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Abstract- Automatic modulation classification is used in various 

applications, including satellite communication systems, military 

communication, and submarine communications. In this paper, the 

automatic classification of modulation types is done using a two-stage 

method that combines a short-time Fourier transform (STFT) and a 

hybrid deep neural network (HDNN). At the first stage, using the STFT 

as a data source, the time-frequency information is retrieved from the 

modulated signals. A hybrid deep neural network feed two-dimensional 

(2D) images as inputs. In the second stage, the HDNN feeds the 2D time-

frequency data to classify the various modulation types. Six various 

types of modulation schemes, including amplitude-shift keying, 

frequency-shift keying, phase-shift keying, quadrature amplitude-shift 

keying, quadrature frequency-shift keying, and quadrature phase-shift 

keying, are recognized automatically in the SNR range of 0 to 25 dB. An 

exhaustive computer simulation has been performed to evaluate the 

performance of the proposed digital modulation classification method. 

The simulation results show that, in comparison with the existing 

methods, our proposed method performs well and significantly reduces 

the processing time. 
 

Index Terms- Classification, hybrid deep neural network, modulation, short-time Fourier 

transform. 

 

 

I. INTRODUCTION 

The variety of modulation schemes utilized in the wireless transmission systems is increasing. 

Therefore, quickly and automatically analyzing and classifying communication signals is necessary  

[1]-[2]. Automatic modulation classification (AMC), as a intermediate stage in blind signal 

processing, is an essential approach for detecting modulation types for software-defined radio and 

Cognitive Radio (CR) [3]. Also, the AMC has a wide application both in the military and civil areas.  

For the AMC, two types of classifiers are presented, namely, conventional and deep learning based 
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AMC [4]-[5]. The first type contains the feature-based (FB) and the likelihood-based (LB) methods. 

The LB method classifies the incoming signals by computing their probability function under several 

alternative hypotheses and comparing the outcomes with a specified threshold to determine possible 

categories of received signals. The LB method calculates the likelihood ratios of the received signals 

under different hypotheses to minimize the probability of misclassification. When all the parameters 

except the modulation type are given, the LB approaches are the optimal methods in the Bayesian 

sense. Otherwise, these approaches suffer from the intensive computations and high sensitivity to non-

ideal channel conditions or unknown parameters [6]-[7]. 

The suboptimal FB approaches are presented with less computational complexity. In these 

approaches, the modulation type is determined by analyzing the characteristics of the received signals. 

Although the performance of the LB approach is affected by timing errors and phase errors, it can 

theoretically reach an optimal solution when the complexity increases. Nevertheless, the performance 

of the FB approach is suboptimal, but real-time implementation is possible. The high-quality features 

can achieve high performance at the least cost. These features have been addressed in the literature, 

such as the wavelet transform (WT) [8], the cyclostationarity [9], and the higher-order cumulants [10]. 

Also, cyclic cumulants [11] and cumulants [12] techniques have also been used for feature extraction. 

These features are sent as input to the FB classifiers such as the Random Forests (RF) [13], the K-

Nearest Neighbor (KNN) [14], the Support Vector Machine (SVM), and the Gaussian Naive Bayes 

(GNB) [15]-[16]. These methods are the most common classifiers to determine the AMC based on the 

extracted features. However, these machine learning (ML)-based methods are locally optimum and 

lead to poor performance. 

In recent years, the deep learning (DL) methods have received much attention due to promising 

results in a variety of fields, including computer vision [17], emotion analysis [18], and speech 

recognition [19]. Also, they are used for processing and analyzing information [20], as well as 

wireless communications [21]. It is important to note that some engineers have successfully used the 

DL to complete AMC tasks. 

In [22], for the first time, O’Shea et al. introduced the idea of using the DL to classify ten 

modulation types by the convolutional neural network (CNN). The results have shown more accuracy 

with low SNR and more flexibility in detection than traditional methods. In [23], Residual Networks 

(ResNet) have recognized 24 modulations and have significantly improved the classification 

accuracy. In that paper, the neural network is combined with the baseband signal pre-processing 

method for feature extraction. Yashashwi et al. [24] have built and trained a CNN module for signal 

distortion correction to remove the impact of phase offset and random frequency. The carrier 

frequency offset (CFO) and the phase offset (PO) of the received signals are estimated by an artificial 

neural network (ANN) to eliminate the CFO and the PO effects. 

A  robust AMC method was also presented to identify three types of modulation signals [25]. The 
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simulation results have proved that this CNN-based method consumes less memory and is more 

robust to SNR changes than the conventional methods [25].  In order to detect the modulation types 

using a CNN-based model, the preprocessing technique was introduced in OFDM systems with phase 

shift, and the SNR was also estimated in [26]. The researchers have used in-phase and quadrature (IQ) 

samples to train the CNN as input. In this method, the bad effects of PO in OFDM systems are 

removed, then the classification with high accuracy is obtained. 

 On the other hand, Peng et al. [27] have employed two pre-trained models (e.g., the AlexNet and 

the GoogLeNet) to produce grid-like topologies in the images. They are used for the AMC. When 

employing feature fusion to improve performance, these are only relevant to the signal model of white 

Gaussian noise, which has many time-frequency transformations [28].  

Even though all of these methods modify the AMC performance and reduce well-researched image 

identification challenges, they require complex image processing steps. In fact, the long short-term 

memory (LSTM) is adept at identifying the recurring patterns in long-term datasets. The LSTM 

network was trained by Rajendran et al. [29] using the received signals' amplitude and phase 

information and the recognition accuracy at SNR above 0 dB was approximately 90%. However, the 

spatial features of the signals are not taken into calculation. 

Recently, in [30], a combination of the ResNet and the LSTM has been presented for the AMC. 

This method has achieved 92% accuracy. It is noteworthy that the ResNet has increased the 

complexity of the architecture. In [31], to decrease its complexity, a lightweight complex-valued 

residual network (CVResNet) has been introduced. Nonetheless, the accuracy rate is reduced, too. 

This paper proposes a fast AMC technique based on HDNN named the CNN-LSTM, which 

combines the benefits of both the CNN and the LSTM. In comparison with [30]-[31], our proposed 

technique not only reduced the complexity of the CNN, but also increased the accuracy rate. The two-

dimensional data are extracted from the modulated signals using the STFT method. Next, the 

spectrogram images are sent into the HDNN algorithm to obtain the modulation type of the signals. 

The simulation results have shown that the combination of the CNN and LSTM gives excellent results 

for a wide range of SNR (i.e., 0 - 25 dB). In fact, the proposed method has a significant reduction in 

the training time with negligible accuracy deterioration. 

Modulation types for AMC are presented in Section 2. The proposed method called STFT-HDNN 

for classification is given in detail in Section 3. Section 4 presents the research findings. Finally, 

Section 5 summarizes the results and suggestions for future research. 

 

II. DIGITAL MODULATION TECHNIQUE 

The digital modulation provides a desired level of data security while it increases information. 
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Table I. Differences between ASK, PSK, and FSK Modulation Techniques. 

 

capacity with a faster system and higher connection quality. They are more widely used than 

analog modulation due to their ability to transmit more information. 

There are many digital modulation techniques. A digital baseband conversion is referred to a band-

limited high-frequency passband signal that is used in digital transmission. The fundamental 

modulation methods are the ASK, FSK, and PSK that are used in the transition bands. The equations 

of these types with their advantages and disadvantages are shown in Table I.  

The amplitude, frequency, or phase of the carrier can be changed between two or more different 

values to provide multi-level transmission. Also, it is possible to improve the data transmission 

throughput by using multiple carriers. In binary information transmission, a group of bits is often 

assigned to its own unique carrier. This transmission carrier has provided the information represented 

by the bit set. The QASK, QFSK, and QPSK modulations are commonly utilized in multiple-level 

modulation [32].  

These modulations transmit two bits simultaneously. Thus, it doubles the transmission speed. The 

8, 16, or 32 carriers increase the data transfer rate. Moreover, increasing the number of carriers 

increases the complexity of signal demodulation. 

 

III. THE PROPOSED HDNN MODEL 

In this section, we present our proposed method for fast classification of the modulation signals in 

the presence of noise. First, the modulation signals are converted into two-dimensional images by the 

STFT to obtain the time-frequency information. Secondly, this information is fed into the HDNN 

model as input data for classifying the modulation signals. To verify the results, it is applied to a 

classifier of basic digital modulation signals including ASK, FSK, PSK, QASK, QFSK, and QPSK. In 

Parameter ASK PSK FSK 

Modulation Types 
Amplitude Shift 

Keying 
Phase Shift Keying 

Frequency Shift 

Keying 

Modulation Equations ( )
ASKmX t = cosm cA w t

 
( )

PSK
mX t = cos( )c mA w t +

 
( )

FSK
mX t = cos( )cA w t

 

Carrier Signal 

Amplitude is varied 

for binary 

representation 1 or 0 

Phase is varied  for binary 

representation  1 or 0 

Frequency is varied  

for binary 

representation 1 or 0 

Advantage Simplicity 

Fewer errors than ASK; 

Possibility to use a higher 

data rate than FSK 

-Fewer errors than 

ASK 

Disadvantage 
It is more affected by 

noise. 

The signal recovery process 

is more complex than ASK 

and FSK. 

2*Spectrum of ASK 

Application 
Transmit digital data 

over optical fiber 

radio communication 

system 

Wireless 

transmission, high-

frequency audio 

lines. etc. 
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Fig. 1. Diagram of the proposed method. 

In Fig. 1, a schematic diagram of the proposed method is shown 

 

A. Short-Time Fourier Transform (STFT) 

The STFT is a Fourier-associated transform utilized to find the sinusoidal frequency and phase 

content from the local signal sections as the signal changes over time. One of the common 

applications of the STFT is audio signal analysis [33]. There are two steps in the STFT: first, the 

temporal signals are segmented into equal lengths. Secondly, the Fourier transform is applied to each 

of these segments to obtain the time-frequency information in the form of a time-varying spectrogram 

as a function [34]. This means obtaining a time-frequency dilation instead of a Fourier transform 

model. The spectrogram extracted from STFT in continuous time can be written as equation (1). 

( , ) ( ). ( ).
j

S t f s t w t e d
+

−


−

= −   . 
 

(1) 

where the window is controlled by the variable τ in (1) which shifts the window using the s(t) 

waveform. The w(t − τ) is the window function. 

The STFT algorithm relies on the selection of the proper window. The frequency resolution of a 

rectangular window is lower than a triangular window. Because it decreases the frequency range. In 

the STFT, the window's width is reduced to increase the visibility of the time axis. In this instance, the 

frequency axis is decreased [35]-[36]. 

Discrete-time signals are often divided into equal overlapping frames. Then, a Fourier transform is 

performed on these frames [37]. Therefore, as shown in equation (2), a matrix is created that gets the 

phase and magnitude of points in time and frequency. 

1

( , ) [ ]. [ ].
N

jnk

n

S k s n w n e−

−

 = −      (2) 
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Fig. 2. Diagram of the proposed CNN-LSTM classification 
 

where w(n) and s(n) denote the window function of length n and the converted signal. Therefore, 

the quadratic STFT takes the linear spectrogram as equation (3). 

2( , )  ( , )pS k S k =      (3) 

 

B. Proposed HDNN for classification 

In this paper, we describe a fast automatic signal modulation classification based on the HDNN. It 

combines the benefits of the CNN and LSTM networks. The speed and accuracy of AMC are critical 

for many applications. Thus, the combination of CNN and LSTM increases classification efficiency. 

Because CNN networks extract spatial features of the input information well and classify quickly. In 

addition, LSTM networks capture sequence data to extract temporal features accurately. Therefore, 

classification accuracy is increased. Fig. 2 displays the architecture of our proposed CNN-LSTM for 

AMC. 

A convolutional neural network (CNN) is a type of artificial neural network including a set of 

sequential and deep feed-forward layers [38]. These layers produce local features of the input 

information [39]. Most of these layers are followed by the pooling layer, which contributes to 

capturing relevant local features and reduces computational complexity. Rectified Linear Unit (ReLU) 

is embedded between these layers as an activation function which can make network training more 

efficient. These networks also contain fully connected layers which include a softmax regression layer 

to obtain the desired classification. Backpropagation algorithms are used to train CNNs with cost 

minimization based on weights (W) as equation (4). 

( X )) 
1

=   (p yi

i

iln− L  
lXl

l
lXl

 (4) 

where, lXl is the number of training data, Xi
 is the ith training data with the label corresponding to 

yi
, and )(p(y Xi il  points out the probability which accurately shows Xi

matching. 
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Fig. 3. Structure of the basic LSTM. 

The LSTM model has achieved high classification accuracy for many applications and a wide range 

of modulation signals [40]. It is a common type of recurrent neural network (RNN), but its 

architecture contains special gates that help improve the vanishing gradient problem [41]. The 

architecture of LSTM possesses a short-term memory of RNN that can persist for a vast number of 

time steps. It means "long short-term memory" [42]. Linking the previous and current state of the 

LSTM increases its ability to learn temporal data. Fig. 3 illustrates the structure of the basic LSTM. A 

memory cell can store information for long periods, and the gates regulate data flow into and out of 

the cell. Whereas the input gate is responsible for defining the new information of the current state, 

the forget gate determines which information of the previous state should be stored or discarded. The 

output gates control the current state information. 

Since the output gate information retains useful long-term dependencies, the LSTM network makes 

predictions about the current and future steps. The mathematical equations for the LSTM network 

gates are given in equations (5-9). 

11(  [ , , ] )
tt t t tf W x h C b
−−=  +  (5) 

11(  [ , , ] )
tt t t ii W x h C b
−−=  +  (6) 

1(  [ , , ] ) 
tt t t oO W x h C b−=  +  (7) 

1 11 tanh(  [ , , ] )
t tt t t t t cC f C i W x h C b
− −−=  +  +  (8) 

tanh( )  i th Ct o=   (9) 

 

where tf , ti , and tO  are the activation vectors of the forget, input, and output gates, respectively. tx

refers to the input vector.  The weight vector is W , and the bias vector is b . th  is the output of the 

LSTM unit, and 1th − is the output of the previous cell. tC is the cell state, and 1tC −  shows memory for 

the previous cell.   is the sigmoid function. 

The CNN-LSTM based on the STFT algorithm is the basis of our proposed AMC technique. An 

innovative approach to the classification of six modulation signals with 0-25 dB noise levels ranging 

is presented in this research. Modulation methods encode data from 1 to 255. These modulated signals 

are fed to the STFT for obtaining the time-frequency information as the HDNN input. 
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Then, the recovered time-frequency data are fed into the CNN, LSTM, and fully connected layers 

(i.e., HDNN method), respectively. The steps of our proposed strategy are shown in Fig. 1. The input 

signal (time-frequency) is processed by several convolutional layers. In this design, three 

convolutional layers with 256 feature maps are employed. The dimension of these convolutional 

layers is 9 * 9, 4 * 3, and 4 * 3, respectively. We use a non-overlapping maximum pooling technique 

and apply frequency pooling. The size of the pooling layer is 3*3. 

Then, the LSTM layers are applied. It is ideal for time series modeling. They take the CNN output 

and apply it as the input data. In fact, we used two LSTM layers with 832 cells and a 512-unit 

projection layer to reduce the size of the final model. 

CNN has advantages such as learning local features, transformation invariance of input data, and 

weight-sharing. However, it has limitations such as the problem of vanishing gradients. Therefore, in 

this paper, we have used the LSTM to solve the above problem because it has memory and it does not 

require a previous length of the input data. Thus, using the two networks together increases the 

accuracy of the proposed method in automatically classifying modulation signals due to its ability to 

obtain temporal and spatial features from the input information. 

 
 

IV. EXPERIMENTAL RESULTS 

This paper has explained a digital modulation classification system using hybrid STFT and CNN-

LSTM approach. Decimal data from 1 to 255 are encoded in six modulated types with noise levels (0 

- 25 dB). Fig. 4 shows the graphical Matlab simulations of the modulation types (e.g., ASK, PSK, 

FSK, QASK, QASK, and QASK) with different SNR rates and 5 dB increments.  

The result is 255*6 samples. Using the STFT technique,  9180 images are obtained as the spectrum 

diagram representing the time-frequency information. Fig. 5 shows graphical simulations for spectrum 

images extracted from modulation signals by the STFT algorithm. 

    For the proposed digital modulation classification, two experiments are configured: First, we 

have considered the success of our proposed method in classifying the modulated signals with a 5 dB 

SNR value, where 255 samples were classified for each category. In the second test, 1530 samples 

from each category have an SNR ranging from 0-25 dB. As a result, the proposed HDNN is fed with 

9180 spectrum images obtained from standard STFT, and these images are automatically cropped to 

remove undesirable white regions for increasing accuracy. Then, the spectrum images as time-

frequency information are used as input for the proposed classification network (i.e., HDNN). All 

experiments took place on a computer equipped with MATLAB (2021a) as well as an NVIDIA 

GeForce GTX 1660Ti graphics card with 16 GB of RAM. 

The HDNN model is fed total data from 1530 spectrogram images for each class. To classify the 

modulation signals, the data are randomly split into 70% and 30 % for training and testing, 
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respectively. We have used a confusion matrix to quantify the model's performance for the digital 

AMC challenge. Here, this matrix has a diagonal pattern for recognizing modulation types. It 

emphasizes a high degree of categorization accuracy of the model. The results are shown in Fig. 6. 

In Table II and Table III, the experiment's outcomes are summarized. As we have seen, the overall 

accuracy of all SNRs is above 99%. This confirms that the suggested technique is robust against 

background noise. To determine the effectiveness of our method, we have utilized the recall, 

precision, accuracy, and F1-score metrics, as shown in (10), (11), (12), and (13) [43]. 

 

  thfor i class

true positive
Recall

true positive false Negative

 
=  

+ 
 

 

(10) 

 

  thfor i class

true positive
Precision

true positive false positive

 
=  

+ 
 

 

(11) 

    

   thfor i class

total number of correct samples
Accuracy

number of total sample

 
=  

 
 

 

(12) 

1 2
thfor i class

precision recall
F score

precision recall

 
− =  

+ 
 

 

(13) 

These metrics have been obtained using false negative, true positive, true negative, and false 

positive indices. The suggested approach's overall accuracy, recall, precision, and F1-score are 

99.92%, 99.87%, 99.87%, and 99.87%, respectively. Nonetheless, the FSK is the worst-classified 

modulation type with 99.7% accuracy. 

The results of the experiment have validated the efficacy of the suggested strategy for the 

modulation categorization task. Depending on the STFT with the CNN-LSTM, we have developed a 

hybrid method to categorize digital modulation types. We have used the STFT which generates 

spectrograms as our data source. It is possible to use several different window functions, such as 

Hamming or Hann. 

Finally, we have compared the proposed technique to various pre-trained CNN-based models for 

digital modulation categorization. We have used VGG-16, GoogLeNet, VGG-19, ResNet-101, and 

AlexNet to compare our proposed model. These models' architecture is not considered in this study. 

They just had the default parameters to train and test. Results are shown in Table IV. with various 

performance metrics. Generally, the CNN models have obtained a high classification accuracy (more 

than 99 percent accuracy). ResNet-101 training has lasted an average of 917 minutes. The VGG-19, 

GoogleNet, and VGG-19 were tested for over an hour. The elapsed time is illustrated in Table IV and 

Fig. 7. They make it easy to demonstrate that ours is more rapid than other methods with a negligible 

decrease in AMC accuracy over a wide range of SNRs. In fact, the reduction in processing time was 

predictable and expectable. Because other networks are more complicated than our proposed network. 
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Fig. 4. The graphical simulations for data of 10110100 from six modulation signals with 5 dB. 
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Fig. 5. The graphical simulations for spectrum images extracted from modulation signals by the STFT algorithm. 

 

In addition, we have fed effective and meaningful features to the network. Furthermore, the results 

obtained from various metrics are shown in Fig. 8 and Fig. 9. 
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Fig. 6. Categorization outcomes due to the confusion matrix. 

 

Table II. Accuracy of the proposed method with different SNR rates. 

Classes 

                              SNR (dB)  

0 5 10 15 20 25 Average accuracy 

ASK(Ours) 99.8% 99.8% 99.9% 99.9% 99.9% 99.9% 99.86% 

FSK(Ours) 99.5% 99.5% 99.7% 99.9% 99.9% 99.9% 99.7% 

PSK(Ours) 100% 100% 100% 100% 100% 100% 100% 

QASK (Ours) 100% 100% 100% 100% 100% 100% 100% 

QFSK (Ours) 100% 100% 100% 100% 100% 100% 100% 

QPSK (Ours) 100% 100% 100% 100% 100% 100% 100% 

Average accuracy 

(Ours) 
99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.926% 

 

Table III. The results of the proposed method with all SNR rates in classes. 

Classes Acc. Precision Recall F1 score 

ASK(Ours) 99.86% 99.75% 100% 99.875% 

FSK (Ours) 99.7% 99.5% 100% 99.749% 

PSK (Ours) 100% 100% 100% 100% 

QASK (Ours) 100% 100% 100% 100% 

QFSK (Ours) 100% 100% 99.502% 99.751% 

QPSK (Proposed) 100% 100% 99.751% 99.875% 

Average (Ours) 99.926% 99.875% 99.8755% 99.875% 
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Table IV. The results of our proposed approach and several CNN models for AMC. 

Metrics AlexNet VGG16 VGG19 Googlenet ResNet101 Proposed 

Acc. 0.9939 1 0.9989 0.9956 1 0.99926 

Precision 0.9940 1 1 0.9978 1 0.99875 

Recall 0.9939 1 0.9989 0.9967 1 0.998755 

F1 score 0.9939 1 0.9995 0.9973 1 0.99875 

Time(min) 27.3 206.1 240.3 217.5 917.4 1.5 

 

 

Fig. 7. Comparison of training time between our proposed model and other CNN models. 

 

 

Fig. 8. Performance of our proposed model and other pre-trained models. 

 

  Fig. 9. Accuracy of our proposed model and other pre-trained models. 
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V. CONCLUSION 

Recent deep-learning networks have been utilized in the AMC issue. This paper has introduced the 

HDNN method for an automatic classification task based on spectrograph images. Initially, the 

transfer learning approach is employed to test the method's robustness in a range of SNR values (from 

0 to twenty-five dB) with six types of modulated signals. According to the results, we have concluded 

that our model is able to correctly classify different types of modification. In other words, the 

experimental results have shown that the proposed HDNN model can determine the types of 

modulation well. The classification accuracy of the proposed method is more than 99% for all types of 

signals with different SNR values. On the other hand, the performance of the proposed model has 

been compared with other CNN methods, such as VGG-19, GoogleNet, ResNet 101, and VGG-16, in 

the AMC task. It was found that the proposed method has outperformed all other methods in terms of 

efficiency and training speed. The training time of the proposed method was 1.5 min. Since the AMC 

is very important for classifying signals in communications systems, we can concatenate other 

networks for the AMC task in the future. 
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