize various objective functions, including scenarios with
multiple objectives.

REFERENCES
Abdelmaguid, T. F. (2020). Bi-objective dynamic multiprocessor open shop scheduling: an exact algorithm. Algorithms, 13(3), 74.

Abdelmaguid, T. F. (2020). Scatter search with path relinking for multiprocessor open shop scheduling. Computers & Industrial
Engineering, 141, 106292.

Abdelmaguid, T. F. (2021). Bi-objective dynamic multiprocessor open shop scheduling for maintenance and healthcare diagnostics.
Expert Systems With Applications, 186, 115777.

Adak, Z. (2021). Solution Representation in Proportionate Multiprocessor Open Shop. Journal of Intelligent Systems: Theory and
Applications, 4(2), 86–93.

Adak, Z., Arıoğlu, M. Ö., & Bulkan, S. (2022). An ant colony optimization approach for the proportionate multiprocessor open shop.
Journal of Combinatorial Optimization, 43, 785–817.

Ahmadizar, F., & Shahmaleki, P. (2014). Group shop scheduling with sequence-dependent setup and transportation times. Applied
Mathematical Modelling, 38(21–22), 5080–5091.

Barzegar, B., Motameni, H., KHOSROZADEH, G. A., & Divsalar, A. (2012). A Hybrid Genetic Algorithm for the Open Shop
Scheduling with Makespan and Total Completion Time.

Behnamian, J., Memar Dezfooli, S., & Asgari, H. (2021). A scatter search algorithm with a novel solution representation for flexible
open shop scheduling: a multi-objective optimization. The Journal of Supercomputing, 77, 13115-13138.

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 133-150 149

Bezoui, M., Olteanu, A. L., & Sevaux, M. (2023). Integrating preferences within multiobjective flexible job shop scheduling.
European Journal of Operational Research, 305(3), 1079–1086.

Esmaeili, M., Ahmadizar, F., & Sadeghi, H. (2021). Minimizing the sum of earliness and tardiness in single-machine
scheduling. Journal of Quality Engineering and Production Optimization, 6(2), 59-78.

Gawali, M. B., & Shinde, S. K. (2018). Task scheduling and resource allocation in cloud computing using a heuristic
approach. Journal of Cloud Computing, 7, 1-16.

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM (JACM), 23(4), 665–679.

Gu, H. M., Hu, R., Qian, B., Jin, H. P., & Wang, L. (2019). Whale optimization algorithm with local search for open shop scheduling
problem to minimize makespan. In Intelligent Computing Theories and Application: 15th International Conference, ICIC 2019,
Nanchang, China, August 3–6, 2019, Proceedings, Part II 15 (pp. 678-687). Springer International Publishing.

Kubiak, W. (2022). Book of Open Shop Scheduling. Springer International Publishing.

Kurdi, M. (2022). Ant colony optimization with a new exploratory heuristic information approach for open shop scheduling problem.
Knowledge-Based Systems, 242, 108323.

Mafarja, M. M., & Mirjalili, S. (2018). Whale Optimization Approaches for Wrapper Feature Selection. Applied Soft Computing
Journal, 62, 441–453.

Mejía, G., & Yuraszeck, F. (2020). A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open
shop scheduling problems with travel / setup times. European Journal of Operational Research, 285(2), 484–496.

Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67.

Naderia, B., & Roshanaei, V. (2014). No-idle time Scheduling of Open shops: Modeling and Meta-heuristic Solution Methods.
International Journal of Supply and Operations Management, 1(1), 54–68.

Pinedo Michael, L. (2008). Scheduling Theory, Algorithms, and Systems. New York University. ISBN: 978-0-387-78934-7, e-ISBN:
978-0-387-78935.

Rahmani Hosseinabadi, A. A., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2019). Extended genetic algorithm for solving
open-shop scheduling problem. Soft computing, 23, 5099-5116.

Rastgar, I., Rezaeian, J., Mahdavi, I., & Fattahi, P. (2021). Opportunistic maintenance management for a hybrid flow shop scheduling
problem. Journal of Quality Engineering and Production Optimization, 6(2), 17-30.

Rezvan, M. T., Gholami, H., & Zakerian, R. (2021). A new algorithm for solving the parallel machine scheduling problem to
maximize benefit and the number of jobs processed. Journal of Quality Engineering and Production Optimization, 6(2), 115-142.

Schworm, P., Wu, X., Glatt, M., & Aurich, J. C. (2023). Solving flexible job shop scheduling problems in manufacturing with
Quantum Annealing. Production Engineering, 17(1), 105–115.

Shareh, M. B., Bargh, S. H., Hosseinabadi, A. A. R., & Slowik, A. (2021). An improved bat optimization algorithm to solve the tasks
scheduling problem in open shop. Neural Computing and Applications, 33, 1559–1573.

150 Yousefi Nejad Attari, M. et al. / Optimizing Open Shop Scheduling: Minimizing Makespan through …

Sharifzadegan, M., Tahmoores Sohrabi, & Chaghoshi, A. J. (2021). Hybrid optimization of production scheduling and maintenance
using mathematical programming and NSGA-II meta-heuristic method. Journal of Quality Engineering and Production
Optimization, 6(2), 79-96.

Torres-Tapia, W., Montoya-Torres, J. R., Ruiz-Meza, J., & Belmokhtar-Berraf, S. (2022). A Matheuristic based on Ant Colony
System for the Combined Flexible Jobshop Scheduling and Vehicle Routing Problem. IFAC-PapersOnLine, 55(10) 1613-1618 .

Ying, K. C., & Lin, S. W. (2023). Minimizing makespan in two-stage assembly additive manufacturing: A reinforcement learning
iterated greedy algorithm. Applied Soft Computing, 138, 110190.

Zhang, G., Sun, J., Liu, X., Wang, G., & Yang, Y. (2019). Solving flexible job shop scheduling problems with transportation time
based on improved genetic algorithm. Mathematical Biosciences and Engineering, 16(3), 1334–1347.

