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Abstract –Supply chain coordination deals with the joint efforts of supply chain parties and making optimal 
global decisions, which in turn can improve the overall performance and efficiency of the entire supply chain. 
In many cases, the supply chain coordination problem leads to the formulation of a continuous-time optimal 
control model, where the optimal response is often calculated from numerical methods. Therefore, in this 
paper, a novel approach to optimal control problems is proposed by expanding a modern formulation 
supported by progressive concepts of differential geometry and Poisson geometry. This approach leads to 
providing an analytical answer to solve the optimal control problem in such a way that the Hamilton-Jacobi-
Bellmann partial differential equation (PDE) can be converted into a reduced Hamiltonian system. To check 
the effectiveness of the proposed formulation, the problem of coordination of supplier development plans in a 
two-level supply chain including a single supplier and a manufacturing firm is investigated. The application 
of this approach is well illustrated by re-examining a numerical example. The unique advantages of the 
proposed approach lead to its efficiency in finding the exact solution of optimal control models in various 
optimization problems. The developed method provides further insights into analytical methods for solving 
supply chain coordination problems and is supported by advanced geometric concepts and structured 
instructions. 
 
Keywords– Optimal Control Problem, Poisson Bracket, Hamiltonian System, Supply Chain Coordination, 
Supplier Development.                     

I. INTRODUCTION 
One of the main topics studied in supply chain management that has been paid attention to in recent years is supply 

chain coordination, which has received the attention and investigation of supply chain researchers and experts (Adabi & 
Mashreghi, 2019; Dastyar et al., 2020; Hasan-Zadeh, 2017). What is defined as supply chain coordination is the joint 
efforts of supply chain members who work together towards mutually defined goals and activities, including supplier 
development, coordination with suppliers and customers, etc. (Hasan-Zadeh, 2019; 2021a). It is concerned with making 
globally-optimal supply chain decisions that can benefit all supply chain members, instead of individual decisions 
(Hasan-Zadeh, 2021b; 2021c; Eshaghnezhad et al., 2023). 
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The noteworthy point is that supply chain coordination undertakes a significant task in improving the overall 
performance of the supply chain and the lack of coordination between supply chain partners may reduce its efficiency 
and lead to adverse consequences in supply chain operations.Therefore, the centralized decision-making and various 
mechanisms are used by supply chain partners including revenue sharing, risk sharing, synchronized operation, etc., to 
achieve coordination purposes (Hasan-Zadeh, 2021b; Hasan-Zadeh, 2021c; Hasan-Zadeh & Mohammadi-khanaposhti, 
2018; Hosseini-Motlagh et al., 2020a,b). 

In many industries, manufacturing firms establish strategic and long-term relationships with their suppliers through 
the implementation and support of supplier development programs (Hosseini-Motlagh et al., 2019). The goal is to 
improve the performance and capabilities of the suppliers to meet short- and long-term supply needs of manufacturing 
firms, which in turn results in improving operational performance in terms of cost, quality, delivery, etc. (Hosseini-
Motlagh et al., 2020; Hsieh, 2018; Hu et al., 2020; Jian et al., 2020; Arasteh, 2022; Javadi et al. 2022; Nabavi et al., 
2021). Such a strong relationship between manufacturers and suppliers enhances the overall efficiency and profitability 
of both parties and helps to create a sustainable competitive advantage (Jian et al., 2020; Johari & Hosseini-Motlagh, 
2020; Kotzab et al., 2019; Li et al., 2017).  

Despite its potential benefits, supplier development programs may not be attractive to suppliers because suppliers 
may prioritize their own goals and be reluctant to modify their internal processes (Pham & Doan, 2020; Proch et al., 
2017). Since the success of a supplier development program depends on mutual recognition and aligned objectives, 
coordination between supplier and manufacturer is required (Hosseini-Motlagh et al., 2020a; Kim, 2000; Kotzab et al., 
2019; Jafarzadeh et al., 2022; Keshmiry Zadeh et al., 2021). Thus, the optimal decision on supplier development is 
characterized by a solution for the problem of supply chain coordination. 

Many problems of supply chain coordination, which were mentioned above, involve formulating and solving a 
continuous time optimal control model with an equation of an incomplete Hamiltonian system, in which the exact 
optimal solution cannot be obtained, and instead, it should be approximately estimated by numerical analysis 
(e.g., Hosseini-Motlagh et al., 2019; Kim, 2000; Kotzab et al., 2019; Ivanov et al., 2016; Kar et al., 2015; Hsieh, 2018; 
Mohammed & Khudair, 2023; Sutrisno et al., 2022; Roth et al., 2023). Therefore, in this paper, a new approach 
supported by advanced concepts of differential geometry and Poisson geometry is used to provide an exact (and not 
approximate) answer. For this purpose, the main problem is transformed into a reduced Hamiltonian system, then its 
analytical answer is formulated and presented. 

For this purpose, after studying some required concepts, it is possible to expand the optimal control problem by 
considering other derivatives of Hamilton's function. This, in turn, leads to the generation of a complete set of equations 
in mR  (in which the desired optimal control problem is considered by considering all variables and without replacing 
fixed values). For a Hamiltonian system, there is a relation between the symmetry groups of one-parameter variations of 
the system and the first integrals. On the other hand, the Hamilton-Jacobi-Bellmann PDE is formulated using dynamic 
programming, which in turn is an infinitesimal version of the optimal control problem as a partial differential equation 
(PDE). Then the Hamiltonian system related to this PDE can be considered. Finally, using the first integrals and 
extended symmetry groups, it can be demonstrated that the problem under consideration can be solved for any 
admissible control in a detracted Hamiltonian system corresponding to the Hamilton-Jacobi-Bellmann PDE in the 
control problem (nonlinear) solved. 

The application of symmetry groups to detract the desired partial differential equation to a Hamiltonian system of 
ordinary differential equations is parallel to the procedures used for the Euler-Lagrange equations, with the advantage 
that it also includes transparent geometric interpretation. Thus, in this framework optimal control problems with 
dynamic requirement that apply Pontryagins maximum principle to the corresponding Lagrangian system (e.g., 
Bertsekas, 1999) can be investigated and generalized. 

In this paper, the proposed approach mentioned above is used to obtain an optimal solution for the supplier 
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development coordination problem in a two-level supply chain including a supplier and a single manufacturer. The 
remainder of this manuscript is formed as follows. In Section 2, the essential notions, and theorems on optimal control 
problems, differential geometry, and Poisson geometry are expressed, which are used to extend a novel demonstration 
of the model. Section 3 explains the ingredients of the suggested solution method. The proposed approach to the 
supplier development coordination problem in the supplier-manufacturer supply chain is discussed in Section 4. In 
section 5, a numerical example is presented to compare the numerical answer and the analytical answer derived from 
the proposed approach and to justify the various advantages of the proposed approach. Finally, the conclusion is 
discussed in the 6th section of the manuscript. 

II. PROBLEM  DESCRIPTION AND FORMULATION 

A. Preliminaries  

A.1. Optimal control problem  
The optimal control problem is considered in the following simple and usual way: 

( )
( )

( ) ( ) ( )
( ) [ ]

0
max

  ,

0

, 0

T
J = I t,u,v dt,

provided that u = t,u,v

u = a, u  arbitrary, a,  given

and v t  V  t ,

ϕ

τ τ

τ∈ ∀ ∈

∫


 

(1) 

 
Where, V  is some bounded control set including t , time, u , state, and v  as control, respectively. Also, another 

variable ( )= tµ µ  is the costate variable (or subsidiary variable), which appears in the solution process by the 

Hamiltonian function H , which is defined as follows: 

( ) ( ) ( ) ( ), ,t,u v, = I t,x,u + t t,u vµ µ ϕ ⋅H
 

(2) 

 
The maximum principle conditions that can be considered for the problem in (1), with the Hamiltonian function 

introduced in (2), are: 

( ) [ ]

( )

( )

max , , 0 ,
v

t,u v ,  for all t ,

u = ,  equation of  motion for u

= - ,  transversality condition
u

µ τ

µ

µ

∈

∂
∂

∂
∂



H

H

H
 

(3) 

 
which symbol max

v
H  demonstrated that the Hamiltonian should be maximized considering only as the selection 

variable v and then a Hamiltonian system is obtained. 

Note that, exclusive focus will be given to maximization problems in control theory.. This leads to a more detailed 
and transparent expression of the requirements for optimization conditions under which a minimization problem is 
addressed, such as in a sequel, it can always be reformulated as a maximization problem by multiplying the objective 
function by a negative sign. 
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Now, some geometric notions are studied, which are needed in the sequel. More details can be found in the literature 
(Bertsekas, 1999). In the following sub-section, a summary is given for some notions from differential and Poisson 
geometry to establish the main results so that the paper contains all the required concepts. 

B. Geometric ingredients 

B.1. Preliminaries of differential geometry 

Similar to the notions presented in the literature (Olver, 1993; Rudolph & Schmidt, 2013), a k -dimensional 
manifold is considered as a set K , besides denumerable coordinate charts rA ⊂K  and one–to–one local 

coordinate maps :r r rA Bη →  onto connected open subsets ,k
rB ⊂ R  with convincing the addendum properties: 

The coordinate charts envelope K . On overlap of any pair of coordinate charts r sA A  , composite map 

( ) ( )-1 :s r r r s s r sA A A Aη η η η→   , is a smooth function. If ru A∈  and su A∈  are different points of K  then, 

there exist open subsets rC B⊂ , sC B⊂ , with ( )r u Cη ∈ , ( )s u Cη ∈  , and ( ) ( )r sC Cη η  as empty sets. 

Suppose that λ  is a smooth curve on a manifold K , parameterized by :[ , ]a bλ →K , where [ , ]a b  is a 

subinterval of R . At each point of λ  , the curve has a tangent vector ( )1 .m
d= = ,...,
dt
λλ λ λ    Tangent space to K  at 

u  presented by |uTK  is an k –dimensional vector space, with a basis 
1

,...,
mu u

 ∂ ∂
 
∂ ∂ 

 in the given local coordinates. 

The integral curve of a vector field u u| T |ω ∈
 K  expresses a smooth parametric curve ( )u = tλ  whose tangent vector 

at any point is equal to the value of ω  at the same point ( ) ( )tt = |λλ ω


 for all t . 

For a vector field ω , introduced by ( ),t uΩ  the parameterized maximal integral curve transient of u in K , 

which is called the flow generated by ω  or a one–parameter group of transformations, and the vector field ω  is also 
named the infinitesimal generator of the action. Local one-parameter groups of infinitesimal transformations and 
generators are in one-to-one correspondence with each other. 

For computing the one–parameter group produced by a given vector field ω , it is referred to exponentiation of the 

vector field ( ) ( )exp t u t,uω ≡Ω


 so that, for all u∈Ω  

( ) ( )expexp ,t u
d t u = |
dt ωω ω   



 
(4) 

 

If ( )i
i i

= uω σ
σ
∂
∂∑  and :ϕ → RK  is a smooth function, then applying the chain rule and (4), then: 

( )( ) ( )( ) ( ) ( ) ( )( )
1

exp exp exp = exp
m

ii=

d t u = t u t u t u .
dt u

ϕϕ ω σ ω ω ω ϕ ω∂
  ∂∑    

 
(5) 
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For a smooth real–valued function ( ) ( )1 mu = u ,...,uϕ ϕ  of m  independent variables, there are
1

n

m+ n -
m

n
 

≡  
 

 

different n –th order partial derivatives of ϕ . Multi–index notation is used ( ) ( )
1 2

...
n

n

l l l

u
u =

u u u
ϕ

ϕ
∂

∂
∂ ∂ ∂

 for these 

derivatives. More commonly, if : D Aϕ →  is a smooth function from mD ≈ R  to A ≈ R , then 

( ) ( ) ( )( )1 ,...,= u = u uυ ϕ ϕ ϕ , the . nm  numbers ( )r
P P r= uυ ϕ∂  are necessary to express all the different n -order 

derivatives of the components of ϕ  at a point u . Let . nm
nA ≡ R  be the Euclidean space of this dimension with 

coordinates r
Pυ  corresponding to 1  r = ,..., , and all multiple indices of ( )1,..., nP = p p  of order n  such that it is pl to 

introduce the above derivatives. Moreover, ( )
1 ...j

jA = A A A× × ×  is a Cartesian product space whose coordinates 

express all derivatives of functions ( )= uυ ϕ  from all rows 0  to j . A generic point in ( )jA  is marked by ( )jυ . It is 

supposed that the j –th length of a smooth function ( )= uυ ϕ , : D Aϕ → , i.e. ( ) ( ) ( )j j= pro uυ ϕ , introduced by the 

equations ( )r
P P r= uυ ϕ∂ . In addition, a system of differential equations of order j  in m  independent variables and s  

dependent variables is investigated, stated as a system of equations ( ), 0ju =θ υ∆ , for 1,...,= iθ , containing 

( )1,..., mu = u u , ( )1,...,=υ υ υ  and the derivatives of υ  with respect to u  up to order j . 

For a vector field ω  on D A⊂ ×K , j –th prolongation of ω , expressed by 
( )jpro ω


 will be a vector field on j
–jet space ( )jK  and is introduced to be infinitesimal generator of the corresponding prolonged one–parameter group 

( ) ( ) ( ) ( )( )( )
0exp | exp , ,j jj

t=
dpro t = pro t u
dt

ω ω υ     
 

 for any ( )( ) ( ), j ju υ ∈K .  

Now, suppose ( )( ), jG u υ  be a smooth function of u , υ  and derivatives of υ  up to order j  are defined on an 

open subset ( ) ( )j jD A⊂ ×K . The total derivative of G  with respect to lu  is the unique smooth function 

( ) ( )( ) ( ) ( )( ){ }1j+ jD G u, pro u = G u, pro ul ul
ϕ ϕ∂

∂
 expressed on ( )1j+K . It can be represented that for ( )( ), jG u υ , 

l –th total derivative of G  has a common form of 

,
1

,r
l P l r

r= Pl P

G GD G = +
u

υ
υ

∂ ∂
∂ ∂∑∑



 
(6) 

 

Where, for ( )1 ,..., nP = p p , 

1

1

, .
...

n

r n+ r
r P
P l

l l p p

= =
u u u x
υ υυ ∂ ∂
∂ ∂ ∂ ∂

 
(7) 

In (6), the sum is over all P 's of order ≤0 # P j≤ , where n  is the highest order derivative becoming in G . For a 

vector field ( ) ( )
1 1

, ,
m

l r
l= r=l r

= u + u
u

ω σ υ η υ
υ

∂ ∂
∂ ∂∑ ∑

 on an open subset D A⊂ ×K , j –th prolongation of ω  is the 



74 Hasan-zadeh, A. / Developing a new formulation and exact solution approach for continuous-time optimal … 
 

 

vector field ( ) ( )( )
1

,j jP
r r

r= P P

pro = + uω ω η υ
υ
∂
∂∑∑

  ,  stated on the corresponding jet space ( ) ( )j jD A⊂ ×K . 

Coefficient functions P
rη  of 

( )jpro ω


 are admitting by the following formula:
 ( )( ) ,

1 1
,

m m
jP r r

r P r l l l P l
l= l=

u = D - +η υ η σ υ σ υ 
 
 

∑ ∑ , in which from (6) ,it will be r r
l

l

=
u
υυ ∂
∂

, and 
,

r
r P
P l

l

=
u
υυ ∂
∂

.  

A generalized vector field is stated as a (typical) formulation of the form [ ] [ ]
1 1

m

l r
l= r=l r

= +
u

ϑ σ υ η υ
υ

∂ ∂
∂ ∂∑ ∑



, in 

which lσ  and rη  are also smooth differential functions, [ ] ( )( ), j
l l= uσ υ σ υ  and [ ] ( )( ), r

r r= uη υ η υ . 

Note 2.1: It can be demonstrated that a generalized vector field ω  will represent a generalized infinitesimal 
symmetry of a system of differential equations in the following sense: 

[ ] ( )( ), 0,      1,..., ,j= u = = iθ θυ υ θ∆ ∆
 

(8) 

 
if and only if 

[ ] 0,    1,..., ,pro d = = iθω θ∆


 
(9) 

 

for every smooth solution ( )= uυ ϕ .  

B.2. Preliminaries of Poisson geometry 

Similar to the notions introduced in the previous studies (Gutt, 2005; Da Silva & Weinstein, 1998), a manifold K

has been considered with a Poisson structure { }.,.  on K , meaning that to each pair of smooth real-valued functions 

,R S  on K , a smooth real-valued function { },R S  on K  is assigned with the main properties of bilinearity, 

skew–symmetry, Jacobi's identity and Leibniz's rule. 

Consider K  as a Poisson manifold on which : → RH K  is a smooth function. A Hamiltonian vector field 

corresponding to H  is a unique smooth vector field ω̂H
 on K  satisfying ( ) { } { }ˆ , ,R = R = - RωH H H . In 

the local coordinates ( )1,..., ku = u u  on K , the Hamiltonian vector field will correspond to the general form of 

( )
1

m

l
l= l

= u
u

ω σ ∂
∂∑H

, so that the coefficient functions of ( )l uσ  that depend on H  are determined in a specific way. 

Then, 

{ } { }
1

, ,
k

i
l= l

RR = u
u
∂

⋅
∂∑H H

 
(10) 

 
Using skew–symmetry of the Poisson bracket and (10), the basic formula is obtained for: 
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{ } { }
1 1

, , ,
k k

l p
l= p= l p

RR = u u
u u
∂ ∂
∂ ∂∑∑ HH

 
(11) 

 
for the Poisson bracket. Structure functions of the Poisson manifold K  relative to the given local coordinates, 

( ) { },lp
l pM u = u u  for , 1,...,l p = k  into a skew–symmetric k k×  structure matrix ( )M u  of K  are assembled . 

Using (11), the Hamiltonian vector field associated with ( )uH  has the form of 

( )
1 1

ˆ
k k

lp

l= p= p l

= J u
u u

ω
 ∂ ∂
  ∂ ∂ 

∑ ∑H
H

 
(12) 

 
Thus, in a specific coordinate chart, Hamilton's equations will be in the following form 

( ) ( )du = M u grad u
dt

⋅H
 

(13) 

 

For example, in the manifold 2 j= RK  with coordinates of ( ) ( )1 1, ,..., , ,...,j jx y = x x y y , if ( ),R x y  and 

( ),S x y  are smooth functions, then their Poisson bracket is introduced as the following function: 

{ }
1

,
j

l= l l l l

R S R SR S = -
y x x y

 ∂ ∂ ∂ ∂
⋅ 

∂ ∂ ∂ ∂ 
∑

 
(14) 

 

In the case of standard bracket (14), as in Equation (11), the Hamiltonian vector field corresponding to ( ),x yH  is 

1

ˆ
j

l= l l l l

= -
x y y x

ω
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∑H
H H

. The corresponding flow is achieved by integrating system of ordinary 

differential equations as follows 

1 ,l l

l l

dy dx= ,   = - ,   l = ,..., j
dt x dt y

∂ ∂
∂ ∂
H H

 
(15) 

 
which are the Hamilton's equations in this manner. More details can be found in the literature (Kotzab et al., 2019). 

 B.3. Main acquirements of Poisson and differential ingredients 
According to Sections B.1 and B.2, it is concluded that: 

Attainment 2.1: If ˆ fω  is the Hamiltonian vector field characterizing (12), using (5), for any solution to Hamiltonian 

equations ( )( ) ( )( ) ( ) ( )( ),
ˆ, ,

df u t t f= u t t + f u t t
dt t

ω∂
∂ H

, it will be 0df =
dt

 along solutions if and only if 

{ }, 0,f + f =
t

∂
∂

H
 

(16) 
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holds everywhere. It follows that a function of ( ),f u t  is a first integral for the Hamiltonian system (13) if and 

only if (16) preserves for all ,u t .  

Attainment 2.2: If ( ),f u t  is the first integral of a Hamiltonian system, the Hamiltonian vector field ˆ fω  

specified by f  constructs a one-parameter symmetry group of the system, as in equation (12). This 
demonstrates the fact that the Hamiltonian vector field is an infinitesimal generator (in evolutionary form) of 
a one-parameter group of transformations acting on an open set of the space of independent and dependent 
variables for the system which is invariant under the element of the group. Then, applying (8) and (9) in Note 2.1, 

It can be determined that the vector field ˆ , ,= = f t u
u υ
υω ω ∂ ∂ ∂ H

 is the generalized symmetry of the 

Hamilton-Jacobi equation if and only if ( ), ,f t x y  is the first integral of Hamilton's equations. 

Attainment 2.3: In a Hamiltonian system, one-parameter Hamiltonian symmetry groups whose 
infinitesimal generators are Hamiltonian vector fields are obtained from variational symmetry groups. What is 
the main topic of our methodology is the use of symmetry groups to reduce the order of a Hamiltonian 
system of ordinary differential equations. According to the previously presented concepts: 

Theorem 2.1 (Reduction Theorem 1): Suppose that ˆ 0fω ≠  produces a Hamiltonian symmetry group of the 

Hamiltonian system  u = Mgrad H  corresponding to the time–independent first integral ( ).f u Then, there will be a 

reduced Hamiltonian system containing two fewer variables where every solution of the essential system can be 
specified by a single quadrature from those of the reduced system (Olver, 1993).         

Theorem 2.2 (Reduction Theorem 2): Let u = Mgrad H  be a Hamiltonian system, which ( )g u  does not depend 

on t . Then, there will be a reduced, time–dependent Hamiltonian system involving two fewer variables. Based on 
solutions of the detracted system, solutions of the primary system can be obtained by quadrature (Bertsekas, 1999).           

III. PROPOSED METHODOLOGY 

What is studied is the possibility of controlling the optimality of the response ( ).u  of the following ordinary 

differential equation (ODE): 

( ) ( ) ( )( ) ( )
( )

, ,     

,

u t = u v t

u t = u

ϕ ς ς ς τ< <
 




 
(17) 

 

Where 
d=
dt

⋅ , 0τ >  is fixed final time, and ju ∈R  is a given primary point attained by solution ( ).u  at start 

time 0t ≥ . At subsequent times t ς τ< < , ( ).u  evolves according to an ODE, where : j jUϕ × →R R  is a 

bounded, Lipchitz continuous function, and U  represents some compact subset of kR . The function ( ).v  in (17) is a 

control, which contains of various appropriate schedules for moderating the parameters from the set U  over time, 
thereby influencing the dynamics of the system formulated by (17). For details, see the literature (Evans, 1991). 
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Consider [ ] ( ){ }0, .:= v : U |v  is measurableτ →
 U  as a set of acceptable controls. Here our objective is to detect 

a control ( ).v ∗
 that can drive the system optimally. To this end, for ju∈R  and 0 t τ≤ ≤ , let us define the 

corresponding cost for each allowed control ( ).v ∈
 U : 

( ) ( ) ( )( ) ( )( ), . : , ,u t t
v = I u v d + u

τ
ρ ς ς ς ξ τ   ∫

   

 
(18) 

 
where, ( ) ( ) ( ).. .vu = u

   solves the ODE (17) and : jI U× →R R , : jξ →R R  are certain functions, I  is the 

running cost per unit of time and g  is the final cost. Now, our essential consequences can be stated as: 

Theorem 3.1 (Reduced Control Problem): The optimal problem (17) with the cost function (18) can be solved for 

any admissible control ( ).v ∈
 U , according to the above concepts, in a simpler way of a reduced Hamiltonian system 

with fewer variables. 

Proof: The dynamic programming method focuses on the value function ( )
( )

( ),.
, : inf . , j

u tv
u t = v uυ ψ

∈
  ∈  R


U

, 

0 t τ≤ ≤  to investigate the above problem. For any a small enough 0δ >  that t +δ τ≤ , it will  be:  

( )
( )

( ) ( )( ) ( )( ){ }.
, inf , , ,

t+

tv
u t = k u v d + u t + t +

δ
υ ς ς ς υ δ δ

∈ ∫

  
U  

(19) 

 

where, ( ) ( ) ( ).. .vu = u
   solves the ODE (17) for the control ( ).v . Infinitesimal prescription of the optimality estates 

(19) can be inscribed as a PDE. The value function υ  is the unique viscosity response of this ultimate-value problem 
for the Hamilton-Jacobi-Bellman equation: 

( ) ( ){ } ( )
{ }

min , . , 0,     0,

  ,

j
t

j

+ u D + I u = in

=  on t =
α

υ ϕ α υ α τ

υ ξ τ
∈

×

×

R

R
U

 

(20) 

 
where, ( )1

,...,
jj u uD = D =υ υ υ υ . Same to problem (1) with the Hamiltonian system (2) in Section B, the 

Hamilton-Jacobi-Bellmann PDE (20) has the formation ( ) 0t + D ,u =  υ υH  in ( )0,j τ×R , for the Hamiltonian:  

( ) ( ) ( ){ }, : min , . , ,x u = u x+ I u
α

ϕ α α
∈

H
U  

(21) 

 
for , jx u∈R , where x  is the name of the variable which substitue the gradient Dυ  in the PDE. Corresponding to 

a Hamiltonian system, as in equation (15) the Hamilton-Jacobi PDE is , , 0+ u t =
t u
υ υ∂ ∂ 

 ∂ ∂ 
H . Note that the basic 

maximum caluse aforesaid in (3) is a simplified prescription of this equation. Now, the attainments 2.1-2.3 presented in 
Section B.3 can be applied step by step to this Hamiltonian system. Then, the order of the system can be detracted 
according to the reduction theorems 2.1 and 2.2 and the knowledge of first integrals. The structure of the proposed 
method is summarized in Figure 1. 
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Fig. 1. Schematic of the exposed method 

It is supposed that the Hamilton-Jacobi-Bellman equation of optimal control problem (17) in ( )2 0,τ×R , as the

( )( )2
1 2

1 2

min , . , 0t + t t D + t u u =
u uα

υ υυ υ
∈

 ∂ ∂
 
∂ ∂ U

, for optional 1τ > . Then, it will be: 

( )
2 2

2
1 22 2

1 2

1 0
2t + + + u - u =

u u
υ υυ

 ∂ ∂
⋅ ∂ ∂   

(22) 

 
Step 1 (Hamiltonian System): Assume 4= RK  with standard Poisson bracket. Then, applying the relation (21) to 

(22), the corresponding Hamiltonian function is as follows. 

( ) ( ) ( )22 2
1 2 1 2 1 2 1 2

1
2

x ,x ,u ,u = x + x + u - u ⋅H
 

(23) 

 
Based on Equation (2.15), the corresponding Hamiltonian system is expressed as follows. 

( ) ( )1 2 1 2
1 2 1 2 1 22 2du du dx dx= x ,  = x ,  = - u - u ,  = u - u .

dt dt dt dt  
(24) 

 
Step 2 (Symmetry Groups or First Integrals): According to Equation (23), it is  discovered that the system receives 

an explicit translational invariance 
1 2u u= +ω ∂ ∂

  and the corresponding first integral is 1 2.x + x  

Step 3 (Reduction): According to Theorem 3.1, the new coordinates 1 2x = x + x , 1u = u , 1 w= x , 1 2z = u - u  is 
introduced which straighten out u=ω ∂

 . In these variables, the Hamiltonian function is 
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( ) 2 2 21, , ,
2

x w z = w - pw+ x + zH
 

(25) 

 

and { }, R R R R R RR = + + - - -
u w z w u x w u w z x u
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

H H H H H HH . Furthermore, the 

Hamiltonian system is splitted into 

0,   

,  

2 ,  

2 .

dx = - =
dt u
du = + = w
dt x w
dw = - - = - z
dt u z
dz = = w - x
dt w

∂
∂

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂
∂

H

H H

H H

H
 

(26) 

 
Step 4 (Solving the Reduced System): Response to the former couple, 1 2, ( )x = c u = w t dt + c∫  ( 1 2,c c  constant) can 

be achieved from solutions to the latter pair (26). They make a detracted Hamiltonian system respective to the reduced 
Poisson bracket { }, z w w zR = R - R    H H H  for functions of w  and z with the Hamiltonian system (25) produced by 

fixing 1x = c .  

For obvious integration of Equation (26) and then, finding the precise answer of the primary system (24), again the 

proof of Theorem 3.1 is used such that, by setting ( ) 21,
4

w z = + xβ  
 
 

H , it is  found that: 

( )2 2 21 1
2 4

w - xw+ x +V z = + xβ   
   
   

 or 2 21
2

w= x - zβ± . In this way, the solution is recovered just by 

integrating 22 2dz = w - x - z
dt

β±  and the exact solution of 
22

dz = dt
- zβ

±∫ ∫  or ( )2 21
2

w= x t - - zψ±  is 

obtained . 

IV. APPLICATION OF THE PROPOSED METHODOLOGY TO COORDINATING SUPPLIER 
DEVELOPMENT 

A. Problem description and formulation 
The problem of coordinating supplier development in a two-echelon supply chain as presented in the study by Proch 

et al.(2017) is considered (Adabi & Mashreghi, 2019). The supply chain comprises a single supplier and a single 
manufacturing firm where the manufacturer congregates components from the supplier and sells the final products to 
the market. The goal is to identify the optimal decision for supplier development investment.  

A centralized decision-making procedure is investigated and the supply chain is assumed as an integrated system 
where all parameters containing the optimal measure of endeavor invested in supplier development are chosen 
simultaneously. The performance of the total system is ensured by this decision-making procedure and the optimal level 
of supplier development is chosen, in the sense that it maximizes the profit of the whole supply chain. The variables and 
parameters of this model are epitomized in Table 1. 

http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Adabi
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Mashreghi
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 Table 1. Parameters and decision variables, (proch et al., 2017). 

Parameters/ Variables Description 

a  Prohibitory cost (e.g. maximum willingness to pay) 

b  Worth elasticity of the merchandise 

Mc  Manufacturer's unit production cost 

SDc  Supply cost per unit charged by the supplier 

0c  Supplier's unit production cost at the begininig of the contract period 

( )tx  The measurement of the efforts invested in the supplier development 

m  The supplier learning rate 
( )
( )

( )

1],1,0[

;
ln
ln

0

>∈ χθ
χ
θm=

x=cxc

xc
m

S

S

 Supplier production cost 

r  The supplier fixed profit margin 

( )tu  The effort at time t  
( )tω  Capicity limit of ( )tu  (resource accessibility in terms of time, man strength or budget) 

 

The profit function [ )( )1: 0, ,SCJ L T →R R  of the set of measurable functions and the model of efforts invested 

in supplier development are defined by the following problem: 

( )( )
( )

[ ) [ ) ( )

2 2
0

0

0

4
0, 0 ,  0 1

m
T MSC

SD

a - c - c x t - r
J := - c u t dt,

b
subject to x = u;  u : T ,ω x = x = .→

∫
  

(27) 

 
The centralized collaboration strategy should be determined such that, the accumulated profit function (27) is 

maximized. Using the maximum principle (3) applied to the optimal control problem (27) with the Hamiltonian 
function of 

( )
( )( )

( ) ( ) ( )
2 2

0, , , ,
4

m
M

SD

a - c - c x t - r
t x u = - c u t + t u t

b
µ µH

 
(28) 

 

switching time t∗  can be obtained by the solution to ( ) ( )( ) ( ), , 0SDx u t t = -c + t =
u

µ µ∗ ∗∂
∂
H . Then, as 

investigated in a previous study by Adabi & Mashreghi ( 2019) , t∗  is obtained by numerical analysis from the 
following equation: 

( ) ( )( ) ( )
1

0 01 1

2

m+ m
M

SD

mc + t a - c - c + t
t -T = c

b

ω ω∗ ∗

∗

 

(29) 

 

http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Adabi
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Mashreghi
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More details on the above fromulation have been given in the previous study (Adabi & Mashreghi, 2019). 

B. Conversion of the model based on the proposed methodology 
The optimization problem given in Equation (27) is a common form in many problems of supply chain coordination. 

It results in an equation with different parameters for switching time (Equation (29)) and the optimal control function, 
which can be only evaluated by numerical estimation. In fact, there exists only one equation with different parameters 
(Equation (29)).  

What is more important is the case where the Hamiltonian H  is linear in the control u . In particular, one of the 
simple situations is when H  is plotted against u  as a straight line with a positive or negative slope, since the optimal 
control is always found at a boundary of u . Therefore, the only task is to determine this boundary. Moreover, this case 
shows how optimal control theory can easily guide and manage a complex situation in calculations. 

This simple approach apparently results in the elimination of some equations of the Hamiltonian system in the 
mentioned coordination optimization problem. For example, because an accurate determination of the capacity limit 

( )= tω ω  of ( )u t  in the problem is not critical to our discussion, it is exogenously recognized to be practicable for the 

problem. However, given the proposed approach, all the functions and parameters in the system along with their actual 
effect are considered. Thus, it will be possible to incorporate more variables in the coordination optimization model. 
This can be implemented by considering some variables as multiple functions and then, the Hamiltonian function as a 
function of these variables and their derivatives. Hence, possibly nonlinear optimal control problems are addressed, 
resulting in systems of fully Hamiltonian equations where the equations are considered as variables. Then, these 
complicated systems can be converted into reduced Hamiltonian systems with exact solutions using Theorem 3.1. In 
this way, the exact solution to the original supplier-manufacturer coordination model can be obtained. 

C. Solution method 
According to Equation (27), the corresponding Hamiltonian function (28) can be rewritten as: 

( ) ( )( )( ) ( ) ( ) ( ), , , ,M SC SD= x u d = d p d t - c - c - c u t + t u tµ µH H
 

(30) 

 

with production quantity of ( )
2
M SCa - c - cd t =

b
 and price distribution of  ( ) ( )( ) M SCp d = p d t = a - bd = a+ c + c ; 

0
m

SCc = r + c x .  

Step 1 (Hamiltonian System): Based on Equation (15), the Hamiltonian system will be:

( ) ( )( )
( )

1
0 02

,  ,  ,
4

m- m
M

M SC

- mc x t a - c - c x t d du dx= = - = d a - bd - c - c - bd = - = u =
x b dt d dt dt

µ
µ

∂ ∂ ∂
∂ ∂ ∂

H H H   

SD= -c + = d
u

µ∂
∂

H  which can be written as follows 

( )
( ) ( )( )1

0 0 ,
2

m- m
Mmc x t a - c - c x t

t =
b

µ
 

(31) 

( ) ( ) ,SDd t = c + tµ
 (32) 

( ) ( )M SCu t = d -a +bd + c + c +bd ⋅  (33) 
 

http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Adabi
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Mashreghi
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Step 2 (First Integrals): According to Equation (31), it will be: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

1
0 0

2
0 0

1 1 2 1 2 1

2

2 2

m- m
t M

t

M m- m- m- m-

mc x s a - c - c x s
t = t - ds

b
mc mc= t - a - c I t - I t + I t - I t

b b

µ µ

µ

∗
∗

∗ ∗ ∗

∫

 

(34) 

 

where,
 

( ) ( )
0

s m
mI s = x k dk∫ . Also, according to Equation (32), it will be: 

( ) ( ) ( )( ) ( ) ( ) ( )
t t

SD SDt t
d t = d t - s - c ds = d t - t - t c - s dsλ λ

∗ ∗
∗ ∗ ∗ ⋅∫ ∫  

(35) 

 
Then, substituting this into Equation (33) results in: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

0
1 1

2
0 0

2 1 2 1

4
1

4 2 2

M m- m-

m- m- M m m

mc
u t = u t + -a+c + r I t - I t

b
mc c

+ I t - I t - a - c - r t - t + I t - I t
b

∗ ∗

∗ ∗ ∗

 

(36) 

 

Finally, for ( ) 1x t = + tω , [0, ]t t∗∈ , as expressed in Equation (34), it can be concluded that 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2 2 20 01 1 1 1
2 4

m mm mMc a - c ct = t - + t - + t + + t - + t
b b

µ µ ω ω ω ω
ω ω

∗ ∗ ∗

 
(37) 

 
In addition, based on Equation (35), it will be: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

1 10 0
2

2 22 2 1 2 10 0
2

1 1 1
2 2 1

1 1 1
4 4 2 1

m m+ m+M M

m m+ m+

c a - c c a - c
d t = d t + + t t - t - + t - + t

b b m+

c c- + t t - t + + t - + t
b b m+

ω ω ω
ω ω

ω ω ω
ω ω

∗ ∗ ∗ ∗

∗ ∗ ∗

 

(38) 

 
Finally, Equation (36) results in: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )

0

2 2 2 2 20

1 10

1 1
4

11 1
8 1 2

1 1
2 1

m m
M

m+ m+
M

m+ m+

cu t = u t + -a + c + r + t - + t
b

mc+ + t - + t - a - c - r t - t
m+ b

c+ + t - + t
m+

ω ω
ω

ω ω
ω

ω ω
ω

∗ ∗

∗ ∗

∗

 

(39) 

Step 3 (Reduction): Following Step 2, it will be ( )SD-c + p = u
p u

∂ ∂
∂ ∂
H H

. Then, its first integral is 

22 2 SDu = p - c±  and Equation (30) is reduced to ( ) ( )( )( ) ( )22 2M SC SD SDp,x,d = d p d t - c - c p - c -c + p±H  
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V. NUMERICAL EXAMPLE AND DISCUSSION 
In this section, a numerical example is presented to better illustrate the application and advantages of the proposed 

method. The data of this example is taken from the study of Proch et al.(2017). The proposed approach is applied and 
the exact solution algorithm is presented in the research to obtain the results and compare them with the results obtained 
from the numerical estimation. It helps to validate and evaluate the performance and efficiency of the proposed 
algorithm and to analyze and compare the quality of the obtained solution against a reference solution. The parameters 
of the cited numerical example are given in Table 2. 

Table 2 - Parameter values for numerical analysis (adopted from Proch et al., 2017]) 

T  a  b  Mc  0c  r  SDc  ω  m  

60 200 0.01 70 100 15 100000 1 - 0.1 

 
For numerical analysis of the problem using the given parameter values, from Equation (37), 5 obtain 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )220 01 1 1 1
2 4

m mm mMc a - c ct = T - + T - + t + + T - + t
b b

µ µ ω ω ω ω
ω ω

∗ ∗ ∗ . Since ( ) SDt = cµ ∗ , it will 

be ( ) ( ) ( ) ( )0 1 0 2100 200 70 1000 1 0 2100000 0 1 60 1 1 60 1
0 02 0 04

- . - .( - ) - . - .= - + +t + + - +t
. .

   ∗ ∗
   
   

, resulting in 9.844t =∗ .  

Substituting the identified value in Equation (37), it will be ( ) ( ) ( )0.1 0.225655 0650000 1 250000 1- -t = - - +t - +tµ  

Since ( ) ( )( )0
19348.65

2

m
Ma - c - rc x

d t = = -
b

∗

∗ , then based on Equation (38), it’s concluded that 

( ) ( )19348.65 512146.73 9.844d t = - + - t -  

( ) ( ) ( )( )( )0.9 0.8722222.22 8.54 1 155203.71 9.844 312500 6.73 1 .- +t - - t + - +t  Also, according to Equation (4.13),  

it is obtained  that ( ) ( ) ( )( ) ( )( ) ( )0 1 1 8287500 0 78 1 13888 88 73 1 57 5 9 88- . .u t = u t - . - +t + . - +t - . . - t∗

( )( )0 955 55 8 54 1 .+ . . - +t . The approximate value of t∗  is equal to 9.212, as obtained numerically in the study by 

Proch et al.(2017) (Adabi & Mashreghi, 2019). However, the analytical solution algorithm developed herein provides a 
better answer as it yields a bigger objective value. The difference between the results is due to elimination of some 
equations of the Hamiltonian system, which is also a prevalent practice to find the answer to the optimal control model 
in coordination optimization problems. 

Based on modeling and arguments given in Section 4 and the numerical example presented in Section 6, some of the 
most important advantages of the proposed approach can be mentioned in the following:  

   The exact optimal value of switching time was calculated analytically, instead of being approximately estimated.  
   Using our proposed methodology, the value of switching t∗  was obtained as 9.844, which is clearly better than the 

result obtained in the study by Proch et al.(2017) for the presented maximization control problem.  
   In the previous works (e.g., Proch et al., 2017; Kim, 2000; Kotzab et al., 2019; Ivanov et al., 2016; Kar et al., 2015; 

Hsieh, 2018), the optimal solution has been identified by eliminating some critical equations. Thus, some important 

characteristics of the problem should be overlooked. In fact, an accurate determination of ( )tµ , ( )d t  and ( )u t  

http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Adabi
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Mashreghi
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variables has been exogenously assessed to be feasible or they should be approximately identified. But in the 
proposed method, in actual inspection,  the variables are considered as multiple functions and then, the Hamiltonian 
function as a function of these variables and their derivatives.   

   Our novel reformulation and proposed solution methodology yields some possibly nonlinear optimal control 
problems resulting in the systems of fully Hamiltonian equations with equations as equal as variables. Then, as 
proved in our paper, these complicated systems can be converted into the reduced Hamiltonian systems with exact 
solutions using strong geometric ingredients. 

   Since ( ) 1x t = + tω , the amount of ( )tµ , ( )d t  , and ( )u t , as given respectively in Equations (37-39) was 

expressed in t∗  as the exponential relations. Therefore, in comparison with the estimations presented in the study 

by Proch et al.(2017), better optimal value of switching time t∗  clearly results in an effective increase in the whole 

benefit of the entire supply chain. 

VI. CONCLUSIONS  
In this paper, a novel approach for finding the analytical and accurate answer to the continuous time optimal control 

problem based on a new formulation of the progressive concepts of differential geometry and Poisson geometry was 
presented. For this purpose, geometric notions are applied about symmetric groups and first integrals to reduce the order 
of the Hamiltonian system. The proposed approach and solution method was applied to supply chain coordination 
problem in a two-echelon supply chain with the objective of finding the optimal decision of supplier development 
investment. The exact optimal solution and the optimum switching time for corresponding coordination problem with a 
single supplier and single manufacturing firm is obtained.  

The main advantage of the proposed methodology is that it outperforms the numerical estimation approach which is 
prevalent in solving the optimal control models in coordination optimization problems. The proposed methodology 
converts the basic problem to the system of fully Hamiltonian equations with equations as equal as variables. It provides 
the analytic optimal solution and, thus, yields better results than those obtained through numerical estimation. What was 
presented in this article can be well implemented for other important optimization problems. 

Acknowledgment  
The author of the paper considers it necessary to thank and appreciate the valuable guidance of Dr. Mohammad-

Sadegh Sangari. 

References 
Adabi, H., & Mashreghi, H. (2019). Coordination and competition in a duopoly with two-manufacturer and two-retailer with 

wholesale-price contract and demand uncertainty, International Journal of Industrial Engineering & Production Research, 30(4), 
465-476. 

Arasteh, A. (2022).  Mathematical modeling of flexible production lines with different part types on unreliable machines by a priority 
rule, Journal of Quality Engineering and Production Optimization, 7(2), 34-59. 

Bertsekas, D. P. (1999). Nonlinear programming, Massachusetts Institute of Technology. 

Da Silva, A. C., & Weinstein, A. (1998). Geometric models for noncommutative algebras, University of California. 

Dastyar, H., Rippel, D., & Freitag, M. (2020). Optimization of Supplier Development under Market Dynamics, Mathematical 
Problems in Engineering, 2020, 2912380, DOI: 10.1155/2020/2912380. 

http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Adabi
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Mashreghi
http://ijiepr.iust.ac.ir/article-1-785-en.pdf
http://ijiepr.iust.ac.ir/article-1-785-en.pdf
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mpe/
https://doi.org/10.1155/2020/2912380


Journal of Quality Engineering and Production Optimization  / Vol. 8, No. 1, Winter & Spring 2023, PP. 69-86 85 
 

 

Eshaghnezhad, M., Mansoori, M., & Effati, S. (2023).  Optimal Control Problem: A Case Study on Production Planning in the 
Reverse Logistics System,  Journal of Systems Thinking in Practice, 2(1), 28-38. 

Evans, L. C. (1991). Partial Differential equations, University of California, AMS. 

Gutt, S., Rawnsley, J., & Sternheimer, D. (2005). Poisson geometry, deformation quantization and group representations, 
Cambridge University Press. 

Hasan-Zadeh, A. (2017). A note on variational symmetries of the constrained variational problems, Advances in Differential 
Equations and Control Processes, 18(2), 69-76. 

Hasan-Zadeh, A. (2019). Exact inertial manifolds for dynamical systems, Advances in Differential Equations and Control Processes, 
21(1), 117-122. 

Hasan-Zadeh, A. (2021). Geometric Classification of analytical solutions of Fitzhugh-Nagumo equation and its generalization as the 
reaction-diffusion equation, Advances in Differential Equations and Control Processes, 24(2), 167-174.  

Hasan-Zadeh, A. (2021). Dynamic optimal control problems in Hamiltonian and Lagrangian systems, Advances in Differential 
Equations and Control Processes, 24(2), 175-185.  

Hasan-Zadeh, A. (2021). Geometric investigation of nonlinear reaction-diffusion-convection equations: Fisher equation and its 
extensions, Advances in Differential Equations and Control Processes, 24(2), 145-151. 

Hasan-Zadeh, A., & Mohammadi-khanaposhti, M. (2018). Inertial manifolds for Navier-Stokes equations in notions of Lie algebras, 
WSEAS Transactions on Heat and Mass Transfer, 13(1), 95-102. 

Hosseini-Motlagh, S. M., Ebrahimi, S., & Zirakpourdehkordi, R. (2020a). Coordination of dual-function acquisition price and 
corporate social responsibility in a sustainable closed-loop supply chain, Journal of Cleaner Production, 251, 119629, DOI: 
10.1016/j.jclepro.2019.119629. 

Hosseini-Motlagh, S. M., Nouri-Harzvili, M., & Zirakpourdehkordi, R. (2019). Two-level supply chain quality improvement through 
a wholesale price coordination contract on pricing, quality and services, International Journal of Industrial Engineering & 
Production Research, 30(3), 287-312. 

Hosseini-Motlagh, S. M., Nouri-Harzvilia, M., Johari, M., & Sarker, B. R. (2020b). Coordinating economic incentives, customer 
service and pricing decisions in a competitive closed-loop supply chain, Journal of Cleaner Production, 255, 120241, DOI: 
10.1016/j.jclepro.2020.120241. 

Hsieh, F. S. (2018). Dynamic configuration and collaborative scheduling in supply chainsbased on scalable multi-agent architecture, 
Journal of Industrial Engineering, DOI:  10.1007/s40092-018-0291-5. 

Hu, H., Zhang, Z., Wu, Q., & Han, S. (2020). Manufacturer’s customer satisfaction incentive plan forduopoly retailers with Cournot 
or collusion games, Advances in Production Engineering & Management, 15(3), 345-357. 

Ivanov, D., Dolgui, A., & Sokolov, B. (2016). Robust dynamic schedule coordination control in the supply chain, Computers and 
Industrial Engineering, 94(1), 18-31. 

Jafarzadeh, J., Amoozad-Khalili, H., & Shoja, N. (2022). A Multi-Objective Mathematical Model for Dynamic Cellular 
Manufacturing System Design under Uncertainty: A Sustainable approach, Journal of Quality Engineering and Production 
Optimization, 7(1), 98-120. 

Javadi, E., Babazadeh, R., Doniavi, A., & Javadi, H. (2022). An Application of Mixed-Integer Linear Programming Method in 
Production Planning of Pipe Industry, Journal of Quality Engineering and Production Optimization, 7(1), 13-24. 

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Hosseini-Motlagh
https://www.sciencedirect.com/science/article/abs/pii/S0959652619344993#!
https://www.sciencedirect.com/science/article/abs/pii/S0959652619344993#!
https://www.sciencedirect.com/science/journal/09596526
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Hosseini-Motlagh
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Nouri-Harzvili
http://ijiepr.iust.ac.ir/search.php?sid=1&slc_lang=en&auth=Zirakpourdehkordi
http://ijiepr.iust.ac.ir/article-1-875-en.pdf
http://ijiepr.iust.ac.ir/article-1-875-en.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0959652620302882#!
https://www.sciencedirect.com/science/article/abs/pii/S0959652620302882#!
https://www.sciencedirect.com/science/article/abs/pii/S0959652620302882#!
https://www.sciencedirect.com/science/article/abs/pii/S0959652620302882#!


86 Hasan-zadeh, A. / Developing a new formulation and exact solution approach for continuous-time optimal … 
 

 

Jian, J., Zhang, Y., Jiang, L., & Su, J. (2020). Coordination of Supply Chains with Competing Manufacturers considering Fairness 
Concerns, Complexity, 4372603, 15 pages, DOI: 10.1155/2020/4372603. 

Johari, M., & Hosseini-Motlagh, S. M. (2020). Coordination contract for a competitive pharmaceutical supply chain considering 
corporate social responsibility and pricing decisions, RAIRO-Operations Research, 54(5), 1515-1535. 

Kar, S., Maiti, M., Maity, K., & Roul, J. N. (2015). Multi–item reliability dependent imperfect production inventory optimal control 
models with dynamic demand under uncertain resource constraint, International Journal of Production Research, 53(16), 4993-
5016. 

Keshmiry Zadeh, K., Harsej, F., sadeghpour, M., & Molani Aghdam, M. (2021). A multi-objective multi-echelon closed-loop supply 
chain with disruption in the centers, Journal of Quality Engineering and Production Optimization, 6(2), 31-58. 

Kim, B. (2000). Coordinating an innovation in supply chain management, European Journal of Operational Research, 123(3), 568-
584. 

Kotzab, H., Darkow, I. L., Bäumler, I., & Georgi, C. (2019). Coordination, cooperation and collaboration in logistics and supply 
chains: a bibliometric analysis, Production, 29, DOI: 10.1590/0103-6513.20180088.  

Li, S., Kang, M., & Haney, M. H. (2017). The effect of supplier development on outsourcing performance: the mediating roles of 
opportunism and flexibility, Production Planning & Control, The Management of Operations, 28, 6-8, DOI: 
10.1080/09537287.2017.1309711. 

Mohammed, J. K., & Khudair, A. R. (2023). A novel numerical method for solving optimal control problems using fourth- degree hat 
functions, Partial Differential Equations in Applied Mathematics, 7, 100507. 

Nabavi, S. M., Vahdani, B., Afshar Nadjafi, B.,   &  Adibi, M. A. (2021). Robust planning for debris clearance and relief distribution 
with split delivery and fairness, Journal of Quality Engineering and Production Optimization, 6(2), 181-200. 

Pham, T. H., & Doan, T. D. U. (2020). Supply chain relationship quality, environmental uncertainty, supply chain performance and 
financial performance of high-tech agribusinesses in Vietnam, Uncertain Supply Chain Management, 8, 663–674. 

Proch, M., Worthmann, K., & Schluchtermann, J. (2017). A negotiation–based algorithm to coordinate supplier development in 
decentralized supply chains, European Journal of Operational Research, 256(2), 412-429. 

Olver, P. J. (1993). Applications of Lie Groups to Differential Equations, Springer–Verlag. 

Roth, L. C., Bhaya, A., & Kaszkurewicz, E. (2023). Inventory Management Through One Step Ahead Optimal Control Based on 
Linear Programming, RAIRO Operations Research, 57, 17-42. 

Rudolph, G., & Schmidt, M. (2013). Differential geometry and mathematical physics, Part 1. Manifolds, Lie groups and 
Hamiltonian systems, Springer. 

Sutrisno, S., Widowati, W., & Tjahjana, R. (2022). Optimal Control for Inventory System under Uncertainty on Demand and 
Delivery Using Robust Linear Quadratic Control Approach, International Journal of Supply and Operations Management, 9(1), 
1-14. 

https://www.sciencedirect.com/science/article/abs/pii/S0959652620302882#!
http://www.scielo.br/scielo.php?script=sci_serial&pid=0103-6513&lng=en&nrm=iso
https://doi.org/10.1590/0103-6513.20180088
https://www.tandfonline.com/toc/tppc20/current
https://doi.org/10.1080/09537287.2017.1309711

