
 
                      Journal of Quality Engineering and Production Optimization 

       Vol. 8, No. 1, Winter & Spring 2023 

      http://jqepo.shahed.ac.ir 

      
Manuscript Received:10-October-2022  &  Revised: 14-December-2022  &  Accepted: 14-February-2023 

ISSN: 2423-3781 

Research Paper 

 

  

                    
DOI: 10.22070/jqepo.2023.16882.1246 

Efficient scheduling of a no-wait flexible job shop with periodic maintenance 
activities and processing constraints 

Kasra Mahdavi 1 ,  Mohammad Mohammadi *1 , Fardin Ahmadizar 2  
 

1 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran 
2 Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran 

* Corresponding Author: Mohammad Mohammadi (Email: Mohammadi@khu.ac.ir) 
 

Abstract –Flexible job-shop scheduling problem (F-JSP) is an expansion of the job shop scheduling problem 
(JSP) which allows an operation to be fulfilled by any machine among a set of accessible machines at each 
stage. This paper investigates a no-wait F-JSP (NW-F-JSP) with machines accessibility restrictions for 
maintenance activities and machines processing capability to minimize total weighted tardiness. The study is 
organized in two phases. Firstly, a novel nonlinear mathematical model is developed for the supposed 
problem, and then it is converted into a linear mathematical model using techniques found in the literature. 
Since the structure of the problem is NP-hard, an imperialist competitive algorithm is proposed in the second 
phase to solve large instances of the problem. In the proposed algorithm, an effective solution representation 
with an efficient and greedy decoding methodology is adopted to reduce the search space. Numerical 
experiments are used to appraise the performance of the developed algorithm. It is inferred that in small 
instances, solving the mathematical model by GAMS leads to the optimal solution. Still, with an increased 
instance size, this method loses its efficiency and the ICA approach performs better under these conditions. 
 
Keywords– Flexible job shop, no-wait, maintenance activities, Imperialist competitive algorithm.                     

I. INTRODUCTION 
Job shop scheduling problem (JSP) is a type of scheduling used in various production environments. The JSP was 

first introduced by Manne (1960). In this study, it is proven that JSP, known as the NP-hard optimization problem in 
production scheduling literature, is highly complex. To the best of our knowledge, there is no methodology in the 
literature that is able to solve large instances in a reasonable amount of time. 

Due to the restrictions and special conditions in each production environment and their specific constraints, 
production scheduling requires consideration of these constraints, which complicates the scheduling problem. One of 
the manufacturing industries that has special conditions and restrictions is the perishable products industry. Delays 
during the production of perishable products can be very destructive. As a result, perishables are produced without 
delay, packaged and stored immediately. If the production system is in the form of a job shop, the scheduling problem 
will become a no-wait job shop scheduling problem (NW-JSP). In addition, due to the possible machines malfunction, 
it is imperative to incorporate machines maintenance activities into the model. Therefore, it can be stated that in the     
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production of perishable products, if the production system is in the form of a job shop, various restrictions must be 
considered. 

In this paper, a no-wait flexible job shop scheduling problem (NW-F-JSP) with processing constraints is 
investigated. This scheduling problem is of special importance both from a theoretical and practical point of view. From 
a theoretical point of view, considering the machines capability and machines maintenance activities in NW-F-JSP 
shows that a number of feasible solutions, albeit limited, are available. In situations where there are such constraints in a 
flexible job shop scheduling problem (F-JSP), such solutions can be applied. From a practical perspective, one of the 
production environments, where conditions are very similar to the problem discussed in this study, is the perishable 
food manufacturing industry, where the production process is predominately carried out in the form of JSP. In such 
industries, to prevent food spoilage, it is necessary to eliminate the waiting time during production. On the other hand, 
due to the probability of machine malfunction, the consideration of machines maintenance activities and machines 
capabilities constraints in any production environment is inevitable. Therefore, the applicability of this problem with the 
considered constraints is clear in the perishable food manufacturing industry.  

To the best of our knowledge, this is the first study on the F-JSP where machines processing capability, machines 
periodic maintenance activities, and no-wait constraints are simultaneously considered. The contributions are described 
as follows: 

Investigating an NP-hard scheduling problem that is widely used in the perishable food manufacturing industry. 

   A non-linear mathematical model based on the precedence variable is established for the NW-F-JSP with processing 
constraints. 

   The proposed model is linearized by techniques in the literature to be solved by linear solvers. 
   An Imperialist competitive algorithm (ICA approach) is customized to solve the NW-F-JSP.          

The other sections of the paper are organized as follows: In Section II, the latest and related works are presented. 
Section III presents the mathematical model and its linearization process for the problem. In Section IV, the ICA 
approach is proposed to solve large instances of the problem. Computational results are discussed in Section V. Finally, 
conclusions and future research are presented in Section VI. 

II. LITERATURE REVIEW 
In recent years, many researchers have studied JSP with various constraints. In this section, the newest related works 

are reviewed. El Khoukhi et al. (2017) investigated a F-JSP with machines accessibility restrictions to minimize the 
greatest termination time. A mathematical model for this problem was proposed, and due to its complexity, a new 
optimization algorithm relying on the ant nest algorithm was developed. The F-JSP with machines accessibility 
restrictions to minimize the greatest termination time was studied by Zandieh et al. (2017), and an ameliorated ICA 
approach for large instances was proposed. A study was conducted by Yazdani et al. (2017) on a JSP to minimize the 
sum of maximum tardiness and maximum earliness. A mathematical model was developed, and a new optimization 
approach was proposed relying on the ICA approach. A study was undertaken by Lu et al. (2017) on a multi-objective 
F-JSP with controllable processing times. In this study, minimizing the sum of consuming resources and the greatest 
termination time were designated as objective functions. A new multi-objective meta-heuristic algorithm called 
MODVOA was developed. A study was conducted by Benttaleb et al. (2018) on a JSP with two machines where one of 
the machines was out of reach in a certain period. In this study, the objective function was minimizing the greatest 
termination time. The optimality of Jackson's algorithm was investigated, and a heuristic algorithm was designed using 
Jackson's law. Subsequently, they proposed a branch and bound algorithm for the problem. A new cyclic algorithm 
relying on Tabu search was proposed by Fattahi et al. (2018) to improve the exploration and exploitation powers of 
certain solution encodings suggested in the literature. The effectiveness of the proposed solution representation was 
demonstrated in this research through the solution of several instances. Bürgy and Bülbül (2018) studied a JSP with the 
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irregular objective function of minimizing the sum of convex costs depending on the operations start time and proposed 
a Tabu search algorithm for it. A mathematical model was proposed for a F-JSP with sequence-dependent setup times to 
minimize the greatest termination time. Additionally, a Tabu search algorithm was developed based on new 
neighborhood search functions and various structures by Shen et al. (2018).  
A JSP with the objective function of minimizing the greatest termination time, in which machines are not always 
available and become unavailable at intervals, was studied by Tamssaouet et al. (2018). In this study, simulated 
annealing and Tabu search algorithms with neighborhood functions for real-size instances of the problem were 
developed. García-León et al. (2019) proposed a local search approach for the multi-objective F-JSP to obtain Pareto 
solutions for any combination of regular functions. An ameliorated Jaya algorithm for an F-JSP with the objective 
function of minimizing the greatest termination time was developed by Caldeira and Gnanavelbabu  (2019). In this 
problem, machines' setup time and transfer time between machines were considered. An ameliorated multi-objective 
Genetic algorithm for the problem of minimizing the greatest termination time and energy consumption in a multi-
objective F-JSP with energy consumption and transportation restrictions was developed by Dai et al. (2019). Shen et al. 
(2019) investigated a F-JSP, in which the jobs’ processing time is variable and depends on the start time of their 
processing. In this study, the objective function is minimizing the greatest termination time and the amount of energy 
consumed by machines. For this problem, a hybrid multi-objective algorithm called MOHPIOSA was presented by 
them. Samarghandi (2019) studied a NW-JSP with delivery deadline limitations and the objective function of 
minimizing the greatest termination time. The problem was transformed into another problem, and a mathematical 
model for both of them was presented. Subsequently, a genetic algorithm was developed to solve large instances. 
Miyata et al. (2019) studied a no-wait flow shop scheduling problem (NW-FSP) with dependent sequenced setup times 
and machines preventive maintenance to minimize the greatest termination time. In this problem, a new policy for 
preventive maintenance was postulated, with its parameters based on the Weibull distribution. In this study, 
constructive heuristics were developed for the proposed problem. A study was conducted by Samarghandi and Firouzi 
Jahantigh (2019) on a NW-FSP with due date constraints aimed at minimizing the greatest termination time. Two 
mathematical models were proposed, and a Constraint Programming Model was employed. 

Zhang et al. (2020) investigated a NW-FSP with the objective function of minimizing the greatest termination time. 
The Discrete Migratory Bird Optimization (MBO) algorithm was developed by them to achieve high-quality solutions. 
A JSP was studied by Ahmadian et al. (2020) in which delivery date is considered for each job. In this problem, any 
discrepancy between the job’s completion time and its delivery date is designated as a penalty, and the objective 
function is to minimize the sum of earliness and tardiness. A Variable Neighborhood Search (VNS) algorithm was 
developed for this problem. An ameliorated Genetic algorithm for a multi-objective F-JSP was developed by Zhang et 
al. (2020). In this study, machines setup time and jobs transfer time between machines were considered. Li et al. (2020) 
developed an ameliorated Jaya algorithm for a F-JSP, in which machine setup times and jobs transfer time between 
machines are considered. Ying and Lin (2020) studied a NW-JSP to minimize the greatest termination time. The MSA-
BST algorithm, which is based on the Simulated Annealing algorithm, was developed by them. A F-JSP was studied by 
Zhu and Zhou (2020b) with job priority restrictions in which the processing time of jobs was expressed as an interval 
and the objective function was to minimize the interval length that is obtained for greatest termination time.  
A new optimization algorithm called SLHO was developed by them for real-size instances of the problem. An 
impressive evolutionary grey wolf optimizer for multi-objective F-JSP with job priority restrictions was developed by 
Zhu and Zhou  (2020a). In this problem, the objective function was to minimize the greatest termination time and 
maximize the workload of machines simultaneously. An ameliorated memetic algorithm for the F-JSP with 
transportation times to minimize the greatest termination time was proposed by Zhang et al. (2020). A multi-objective 
JSP was studied by Li et al. (2020) in a robotic cell. In this problem, each job has a specific due date as a time window 
and the objective function is to minimize the greatest termination time and the total earliness and tardiness 
simultaneously. A TLBO algorithm was developed by them for large instances of the problem. A two-stage Genetic 
algorithm for a F-JSP with sequence-dependent setup times was developed by Defersha and Rooyani (2020). In this 
problem, the machines are available for processing operations at different times and each machine needs time to cool 
down after processing each operation. Ozolins (2020) studied a NW-JSP to minimize greatest termination time. In this 
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study, a new exact algorithm was developed to solve benchmark instances within a sensible time limit. A NW-JSP with 
due date and subcontracting cost constraints was studied by Gao et al. (2021). Two mathematical models were proposed 
by them. Then, an artificial bee colony algorithm was developed based on a rolling timeline. A F-JSP with machine 
capacity, time lags, holding times, and sequence-dependent setup times was studied by Boyer et al. (2021). A mixed-
integer linear programming and a constraint programming (CP) models were proposed by them to represent the 
problem, and a meta-heuristic based on a Greedy Randomized Adaptive Search Procedure was developed to solve real-
size instances of the problem. A NW-JSP was studied by Valenzuela-Alcaraz et al. (2022) to minimize the greatest 
termination time and a cooperative coevolutionary algorithm was proposed to solve large instances. Weng et al. (2022) 
studied a F-JSP requiring operations to be performed by either a worker or a machine and to perform a machine 
operation, two workers are needed. The scheduling problem was modeled by them, and four methods that form a real-
time scheduling and control system for JIT production were proposed. Fan and Su (2022) investigated a JSP with 
conveyor-based ongoing flow transferor to minimize greatest termination time. In this study, the jobs are processed on 
the machines which are connected in series via the conveyor. A mathematical model of the problem to find exact 
solutions in small instances was presented by them, and a Simulated Annealing algorithm with NGS scheme was 
developed to solve larger instances. Zhu et al. (2022) studied a NW-FSP with due windows to minimize the total 
weighted earliness and tardiness. In this problem, a concept called factory has been proposed, which exists in a specific 
number and includes machines for processing operations of jobs. In this scheduling problem, each job was assigned to a 
factory to process its operations , and a new approach to solve large instances was proposed by them. Nohair et al. 
(2022) studied a non-delay JSP with the objective of minimizing greatest termination time. A matrix heuristic was 
developed by them to generate non-delay schedules that are computationally swift to implement. Winklehner and 
Hauder  (2022) investigated a F-JSP with periodic machines maintenance activities and processing constraints as a real-
world problem. A constraint programming approach to minimize the total completion times was developed by them. 
Valenzuela-Alcaraz et al. (2022) proposed a cooperative algorithm approach for NW-JSP to minimize the greatest 
termination time. In table 1, all of the studies that are reviewed above are classified.  

Table 1. summarized Literature review  

Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 
Type of 

parallel in 

each stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 
Machine 

availability 
No-wait 

Based on 

ACO 
Priority 

restrictions Pm    ×  Cmax F-JSP 2017 El Khoukhi et al. 1 

ICA   Qm    ×  Cmax F-JSP 2017 Zandieh et al. 2 

Based on 

ICA approach 
 -   × 

 

 

 

 Emax + Tmax JSP 2017 Yazdani et al. 3 

MODVOA 

Control the 
processing time of 
jobs by allocating 

resources 

Pm      

Cmax 

+   

Minimizing  
consuming 
resources 

F-JSP 2017 Lu et al. 4 

Algorithm based 
on Jackson's rule      ×  Cmax JSP 2018 Benttaleb et al. 5 
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Continue Table 1. summarized Literature review 

Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 
Type of 

parallel in 

each stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 
Machine 

availability 
No-wait 

Tabu search  Pm ×     Cmax F-JSP 2018 Shen et al. 6 

SA - TS  -    ×  Cmax JSP 2018 Tamssaouet  
et al. 7 

Tabu search 
Considering the 

costs related to the 
start of operations 

-      Minimizing 
convex costs JSP 2018 Bürgy and 

Bülbül  8 

new cyclic 
algorithm based on 

TS 
 -      Cmax JSP 2018 Fattahi et al. 9 

Constructive 
heuristics 

Flexible 
preventive 

maintenance 
- ×   × × Cmax FSP 2019 Miyata et al. 10 

Local search 
approach to obtain 

Pareto solutions 
 Pm   ×   

A set of 
regular 

objective 
functions 

F-JSP 2019 García-León  
et al. 11 

Jaya algorithm  Pm × ×    Cmax F-JSP 2019 Caldeira and 
Gnanavelbabu  12 

MOHPIOSA 
The  jobs 

processing times 
are variable 

Rm   ×   

Minimizing 
energy 

consumption 

+ 

Cmax 

F-JSP 2019 Wu et al. 13 

NSGA II  Pm  × ×   

Minimizing 
energy 

consumption 

+ 

Cmax 

F-JSP 2019 Dai et al. 14 

Extremely NP-hard 
in the case of two 

machines 

Scheduling with 
two machines  -    × × Cmax FSP 2020 Chen et al. 15 

MBO  -     × Cmax FSP 2020 Zhang et al. 16 

A heuristic 
algorithm called 

PBIG 
 -   

 

 

 

 

 

× 

Minimizing 
the sum of 
completion 

time 

JSP 2020  Li et al. 17 

GA  Pm × ×    Cmax F-JSP 2020 Zhang et al. 18 
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Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 
Type of 

parallel in 

each stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 
Machine 

availability 
No-wait 

Jaya algorithm  Pm × ×    

Minimizing 
energy 

consumption 

+ 

Cmax 

F-JSP 2020 Li et al. 19 

VNS Independent due 
date for each job -      JIT JSP 2020 Ahmadian  

et al. 20 

GWO Priority 
restrictions Pm      

Maximizing 
machines 
workload 

+ 

Cmax 

F-JSP 2020a Zhu and Zhou  21 

GA 
machines are 
available at 

different times 
Pm ×  × ×  Cmax F-JSP 2020 Defersha and 

Rooyani  22 

Ameliorated 
memetic algorithm  Qm  ×    Cmax F-JSP 2020 Zhang et al. 23 

MSA-BST  -   
 

 
 × Cmax JSP 2020 Ying and Lin 24 

New approach 
called SLHO 

Priority 
restrictions Pm      

Minimizing 
the length of 

Cmax interval 
F-JSP 2020b Zhu and Zhou  25 

Ameliorated GA  Qm  ×    Cmax F-JSP 2020 Zhang et al. 26 

New effective 
approach called 

IMOTLBO 

Job due date as a 
time window -  Using robots    

Cmax 

+ 

JIT 
JSP 2020 Li et al. 27 

New exact 
algorithm based on 

DP 
 -     × Cmax JSP 2020 Ozolins 28 

ABC based on a 
rolling timeline 

Subcontracting 
strategy to satisfy 

the deadlines 
-     × 

Cmax and 
subcontracting 

cost 
JSP 2021 Gao et al. 29 

Meta-heuristic 
relying on a greedy 

procedure 

With machine 
capacity and time 

lags 
Qm ×     Cmax F-JSP 2021 Boyer et al. 30 

Cooperative 
coevolutionary 

algorithm  
 -    

 

 

 

× Cmax JSP 2022 Valenzuela-
Alcaraz et al. 31 
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Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 
Type of 

parallel in 

each stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 
Machine 

availability 
No-wait 

Proposed four 
method that form a 

realtime 
scheduling. 

Each operation 
needs worker 
and worker  

like machine 
has key role 

Rm ×     JIT F-JSP 2022 Weng et al. 32 

Simulated 
Annealing 

algorithm with 
NGS  scheme 

The jobs are 
processed on 

the contiguous 
machines by 
the conveyor 

-      Cmax JSP 2022 Fan and Su 33 

A discrete 
algorithm 

Considering 
time window 
for jobs due 

dates 

-     × Weighted JIT FSP 2022 Zhu et al. 34 

New matrix 
heuristic  

Machines are 
never kept 

vacant while 
job is waiting 

- 
     Cmax JSP 2022 Nohair et al. 35 

Constraint 
programming 

approach 

Deadline for 
each job 

 

Release date 
for each job 

Rm ×  × ×  
Minimizing 

the total 
completion 

times 

F-JSP 2022 Winklehner and 
Hauder  36 

ICA based on 
greedy decoding 

methodology 

Independent 
periodic 

maintenance 
activities for 
each machine 

Rm 
  × × × 

Minimizing 
sum of 

weighted 
tardiness 

F-JSP Current study *** 

 
In summary, the reviewed scientific works show that no single paper exists covering F-JSP with unrelated parallel 

machines in each stage, machines periodic maintenance activities, no-wait constraint and machines capability to 
minimize sum of weighted tardiness. 

III. PROBLEM DESCRIPTION AND FORMULATIONS  

A. Problem explanation 
  In a F-JSP, there are a set of machines and a set of jobs that have to be processed on the machines. In this problem, 

m machines and n jobs are considered. Each job consists of a sequence of operations where they are permitted to be 
processed on any among a set of accessible machines. The other assumptions of the problem are as follows: 

   All jobs and machines are accessible from the beginning, each machine can only execute one operation at a given 
time. 

   Each job has a specific processing path. 
   To process each job, it may not require machines during all stages. 
   There is no way to process a job on multiple machines simultaneously. 
   There is no way to interrupt an operation once started (Preemption is not allowed). 
   Waiting time between two sequential operations of the same job is not allowed. 
   Each job has an independent due date so if it is fulfilled later than the due date, a penalty will be imposed. 
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   Machines can not necessarily process all operations. 
   The type of parallel machines in each stage is unrelated. 
   The setup time of machines is considered as a part of the processing time of the operations. 
   Machines are periodically unavailable for maintenance activities. 
   The length of each unavailability interval is specified.          

The objective is to identify a feasible schedule that minimizes the total weighted tardiness. 

B. Problem formulations 
The notation describing the indices, parameters, and decision variables used in the models are as follows: 

 Indices: 

i, h: jobs’ index (1, …, n) 

j: operations’ index (1, … ,Ji) 

k: machines’ index (1, …, m) 

r: unavailability interval’s index 

 Parameters: 

n: jobs’ total number 

m: machines’ total number 

Ji: total number of operations of job i 

prkij: processing time of oij if performed on machine k 

di : due date of job i 

wi : weight of job i 

SMkr : starting time of rth unavailability interval on machine k 

FMkr : finishing time of rth unavailability interval on machine k (FMkr − SMkr = T) 

M: a large number 

 Decision variables: 

Ti: tardiness of job i 

Vijk: Vijk is 1 if oij performed on machine k; otherwise Vijk is 0. 

Zijhgk: Zijhgk is 1 if oij precedes operation ohg on machine k; otherwise Zijhgk is 0. 
cmij: completion time of operation oij 

Bijkr: binary variable in inaccessibility restrictions 
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In this section, an approach called the precedence variable-based model is used to present a mathematical model for 
the problem. This approach relies on the precedence variable Zijhgk, introduced by Manne (1960). It denotes the 
sequence of operations assigned to the same machine.  Zijhgk is equal to one if operation oij precedes operation ohg on 
machine k; otherwise  Zijhgk is equal to zero. Note that operation oij is not necessarily positioned immediately before 
operation ohg when Zijhgk is equal to one. For this type of variable, it has to be defined only i < h because Zijhgk = 1 −
 Zhgijk. According to this approach, a precedence variable-based model for this problem is developed. 

This kind of model was first proposed by Gao et al. (2006) to formulate F-JSP, and we have adopted it for our F-
JSP. The objective function is to minimizing total weighted tardiness: 

Min ∑ (wi ∗ Ti)i     (1)  
 

The following constraints compel each job to pursue a specified operation sequence and guarantee the no-wait 
constraint: 

cmij − cmij−1 ≥ prkij. Vijk ,  ∀ i , k ,∀j = 2 , … , Ji (2) 

cmij − cmij−1 ≤ prkij. Vijk ,  ∀ i , k ,∀j = 2 , … , Ji (3) 

 
Constraint 4 ensures the completion time of the first operation of job i equal to be at least the processing time of oij: 

cmij ≥ prkij. Vijk ,  ∀ i , j = 1   ∀k ∈ Mij (4) 
 

The following constraints are disjunctive constraints: 

�cmhg − cmij − prkhg�. Vhgk. Vijk.  Zijhgk ≥ 0 
,  ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg 

(5) 

�cmij − cmhg − prkij�. Vijk. Vhgk.  Zhgijk ≥ 0 (6) 

 
These constraints represent that the operation ohg should not be started before the completion of the operation oij or 

that the operation ohg must be completed before the start of the operation oij if they are assigned to the same machine k.  
Constraints 5 and 6 are nonlinear and should be linearized. For this purpose, the nonlinear expression Vhgk. Vijk.  Zijhgk 
is first linearized by variable Oijhgk: 

 Oijhgk ≤ Vhgk                                     
 Oijhgk ≤ Vijk                                       
 Oijhgk ≤  Zijhgk                                  
 Oijhgk ≥ Vhgk + Vijk +  Zijhgk − 2

  (7) 

  
Therefore, constraints 5 and 6 become as follows: 

cmhg. Oijhgk − cmij. Oijhgk − prkhg. Oijhgk ≥ 0 
, ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg 

(8) 

cmij. Oijhgk − cmhg. Oijhgk − prkhg. Oijhgk ≥ 0 (9) 

 
Then the nonlinear expressions cmij. Oijhgk and cmhg. Oijhgk should be linearized .Expression cmij. Oijhgk is 

linearized as follows: 
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 Dijhgk ≤ cmij                                 
Dijhgk ≤ M, Oijhgk                        
 Dijhgk ≥ cmij − M(1 −  Oijhgk)

  (10) 

 
And expression cmhg. Oijhgk is linearized as follows: 

 BSijhgk ≤ cmhg                                     
 BSijhgk ≤ M, Oijhgk                              
 BSijhgk ≥ cmhg − M(1 −  Oijhgk)    

  (11) 

 
Finally, the linear equivalent of constraints 5 and 6 are as follows: 

 BSijhgk −  Dijhgk − prkhg , Oijhgk ≥ 0          
 Dijhgk −  BSijhgk − prkhg , Oijhgk ≥ 0          
And constraints 7. 10 and 11                    

 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (12) 

 
The following constraint clarifies that one machine ought to be selected from a set of available machines for each 

operation: 

∑ Vijk = 1k∈Mij    , ∀ i. j  (13) 
 

Constraint 14 enforces to be selected one of two preference relationships. 

 Zijhgk +  Zhgijk = Vijk, Vhgk   , ∀ i . h. j. g.   ∀k ∈ Mij ∩ Mhg  (14) 
  

Constraints 14 is nonlinear and should be linearized. For this purpose, the nonlinear expression Vijk. Vhgk is 
linearized by variable Fijhgk: 

 Fijhgk ≤ Vhgk                               
 Fijhgk ≤ Vijk                                 
 Fijhgk ≥ Vhgk + Vijk − 1            

  (15) 

 
Finally, the linear equivalent of constraint 14 are as follows: 

Zijhgk +  Zhgijk =  Fijhgk    
And constraints 15          

 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (16) 

 
Constraints 17 to 22 describe unavailability intervals for machines and ensure that each operation 𝑜𝑜𝑖𝑖𝑖𝑖  can be 

processed between intervals when the machine is active. 

�cmij − prkij�, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr   

                  , ∀ i . j. k. r  

(17) 

cmij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (18) 

�cmij − prkij�, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (19) 

cmij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (20) 

�cmij − prkij�, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (21) 

cmij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (22) 

 
In these constraints, the expression cmij. Vijk is nonlinear, which becomes linear as follows: 
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 VCijk ≤ cmij                                
 VCijk ≤ M, Vijk                            
 VCijk ≥ cmij − M(1 − Vijk)     

  (23) 

 
Finally, the linear equivalent of constraints 17 to 22 are as follows: 

 VCijk − prkij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr 

, ∀ i . j. k. r  

(24) 

 VCijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (25) 

 VCijk − prkij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (26) 

 VCijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (27) 

 VCijk − prkij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (28) 

 VCijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (29) 

And constraints 23   
 

Finally with constraint 30 can determine the tardiness of each job: 

Ti ≥ cmij − di , ∀ i . j = Ji  (30) 
 

According to mentioned above, the linearized mathematical model is as follows: 

Min ∑ (wi ∗ Ti)i    (31) 

S, T,     

cmij − cmij−1 ≥ prkij, Vijk 
, ∀ i . k .∀j = 2 . … . Ji  

(32) 

cmij − cmij−1 ≤ prkij, Vijk (33) 

cmij ≥ prkij, Vijk , ∀ i . j = 1   ∀k ∈ Mij  (34) 

BSijhgk −  Dijhgk − prkhg, Oijhgk ≥ 0 

, ∀ i . h. j. g.   ∀k ∈ Mij ∩ Mhg 

(35) 

Dijhgk −  BSijhgk − prkhg, Oijhgk ≥ 0 (36) 

Oijhgk ≤ Vhgk (37) 

Oijhgk ≤ Vijk (38) 

Oijhgk ≤  Zijhgk (39) 

Oijhgk ≥ Vhgk + Vijk +  Zijhgk − 2 (40) 

Dijhgk ≤ cmij (41) 

Dijhgk ≤ M, Oijhgk  (42) 

Dijhgk ≥ cmij − M(1 −  Oijhgk) (43) 

BSijhgk ≤ cmhg (44) 

BSijhgk ≤ M, Oijhgk (45) 
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BSijhgk ≥ cmhg − M(1 −  Oijhgk) (46) 

∑ Vijk = 1k∈Mij   , ∀ i. j  (47) 

Zijhgk +  Zhgijk =  Fijhgk 

, ∀ i . h. j. g.   ∀k ∈ Mij ∩ Mhg  

(48) 

Fijhgk ≤ Vhgk (49) 

Fijhgk ≤ Vijk (50) 

Fijhgk ≥ Vhgk + Vijk − 1 (51) 

VCijk − prkij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr 

, ∀ i . j. k. r   

(52) 

VCijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (53) 

VCijk − prkij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (54) 

VCijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (55) 

VCijk − prkij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (56) 

VCijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (57) 

VCijk ≤ cmij (58) 

VCijk ≤ M, Vijk (59) 

VCijk ≥ cmij − M(1 − Vijk)   (60) 

Ti ≥ cmij − di , ∀ i . j = Ji  (61) 

Vijk ∈ {0.1} , ∀ i . j. k  (62) 

Bijkr ∈ {0.1} , ∀ i . j. k. r (63) 

Ti ≥ 0 , ∀ i  (64) 

cmij ≥ 0 , ∀ i . j  (65) 

Oijhgk ∈ {0.1} 

, ∀ i . h. j. g.   ∀k ∈ Mij ∩ Mhg  

(66) 

Fijhgk ∈ {0.1} (67) 

Dijhgk ≥ 0 (68) 

BSijhgk ≥ 0 (69) 

VCijk ≥ 0 (70) 

IV. IMPERIALIST COMPETITIVE ALGORITHM 
In the previous section, the mathematical model was presented to obtain the optimal solution in GAMS software for 

small instances of the problem. However, as the size of the instances increase, the exact methods lose their effectiveness 
because of the high complication of the problem and in such cases, estimated methods such as heuristic or meta-
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heuristic algorithms have to be utilized. In this study, the ICA approach has been presented for the considered problem 
and its effectiveness in solving different instances has been evaluated. The ICA approach is a meta-heuristic algorithm 
which is based on population of solutions, and proposed by Atashpaz-Gargari and Lucas  (2007). This algorithm is 
proposed to solve optimization problems and has been gradually developed by various researchers to solve scheduling 
problems. For example, Zandieh et al. (2017) developed an ameliorated ICA approach for F-JSP. Ahmadizar et al. 
(2019) developed an ICA approach for unrelated parallel machine scheduling problem.  

The ICA approach starts with the initial population of solutions, each called a country. Some of the best countries 
are chosen as imperialists and the other countries are allotted to these imperialists as colonies. The whole power of an 
empire depends on the imperialist and its colonies. Each imperialist will gradually try to attract its colonies to itself, 
which will lead the search to the good areas of the solution space. Also, the occurrence of a revolution in a colony can 
cause changes in it, which can lead to the search for new areas of solution space. Over time, if a colony achieves a 
better position (according to the objective that the problem pursues it) than its imperialist, it will replace it. After the 
formation of the early empires, the imperialist competitive algorithm for the possession of each other's colonies begins 
amongst them; in each iteration of the algorithm, a competition is formed between the empires to seize the weakest 
colony of the weakest empire. Any empire that lose outs to enlarge its power will gradually lose its colonies during the 
competition and eventually will be eliminated. This process continues until all the empires drop and only one empire 
stands with control over the rest of the countries. Since reaching such a state can be very time-consuming, a top limit for 
the number of iterations of the proposed approach is also considered as a stop condition; if the number of iterations gets 
to a certain amount, the algorithm terminates. In the following section, the various components of the proposed 
algorithm are examined. 

A. Solution representation 
Solution representation is the first and most important step in the development of meta-heuristic algorithms. Thus, 

for the proposed algorithm, an effective solution representation with an efficient and greedy decoding methodology is 
adopted to lessen the search space. The job-based encoding is used for this problem to represent a solution, i.e., a 
sequence of the execution order of the job on the machines. For an instance with n jobs, this presentation gives a 
sequence of n elements in which each job emerges exactly one time. Due to the no-wait constraint in the problem and 
the method of performing and sequencing operations, the first operation of a job starts when all subsequent operations 
belonging to that job continue without any interruption. For this reason, all operations of a job can be joined together 
and considered as an operation that is processed at specific intervals and on predetermined machines without any 
interruption. After processing one job, the next job is processed. Therefore, the length of the solution vector is 
tantamount to the sum of the total jobs (n), and the location of the jobs inside the solution vector is the order of their 
processing on the machines. For example, Fig.1 shows the solution for a problem with four jobs, where each job 
consists of some operations. 
           

 

1 4 2 3 
 

                 
Fig. 1. An encoded solution for a problem with four jobs 

 

To calculate the amount of the objective function of a solution, it must first be decoded. In the literature related to 
JSPs, various approaches to decoding have been proposed. In this research, the decryption algorithm developed by 
Brizuela et al. (2001) for problems with no-wait constraint has been used to decode the problem under study. The steps 
of the decryption algorithm are as follows: 
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Step 1: An idle times list is provided for each machine, and at the beginning of the schedule when no job is started, each 
machine is completely idle except periods that are assigned for maintenance activities. 

Step 2: The operations of the first unprocessed job in the solution representation should be processed respectively. 
Step 3: The list of machine idle times is updated. 
Step 4: If the processing of all jobs is finished, the algorithm stops; otherwise, it returns to step 2. 
 

Due to the objective that the problem pursues it, it is clear that according to a greedy approach, the jobs should be 
processed as soon as possible to minimize total tardiness. To better illustrate the decoding approach, consider a solution 
which is shown in Fig. 1 with 4 jobs and 3 stages. It is remarkable that processing each job may not require machines of 
all stages. The processing route for each job is shown in Fig.2, and jobs processing time on machines is presented in 
Table 2.  

Machines also become unavailable once every 5-time units due to preventive maintenance and repair activities. The 
length of the unavailability period for each machine is two-time units. In the beginning, the list of machines' idle times 
is presented in Table 3. According to the encoded solution in Fig.1, at first, job 1 must be processed, therefore, job 1 is 
scheduled according to the timetable in Fig.3. After scheduling for job 1, the machines' idle times are updated, as shown 
in Table 4.  

               
 

 

 

 

 

 

 

 

 

Fig. 2. Jobs processing routes 
     

Table 2. jobs processing times 

Jobs 
Stage 1 Stage 2 Stage 3 

𝑀𝑀1 𝑀𝑀2 𝑀𝑀2
′  𝑀𝑀3 

1 3 - - 2 

2 - 1 1 2 

3 3 1 2 1 

4 - 3 2 3 

 

Processing route in stages (St) 
 

Job 

St 1 St 3 1 

St 2 St 3 2 

St 2 St 1 3 St 3 

St 3 
 

St 2 4 
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Table 𝟑𝟑. Machines idle times list in the beginning 

Idle time Machine 
[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′  

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀3 

 

 

 

 

 

 

 

 

 

 

 

 

 
            

Fig. 3. Timetable for job 1 according to presented encoded solution 
        

Table 𝟒𝟒. Machines idle times list after scheduling job 1 

Idle time Machine 
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′  

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀3 

 

After updating the idle times' list, it should be examined when the processing of job 4 should start so that all its 
operations are able to be processed in a row on various required machines without interruption. Job 4 is scheduled 
according to the timetable in Fig.4. After scheduling for jobs 1 and 4, the machines' idle times are updated, as shown in 
Table 5. 

After updating the idle times' list, it should be examined when the processing of job 2 should start so that all its 
operations are able to be processed in a row on various required machines without interruption. Job 2 is scheduled 
according to the timetable in Fig.5. After scheduling for jobs 1, 4 and 2, the machines' idle times are updated, as shown 
in Table 6. 

𝑀𝑀1 

M
ac

hi
ne

s 

𝑀𝑀2 

    1                3         4       5                  7        8                10       11    12              14                 16           18       19 

𝑀𝑀2
′  

𝑀𝑀3 

Time 

1 

1 
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After updating the idle times' list, it should be examined when the processing of job 3 should start so that all its 
operations are able to be processed in a row on various required machines without interruption. Job 3 is scheduled 
according to the timetable in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Timetable for job 1 and 4 according to presented encoded solution 

    

Table 5. Machines idle times list after scheduling jobs 1 and 4 

Idle time Machine 
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2 

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′  

[7,12] ∪ [14,19] + … 𝑀𝑀3 

 

 

 

 

 

 

 

 

 

 

 
                

Fig. 5. Timetable for jobs 1, 4 and 2 according to presented encoded solution 
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Tabe 6. Machines idle times list after scheduling jobs 1, 4 and 2 

Idle time Machine 
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2 

[0,3] ∪ [8,12] ∪ [14,19] + … 𝑀𝑀2
′  

[7,8] ∪ [10,12] [14,19] + … 𝑀𝑀3 

 
    

 

 
                  

 

 

 

 

 

 
                 

 

Fig. 6. Timetable for all jobs according to presented encoded solution 

 
As shown in Fig.6, due to the no-wait constraint and the machines availability constraint, job 3 cannot start earlier 

than time unit 7. As the processing of all jobs is completed, the decoding algorithm is stopped and the timetable in Fig.6 
is selected as the final timetable of the encrypted solution in Fig.1. 

B. Formation of initial Empires 
At first, the initial population has been produced then, the Nimp number of the best members is selected as the 

imperialist. To assign the rest of the members to the imperialists, the normalized amount of each imperialist's objective 
function is first calculated by equation 71: 

f́(imp) = fmax − f(imp) (71) 

 
Where f (imp) is the amount of the imperialist objective function for imp and fmax is the maximum amount of the 

objective function among the imperialists. Note that normalization is done because minimizing the problem’s objective 
function is intended; Now, minimizing f (imp) is equivalent to maximizing f ́ (imp). Then, the comparative power of 
each imperialist is calculated and the colonized countries are distributed among the imperialists based on equation 72. 

pw(imp) = f́(imp)
∑ f́(τ)Nimp
τ=1

�      (72) 
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   ↓   ↓    

4 6 7 2 5 3 1   :Imperialist 

        

6 2 4 7 1 5 3   :Colony 

        

  7 2 5   ) :a( 

        

 4 7 2 5 1  ) :b( 

        

6 4 7 2 5 1 3   :Assimilated 
                       

Fig. 7. Assimilation process 

 
  

  ↓     ↓   

4 6 7 2 5 3 1   :Colony 

        

4 3 7 2 5 6 1   : after revolution 
                      

Fig. 8. Revolution process 

C. Assimilation operator 
According to what is called the assimilation policy, each imperialist tends its colonies towards it from different 

social and political dimensions to gradually cause their evolution. In the developed ICA, an operator is used to execute 
the assimilation policy. To illustrate this operator, consider an example with 7 jobs. First, two cells are randomly 
selected and the numbers between them are copied from the imperialist to the assimilated colony (Fig.7 (a)). Then, the 
numbers that existed in the initial colony between the two selected cells and were not copied, are copied into the 
assimilated colony after matching the numbers that occupied their place. In other words, the number 1 is copied in place 
of number 5 and the number 4 is copied in place of number 2. Finally, the remaining numbers of the assimilated colony 
are allocated like the order of the initial colony (Fig.7 (b)). 

D. Revolution operator 
In some cases, a social-political revolution can suddenly change the characteristics of a country. In the proposed 

ICA approach, the revolution is modeled by moving a colony to a new random circumstances, and due to the diversity 
of the search path, prevents it from dropping into the trap of local optimal. In the proposed meta-heuristic, after the 
assimilation process, a revolution occurs in each colony with a probability of  Prev (which is called the revolution rate). 
The operator of the revolution is that two cells are randomly chosen and their jobs are moved together (Fig.8). 
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E. Imperialist competitive 
Empires compete for possession of each other's colonies and aim to increase their power. Imperialist competition 

gradually enhances the strength of stronger empires and diminishes the power of weaker empires. If an empire fails to 
boost its power, it will eventually be eliminated from the competition. To compete in each iteration of the algorithm, the 
total power of each empire in relation to the power of the imperialist and its colonies is computed as follows: 

Tf(imp) = f(imp) + αfavgcol(imp) (73) 

Where favgcol(imp) is the average objective function value of the colonies in the imp empire and α is also a number 
between zero and one. Since in most implementations, α equal to 0.05 has led to favorable results, the same value has 
been used in this study. The normalized value of the whole power of each empire is then computed by equation 74: 

Tf ′(imp) = Tfmax − Tf(imp) (74) 

Where Tfmax is the whole power of the weakest empire. Finally, the probability of taking over the weakest colony of 
the weakest empire by each imp empire is computed by equation 75: 

Ppos(imp) = Tf ′(imp)
∑ Tf ′(τ)Nimp
τ=1

�   (75) 

Thus, the weakest colony of the weakest empire will not necessarily be seized by the strongest empire, but the 
stronger empires will compete with more chances. Fig.9 shows the flowchart of the ICA approach. 

V. COMPUTAIONAL RESULT  
In this study, the mathematical model is solved with GAMS software and the CPLEX solver is used. In this 

software, the maximum solution time for each instance is 7200 seconds and if the optimal solution is obtained during 
this period, it is reported. On the other hand, the ICA approach and its components are coded in the Python 
programming language and performed all the computational experiments on a Laptop with an Intel RCoreTMi7-4600U 
CPU clocked at 2.10 GHz with 8GB of memory operating under the Windows 10 operating system. To adjust the 
parameters of the proposed ICA, different values were considered for each parameter, and then, by solving some 
numerical problems in the initial experiments, the appropriate values were selected as described in Table 7 for use in 
subsequent experiments. 

Table 7. Parameters of the ICA approach 

Parameter Adjusted value 

Population size 10 × n 
Max Number of  iterations 100 
Number of initial empires 0. 3 × n 
Revolution rate 0.4 
𝛼𝛼 0.05 
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In Table 7, n indicates the number of jobs that is used to determine the population size of the algorithm. In this 
research, the primary population is generated randomly and due to the random nature of the proposed algorithm, each of 
the generated problems has been solved 5 times by the ICA approach and the minimum, average and maximum values 
of the objective function for obtained solutions have been reported. Also, to facilitate the comparison of the results, the 
following comparative percentage deviation has been used to measure the value of the objective function of each 
solution (sol) for a given problem: 

RPD = �
f(sol) − f(solbest)

f(solbest)
� × 100 (76) 

 
solbest is the best solution for that problem among the obtained solutions. The RPD indicator compares each 

solution with the best solution obtained for that problem and declares their discrepancy as a percentage; the lower the 
value of this indicator, the better the quality of the solution.  

As shown in Table 8, the results obtained from solving different sizes of the problem are reported, in which the RPD 
values for the problems that the mathematical model was able to find the optimal solution are bolded. In all instances 
presented in Table 8, the processing of each job requires exactly one machine from each stage. In small instances 
(problems with a maximum of 7 jobs) Gams software can produce an optimal solution in a sensible time and ICA 
approach also shows high efficiency and provides the optimal solution every 5 times. In large instances, since the Gams 
software loses its efficiency, the ICA approach does very well and provides a suitable solution in a sensible time. In 
other words, in large instances of the problem, the Gams software cannot find the optimal solution, and present solution 
that has low quality in comparison with the solution provided by the ICA approach. This discrepancy in quality of the 
solutions becomes more visible in large instances which is completely obvious in the instance 22 , 23 and 24. The 
weakness of Gams software becomes more obvious when it cannot find a solution in cases that have more than 25 jobs. 
The solution obtained from the ICA approach is reliable because it provides the optimal solution in small instances 
every 5 times such as exact method. The remarkable point of the proposed ICA is the low deviation of its presented 
solutions for each instance and this confirms the convergence of the algorithm. In general, according to the results, it 
can be asserted that the ICA approach performs well and can gain good solutions in an acceptable time, especially for 
large instances of the problem. 
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Fig. 9. ICA approach flowchart 
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Table 8. Comparison outcomes of the mathematical model and ICA approach 

ICA GAMS 

No. stages No. job Instance 
Run time (s) 

Output (RPD) 
Run time(s)  Output (RPD) 

Max Avg Min 

61 0 0 0 2231 0 5 5 1 
70 0 0 0 2768 0 7 5 2 
68 0 0 0 3952 0 9 5 3 
86 0 0 0 4721 0 5 6 4 
79 0 0 0 5147 0 7 6 5 
91 0 0 0 5772 0 9 6 6 

104 0 0 0 6692 0 5 7 7 
113 0 0 0 7083 0 7 7 8 
129 0 0 0 7200 0 9 7 9 
122 0 0 0 7200 0 5 8 10 
149 0 0 0 7200 0.04 7 8 11 
167 0.04 0.01 0 7200 0.07 9 8 12 
160 0.04 0.02 0 7200 0.15 5 9 13 
173 0.05 0.02 0 7200 0.23 7 9 14 
209 0.08 0.05 0 7200 0.26 9 9 15 
196 0.15 0.06 0 7200 0.37 5 10 16 
245 0.10 0.05 0 7200 0.41 7 10 17 

231 0.12 0.08 0 7200 0.38 9 10 18 

416 0.52 0.36 0 7200 1.17 5 15 19 

452 0.63 0.35 0 7200 1.74 7 15 20 

478 0.84 0.51 0 7200 1.98 9 15 21 

610 1.38 0.78 0 7200 3.25 5 20 22 

592 1.65 0.94 0 7200 4.18 7 20 23 

640 1.86 1.27 0 7200 4.71 9 20 24 

795 1.93 1.54 0 7200 - 5 25 25 

846 2.39 1.64 0 7200 - 7 25 26 

817 2.28 1.47 0 7200 - 9 25 27 

923 2.86 1.84 0 7200 - 5 30 28 

992 2.53 1.54 0 7200 - 7 30 29 

1031 2.70 1.73 0 7200 - 9 30 30 

368.1 0.74 0.47 0 6558 0.78 Average 
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VI. CONCLUSION AND FUTURE RESEARCH 
In this work, the NW-F-JSP with machines availability constraint for periodic maintenance activities and machines 

processing capability to minimize the sum of weighted tardiness has been formulated. Duo to its combinatorial 
complexity, the ICA approach is developed. The proposed ICA as well as GAMS software presented good performance 
in solving small instances. In addition, the ICA approach was able to solve large instances (which involve hundreds of 
operations) and show good performance according to quality and run time factors. The application of the considered 
problem is in the production of perishable products where delay during production can be very destructive and often 
production process is undertaken without any delay. In such production environments, it is common to consider 
periodic machines maintenance activities to prevent machine failure, and for this reason, these conditions have been 
considered in this research.  

For future research, the possibility of waiting during production process due to machine failure can be considered by 
allowing interruption during operations processing time. In addition, due to the discrete solution space of the problem, 
heuristic algorithms based on neighborhood search can be used. 
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