

 Journal of Quality Engineering and Production Optimization

 Vol. 8, No. 1, Winter & Spring 2023

 http://jqepo.shahed.ac.ir

Manuscript Received:10-October-2022 & Revised: 14-December-2022 & Accepted: 14-February-2023

ISSN: 2423-3781

Research Paper

DOI: 10.22070/jqepo.2023.16882.1246

Efficient scheduling of a no-wait flexible job shop with periodic maintenance
activities and processing constraints

Kasra Mahdavi 1 , Mohammad Mohammadi *1 , Fardin Ahmadizar 2

1 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
2 Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran

* Corresponding Author: Mohammad Mohammadi (Email: Mohammadi@khu.ac.ir)

Abstract –Flexible job-shop scheduling problem (F-JSP) is an expansion of the job shop scheduling problem
(JSP) which allows an operation to be fulfilled by any machine among a set of accessible machines at each
stage. This paper investigates a no-wait F-JSP (NW-F-JSP) with machines accessibility restrictions for
maintenance activities and machines processing capability to minimize total weighted tardiness. The study is
organized in two phases. Firstly, a novel nonlinear mathematical model is developed for the supposed
problem, and then it is converted into a linear mathematical model using techniques found in the literature.
Since the structure of the problem is NP-hard, an imperialist competitive algorithm is proposed in the second
phase to solve large instances of the problem. In the proposed algorithm, an effective solution representation
with an efficient and greedy decoding methodology is adopted to reduce the search space. Numerical
experiments are used to appraise the performance of the developed algorithm. It is inferred that in small
instances, solving the mathematical model by GAMS leads to the optimal solution. Still, with an increased
instance size, this method loses its efficiency and the ICA approach performs better under these conditions.

Keywords– Flexible job shop, no-wait, maintenance activities, Imperialist competitive algorithm.

I. INTRODUCTION
Job shop scheduling problem (JSP) is a type of scheduling used in various production environments. The JSP was

first introduced by Manne (1960). In this study, it is proven that JSP, known as the NP-hard optimization problem in
production scheduling literature, is highly complex. To the best of our knowledge, there is no methodology in the
literature that is able to solve large instances in a reasonable amount of time.

Due to the restrictions and special conditions in each production environment and their specific constraints,
production scheduling requires consideration of these constraints, which complicates the scheduling problem. One of
the manufacturing industries that has special conditions and restrictions is the perishable products industry. Delays
during the production of perishable products can be very destructive. As a result, perishables are produced without
delay, packaged and stored immediately. If the production system is in the form of a job shop, the scheduling problem
will become a no-wait job shop scheduling problem (NW-JSP). In addition, due to the possible machines malfunction,
it is imperative to incorporate machines maintenance activities into the model. Therefore, it can be stated that in the

http://jqepo.shahed.ac.ir/
https://jqepo.shahed.ac.ir/article_4047.html

34 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

production of perishable products, if the production system is in the form of a job shop, various restrictions must be
considered.

In this paper, a no-wait flexible job shop scheduling problem (NW-F-JSP) with processing constraints is
investigated. This scheduling problem is of special importance both from a theoretical and practical point of view. From
a theoretical point of view, considering the machines capability and machines maintenance activities in NW-F-JSP
shows that a number of feasible solutions, albeit limited, are available. In situations where there are such constraints in a
flexible job shop scheduling problem (F-JSP), such solutions can be applied. From a practical perspective, one of the
production environments, where conditions are very similar to the problem discussed in this study, is the perishable
food manufacturing industry, where the production process is predominately carried out in the form of JSP. In such
industries, to prevent food spoilage, it is necessary to eliminate the waiting time during production. On the other hand,
due to the probability of machine malfunction, the consideration of machines maintenance activities and machines
capabilities constraints in any production environment is inevitable. Therefore, the applicability of this problem with the
considered constraints is clear in the perishable food manufacturing industry.

To the best of our knowledge, this is the first study on the F-JSP where machines processing capability, machines
periodic maintenance activities, and no-wait constraints are simultaneously considered. The contributions are described
as follows:

Investigating an NP-hard scheduling problem that is widely used in the perishable food manufacturing industry.

 A non-linear mathematical model based on the precedence variable is established for the NW-F-JSP with processing
constraints.

 The proposed model is linearized by techniques in the literature to be solved by linear solvers.
 An Imperialist competitive algorithm (ICA approach) is customized to solve the NW-F-JSP.

The other sections of the paper are organized as follows: In Section II, the latest and related works are presented.
Section III presents the mathematical model and its linearization process for the problem. In Section IV, the ICA
approach is proposed to solve large instances of the problem. Computational results are discussed in Section V. Finally,
conclusions and future research are presented in Section VI.

II. LITERATURE REVIEW
In recent years, many researchers have studied JSP with various constraints. In this section, the newest related works

are reviewed. El Khoukhi et al. (2017) investigated a F-JSP with machines accessibility restrictions to minimize the
greatest termination time. A mathematical model for this problem was proposed, and due to its complexity, a new
optimization algorithm relying on the ant nest algorithm was developed. The F-JSP with machines accessibility
restrictions to minimize the greatest termination time was studied by Zandieh et al. (2017), and an ameliorated ICA
approach for large instances was proposed. A study was conducted by Yazdani et al. (2017) on a JSP to minimize the
sum of maximum tardiness and maximum earliness. A mathematical model was developed, and a new optimization
approach was proposed relying on the ICA approach. A study was undertaken by Lu et al. (2017) on a multi-objective
F-JSP with controllable processing times. In this study, minimizing the sum of consuming resources and the greatest
termination time were designated as objective functions. A new multi-objective meta-heuristic algorithm called
MODVOA was developed. A study was conducted by Benttaleb et al. (2018) on a JSP with two machines where one of
the machines was out of reach in a certain period. In this study, the objective function was minimizing the greatest
termination time. The optimality of Jackson's algorithm was investigated, and a heuristic algorithm was designed using
Jackson's law. Subsequently, they proposed a branch and bound algorithm for the problem. A new cyclic algorithm
relying on Tabu search was proposed by Fattahi et al. (2018) to improve the exploration and exploitation powers of
certain solution encodings suggested in the literature. The effectiveness of the proposed solution representation was
demonstrated in this research through the solution of several instances. Bürgy and Bülbül (2018) studied a JSP with the

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 35

irregular objective function of minimizing the sum of convex costs depending on the operations start time and proposed
a Tabu search algorithm for it. A mathematical model was proposed for a F-JSP with sequence-dependent setup times to
minimize the greatest termination time. Additionally, a Tabu search algorithm was developed based on new
neighborhood search functions and various structures by Shen et al. (2018).
A JSP with the objective function of minimizing the greatest termination time, in which machines are not always
available and become unavailable at intervals, was studied by Tamssaouet et al. (2018). In this study, simulated
annealing and Tabu search algorithms with neighborhood functions for real-size instances of the problem were
developed. García-León et al. (2019) proposed a local search approach for the multi-objective F-JSP to obtain Pareto
solutions for any combination of regular functions. An ameliorated Jaya algorithm for an F-JSP with the objective
function of minimizing the greatest termination time was developed by Caldeira and Gnanavelbabu (2019). In this
problem, machines' setup time and transfer time between machines were considered. An ameliorated multi-objective
Genetic algorithm for the problem of minimizing the greatest termination time and energy consumption in a multi-
objective F-JSP with energy consumption and transportation restrictions was developed by Dai et al. (2019). Shen et al.
(2019) investigated a F-JSP, in which the jobs’ processing time is variable and depends on the start time of their
processing. In this study, the objective function is minimizing the greatest termination time and the amount of energy
consumed by machines. For this problem, a hybrid multi-objective algorithm called MOHPIOSA was presented by
them. Samarghandi (2019) studied a NW-JSP with delivery deadline limitations and the objective function of
minimizing the greatest termination time. The problem was transformed into another problem, and a mathematical
model for both of them was presented. Subsequently, a genetic algorithm was developed to solve large instances.
Miyata et al. (2019) studied a no-wait flow shop scheduling problem (NW-FSP) with dependent sequenced setup times
and machines preventive maintenance to minimize the greatest termination time. In this problem, a new policy for
preventive maintenance was postulated, with its parameters based on the Weibull distribution. In this study,
constructive heuristics were developed for the proposed problem. A study was conducted by Samarghandi and Firouzi
Jahantigh (2019) on a NW-FSP with due date constraints aimed at minimizing the greatest termination time. Two
mathematical models were proposed, and a Constraint Programming Model was employed.

Zhang et al. (2020) investigated a NW-FSP with the objective function of minimizing the greatest termination time.
The Discrete Migratory Bird Optimization (MBO) algorithm was developed by them to achieve high-quality solutions.
A JSP was studied by Ahmadian et al. (2020) in which delivery date is considered for each job. In this problem, any
discrepancy between the job’s completion time and its delivery date is designated as a penalty, and the objective
function is to minimize the sum of earliness and tardiness. A Variable Neighborhood Search (VNS) algorithm was
developed for this problem. An ameliorated Genetic algorithm for a multi-objective F-JSP was developed by Zhang et
al. (2020). In this study, machines setup time and jobs transfer time between machines were considered. Li et al. (2020)
developed an ameliorated Jaya algorithm for a F-JSP, in which machine setup times and jobs transfer time between
machines are considered. Ying and Lin (2020) studied a NW-JSP to minimize the greatest termination time. The MSA-
BST algorithm, which is based on the Simulated Annealing algorithm, was developed by them. A F-JSP was studied by
Zhu and Zhou (2020b) with job priority restrictions in which the processing time of jobs was expressed as an interval
and the objective function was to minimize the interval length that is obtained for greatest termination time.
A new optimization algorithm called SLHO was developed by them for real-size instances of the problem. An
impressive evolutionary grey wolf optimizer for multi-objective F-JSP with job priority restrictions was developed by
Zhu and Zhou (2020a). In this problem, the objective function was to minimize the greatest termination time and
maximize the workload of machines simultaneously. An ameliorated memetic algorithm for the F-JSP with
transportation times to minimize the greatest termination time was proposed by Zhang et al. (2020). A multi-objective
JSP was studied by Li et al. (2020) in a robotic cell. In this problem, each job has a specific due date as a time window
and the objective function is to minimize the greatest termination time and the total earliness and tardiness
simultaneously. A TLBO algorithm was developed by them for large instances of the problem. A two-stage Genetic
algorithm for a F-JSP with sequence-dependent setup times was developed by Defersha and Rooyani (2020). In this
problem, the machines are available for processing operations at different times and each machine needs time to cool
down after processing each operation. Ozolins (2020) studied a NW-JSP to minimize greatest termination time. In this

36 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

study, a new exact algorithm was developed to solve benchmark instances within a sensible time limit. A NW-JSP with
due date and subcontracting cost constraints was studied by Gao et al. (2021). Two mathematical models were proposed
by them. Then, an artificial bee colony algorithm was developed based on a rolling timeline. A F-JSP with machine
capacity, time lags, holding times, and sequence-dependent setup times was studied by Boyer et al. (2021). A mixed-
integer linear programming and a constraint programming (CP) models were proposed by them to represent the
problem, and a meta-heuristic based on a Greedy Randomized Adaptive Search Procedure was developed to solve real-
size instances of the problem. A NW-JSP was studied by Valenzuela-Alcaraz et al. (2022) to minimize the greatest
termination time and a cooperative coevolutionary algorithm was proposed to solve large instances. Weng et al. (2022)
studied a F-JSP requiring operations to be performed by either a worker or a machine and to perform a machine
operation, two workers are needed. The scheduling problem was modeled by them, and four methods that form a real-
time scheduling and control system for JIT production were proposed. Fan and Su (2022) investigated a JSP with
conveyor-based ongoing flow transferor to minimize greatest termination time. In this study, the jobs are processed on
the machines which are connected in series via the conveyor. A mathematical model of the problem to find exact
solutions in small instances was presented by them, and a Simulated Annealing algorithm with NGS scheme was
developed to solve larger instances. Zhu et al. (2022) studied a NW-FSP with due windows to minimize the total
weighted earliness and tardiness. In this problem, a concept called factory has been proposed, which exists in a specific
number and includes machines for processing operations of jobs. In this scheduling problem, each job was assigned to a
factory to process its operations , and a new approach to solve large instances was proposed by them. Nohair et al.
(2022) studied a non-delay JSP with the objective of minimizing greatest termination time. A matrix heuristic was
developed by them to generate non-delay schedules that are computationally swift to implement. Winklehner and
Hauder (2022) investigated a F-JSP with periodic machines maintenance activities and processing constraints as a real-
world problem. A constraint programming approach to minimize the total completion times was developed by them.
Valenzuela-Alcaraz et al. (2022) proposed a cooperative algorithm approach for NW-JSP to minimize the greatest
termination time. In table 1, all of the studies that are reviewed above are classified.

Table 1. summarized Literature review

Solving

approach

Constraints

Objective

function
Type Year Author No

Other
Type of

parallel in

each stage

Setup

times

Job

transportation

time

Machine

capability
Machine

availability
No-wait

Based on

ACO
Priority

restrictions Pm × Cmax F-JSP 2017 El Khoukhi et al. 1

ICA Qm × Cmax F-JSP 2017 Zandieh et al. 2

Based on

ICA approach
 - ×

 Emax + Tmax JSP 2017 Yazdani et al. 3

MODVOA

Control the
processing time of
jobs by allocating

resources

Pm

Cmax

+

Minimizing
consuming
resources

F-JSP 2017 Lu et al. 4

Algorithm based
on Jackson's rule × Cmax JSP 2018 Benttaleb et al. 5

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 37

Continue Table 1. summarized Literature review

Solving

approach

Constraints

Objective

function
Type Year Author No

Other
Type of

parallel in

each stage

Setup

times

Job

transportation

time

Machine

capability
Machine

availability
No-wait

Tabu search Pm × Cmax F-JSP 2018 Shen et al. 6

SA - TS - × Cmax JSP 2018 Tamssaouet
et al. 7

Tabu search
Considering the

costs related to the
start of operations

- Minimizing
convex costs JSP 2018 Bürgy and

Bülbül 8

new cyclic
algorithm based on

TS
 - Cmax JSP 2018 Fattahi et al. 9

Constructive
heuristics

Flexible
preventive

maintenance
- × × × Cmax FSP 2019 Miyata et al. 10

Local search
approach to obtain

Pareto solutions
 Pm ×

A set of
regular

objective
functions

F-JSP 2019 García-León
et al. 11

Jaya algorithm Pm × × Cmax F-JSP 2019 Caldeira and
Gnanavelbabu 12

MOHPIOSA
The jobs

processing times
are variable

Rm ×

Minimizing
energy

consumption

+

Cmax

F-JSP 2019 Wu et al. 13

NSGA II Pm × ×

Minimizing
energy

consumption

+

Cmax

F-JSP 2019 Dai et al. 14

Extremely NP-hard
in the case of two

machines

Scheduling with
two machines - × × Cmax FSP 2020 Chen et al. 15

MBO - × Cmax FSP 2020 Zhang et al. 16

A heuristic
algorithm called

PBIG
 -

×

Minimizing
the sum of
completion

time

JSP 2020 Li et al. 17

GA Pm × × Cmax F-JSP 2020 Zhang et al. 18

38 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

Continue Table 1. summarized Literature review

Solving

approach

Constraints

Objective

function
Type Year Author No

Other
Type of

parallel in

each stage

Setup

times

Job

transportation

time

Machine

capability
Machine

availability
No-wait

Jaya algorithm Pm × ×

Minimizing
energy

consumption

+

Cmax

F-JSP 2020 Li et al. 19

VNS Independent due
date for each job - JIT JSP 2020 Ahmadian

et al. 20

GWO Priority
restrictions Pm

Maximizing
machines
workload

+

Cmax

F-JSP 2020a Zhu and Zhou 21

GA
machines are
available at

different times
Pm × × × Cmax F-JSP 2020 Defersha and

Rooyani 22

Ameliorated
memetic algorithm Qm × Cmax F-JSP 2020 Zhang et al. 23

MSA-BST -

 × Cmax JSP 2020 Ying and Lin 24

New approach
called SLHO

Priority
restrictions Pm

Minimizing
the length of

Cmax interval
F-JSP 2020b Zhu and Zhou 25

Ameliorated GA Qm × Cmax F-JSP 2020 Zhang et al. 26

New effective
approach called

IMOTLBO

Job due date as a
time window - Using robots

Cmax

+

JIT
JSP 2020 Li et al. 27

New exact
algorithm based on

DP
 - × Cmax JSP 2020 Ozolins 28

ABC based on a
rolling timeline

Subcontracting
strategy to satisfy

the deadlines
- ×

Cmax and
subcontracting

cost
JSP 2021 Gao et al. 29

Meta-heuristic
relying on a greedy

procedure

With machine
capacity and time

lags
Qm × Cmax F-JSP 2021 Boyer et al. 30

Cooperative
coevolutionary

algorithm
 -

× Cmax JSP 2022 Valenzuela-
Alcaraz et al. 31

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 39

Continue Table 1. summarized Literature review

Solving

approach

Constraints

Objective

function
Type Year Author No

Other
Type of

parallel in

each stage

Setup

times

Job

transportation

time

Machine

capability
Machine

availability
No-wait

Proposed four
method that form a

realtime
scheduling.

Each operation
needs worker
and worker

like machine
has key role

Rm × JIT F-JSP 2022 Weng et al. 32

Simulated
Annealing

algorithm with
NGS scheme

The jobs are
processed on

the contiguous
machines by
the conveyor

- Cmax JSP 2022 Fan and Su 33

A discrete
algorithm

Considering
time window
for jobs due

dates

- × Weighted JIT FSP 2022 Zhu et al. 34

New matrix
heuristic

Machines are
never kept

vacant while
job is waiting

-
 Cmax JSP 2022 Nohair et al. 35

Constraint
programming

approach

Deadline for
each job

Release date
for each job

Rm × × ×
Minimizing

the total
completion

times

F-JSP 2022 Winklehner and
Hauder 36

ICA based on
greedy decoding

methodology

Independent
periodic

maintenance
activities for
each machine

Rm
 × × ×

Minimizing
sum of

weighted
tardiness

F-JSP Current study ***

In summary, the reviewed scientific works show that no single paper exists covering F-JSP with unrelated parallel

machines in each stage, machines periodic maintenance activities, no-wait constraint and machines capability to
minimize sum of weighted tardiness.

III. PROBLEM DESCRIPTION AND FORMULATIONS

A. Problem explanation
 In a F-JSP, there are a set of machines and a set of jobs that have to be processed on the machines. In this problem,

m machines and n jobs are considered. Each job consists of a sequence of operations where they are permitted to be
processed on any among a set of accessible machines. The other assumptions of the problem are as follows:

 All jobs and machines are accessible from the beginning, each machine can only execute one operation at a given
time.

 Each job has a specific processing path.
 To process each job, it may not require machines during all stages.
 There is no way to process a job on multiple machines simultaneously.
 There is no way to interrupt an operation once started (Preemption is not allowed).
 Waiting time between two sequential operations of the same job is not allowed.
 Each job has an independent due date so if it is fulfilled later than the due date, a penalty will be imposed.

40 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

 Machines can not necessarily process all operations.
 The type of parallel machines in each stage is unrelated.
 The setup time of machines is considered as a part of the processing time of the operations.
 Machines are periodically unavailable for maintenance activities.
 The length of each unavailability interval is specified.

The objective is to identify a feasible schedule that minimizes the total weighted tardiness.

B. Problem formulations
The notation describing the indices, parameters, and decision variables used in the models are as follows:

 Indices:

i, h: jobs’ index (1, …, n)

j: operations’ index (1, … ,Ji)

k: machines’ index (1, …, m)

r: unavailability interval’s index

 Parameters:

n: jobs’ total number

m: machines’ total number

Ji: total number of operations of job i

prkij: processing time of oij if performed on machine k

di : due date of job i

wi : weight of job i

SMkr : starting time of rth unavailability interval on machine k

FMkr : finishing time of rth unavailability interval on machine k (FMkr − SMkr = T)

M: a large number

 Decision variables:

Ti: tardiness of job i

Vijk: Vijk is 1 if oij performed on machine k; otherwise Vijk is 0.

Zijhgk: Zijhgk is 1 if oij precedes operation ohg on machine k; otherwise Zijhgk is 0.
cmij: completion time of operation oij

Bijkr: binary variable in inaccessibility restrictions

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 41

In this section, an approach called the precedence variable-based model is used to present a mathematical model for
the problem. This approach relies on the precedence variable Zijhgk, introduced by Manne (1960). It denotes the
sequence of operations assigned to the same machine. Zijhgk is equal to one if operation oij precedes operation ohg on
machine k; otherwise Zijhgk is equal to zero. Note that operation oij is not necessarily positioned immediately before
operation ohg when Zijhgk is equal to one. For this type of variable, it has to be defined only i < h because Zijhgk = 1 −
 Zhgijk. According to this approach, a precedence variable-based model for this problem is developed.

This kind of model was first proposed by Gao et al. (2006) to formulate F-JSP, and we have adopted it for our F-
JSP. The objective function is to minimizing total weighted tardiness:

Min ∑ (wi ∗ Ti)i (1)

The following constraints compel each job to pursue a specified operation sequence and guarantee the no-wait
constraint:

cmij − cmij−1 ≥ prkij. Vijk , ∀ i , k ,∀j = 2 , … , Ji (2)

cmij − cmij−1 ≤ prkij. Vijk , ∀ i , k ,∀j = 2 , … , Ji (3)

Constraint 4 ensures the completion time of the first operation of job i equal to be at least the processing time of oij:

cmij ≥ prkij. Vijk , ∀ i , j = 1 ∀k ∈ Mij (4)

The following constraints are disjunctive constraints:

�cmhg − cmij − prkhg�. Vhgk. Vijk. Zijhgk ≥ 0
, ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg

(5)

�cmij − cmhg − prkij�. Vijk. Vhgk. Zhgijk ≥ 0 (6)

These constraints represent that the operation ohg should not be started before the completion of the operation oij or

that the operation ohg must be completed before the start of the operation oij if they are assigned to the same machine k.
Constraints 5 and 6 are nonlinear and should be linearized. For this purpose, the nonlinear expression Vhgk. Vijk. Zijhgk
is first linearized by variable Oijhgk:

 Oijhgk ≤ Vhgk
 Oijhgk ≤ Vijk
 Oijhgk ≤ Zijhgk
 Oijhgk ≥ Vhgk + Vijk + Zijhgk − 2

 (7)

Therefore, constraints 5 and 6 become as follows:

cmhg. Oijhgk − cmij. Oijhgk − prkhg. Oijhgk ≥ 0
, ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg

(8)

cmij. Oijhgk − cmhg. Oijhgk − prkhg. Oijhgk ≥ 0 (9)

Then the nonlinear expressions cmij. Oijhgk and cmhg. Oijhgk should be linearized .Expression cmij. Oijhgk is

linearized as follows:

42 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

 Dijhgk ≤ cmij
Dijhgk ≤ M, Oijhgk
 Dijhgk ≥ cmij − M(1 − Oijhgk)

 (10)

And expression cmhg. Oijhgk is linearized as follows:

 BSijhgk ≤ cmhg
 BSijhgk ≤ M, Oijhgk
 BSijhgk ≥ cmhg − M(1 − Oijhgk)

 (11)

Finally, the linear equivalent of constraints 5 and 6 are as follows:

 BSijhgk − Dijhgk − prkhg , Oijhgk ≥ 0
 Dijhgk − BSijhgk − prkhg , Oijhgk ≥ 0
And constraints 7. 10 and 11

 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (12)

The following constraint clarifies that one machine ought to be selected from a set of available machines for each

operation:

∑ Vijk = 1k∈Mij , ∀ i. j (13)

Constraint 14 enforces to be selected one of two preference relationships.

 Zijhgk + Zhgijk = Vijk, Vhgk , ∀ i . h. j. g. ∀k ∈ Mij ∩ Mhg (14)

Constraints 14 is nonlinear and should be linearized. For this purpose, the nonlinear expression Vijk. Vhgk is
linearized by variable Fijhgk:

 Fijhgk ≤ Vhgk
 Fijhgk ≤ Vijk
 Fijhgk ≥ Vhgk + Vijk − 1

 (15)

Finally, the linear equivalent of constraint 14 are as follows:

Zijhgk + Zhgijk = Fijhgk
And constraints 15

 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (16)

Constraints 17 to 22 describe unavailability intervals for machines and ensure that each operation 𝑜𝑜𝑖𝑖𝑖𝑖 can be

processed between intervals when the machine is active.

�cmij − prkij�, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr

 , ∀ i . j. k. r

(17)

cmij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (18)

�cmij − prkij�, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (19)

cmij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (20)

�cmij − prkij�, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (21)

cmij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (22)

In these constraints, the expression cmij. Vijk is nonlinear, which becomes linear as follows:

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 43

 VCijk ≤ cmij
 VCijk ≤ M, Vijk
 VCijk ≥ cmij − M(1 − Vijk)

 (23)

Finally, the linear equivalent of constraints 17 to 22 are as follows:

 VCijk − prkij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr

, ∀ i . j. k. r

(24)

 VCijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (25)

 VCijk − prkij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (26)

 VCijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (27)

 VCijk − prkij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (28)

 VCijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (29)

And constraints 23

Finally with constraint 30 can determine the tardiness of each job:

Ti ≥ cmij − di , ∀ i . j = Ji (30)

According to mentioned above, the linearized mathematical model is as follows:

Min ∑ (wi ∗ Ti)i (31)

S, T,

cmij − cmij−1 ≥ prkij, Vijk
, ∀ i . k .∀j = 2 . … . Ji

(32)

cmij − cmij−1 ≤ prkij, Vijk (33)

cmij ≥ prkij, Vijk , ∀ i . j = 1 ∀k ∈ Mij (34)

BSijhgk − Dijhgk − prkhg, Oijhgk ≥ 0

, ∀ i . h. j. g. ∀k ∈ Mij ∩ Mhg

(35)

Dijhgk − BSijhgk − prkhg, Oijhgk ≥ 0 (36)

Oijhgk ≤ Vhgk (37)

Oijhgk ≤ Vijk (38)

Oijhgk ≤ Zijhgk (39)

Oijhgk ≥ Vhgk + Vijk + Zijhgk − 2 (40)

Dijhgk ≤ cmij (41)

Dijhgk ≤ M, Oijhgk (42)

Dijhgk ≥ cmij − M(1 − Oijhgk) (43)

BSijhgk ≤ cmhg (44)

BSijhgk ≤ M, Oijhgk (45)

44 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

BSijhgk ≥ cmhg − M(1 − Oijhgk) (46)

∑ Vijk = 1k∈Mij , ∀ i. j (47)

Zijhgk + Zhgijk = Fijhgk

, ∀ i . h. j. g. ∀k ∈ Mij ∩ Mhg

(48)

Fijhgk ≤ Vhgk (49)

Fijhgk ≤ Vijk (50)

Fijhgk ≥ Vhgk + Vijk − 1 (51)

VCijk − prkij, Vijk < �SMk.r ∗ Vijk� + M ∗ Bijkr

, ∀ i . j. k. r

(52)

VCijk < �SMk.r ∗ Vijk� + M ∗ Bijkr (53)

VCijk − prkij, Vijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (54)

VCijk < �SMk.r+1 ∗ Vijk� + M�1 − Bijkr� (55)

VCijk − prkij, Vijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (56)

VCijk > �FMk.r ∗ Vijk� − M�1 − Bijkr� (57)

VCijk ≤ cmij (58)

VCijk ≤ M, Vijk (59)

VCijk ≥ cmij − M(1 − Vijk) (60)

Ti ≥ cmij − di , ∀ i . j = Ji (61)

Vijk ∈ {0.1} , ∀ i . j. k (62)

Bijkr ∈ {0.1} , ∀ i . j. k. r (63)

Ti ≥ 0 , ∀ i (64)

cmij ≥ 0 , ∀ i . j (65)

Oijhgk ∈ {0.1}

, ∀ i . h. j. g. ∀k ∈ Mij ∩ Mhg

(66)

Fijhgk ∈ {0.1} (67)

Dijhgk ≥ 0 (68)

BSijhgk ≥ 0 (69)

VCijk ≥ 0 (70)

IV. IMPERIALIST COMPETITIVE ALGORITHM
In the previous section, the mathematical model was presented to obtain the optimal solution in GAMS software for

small instances of the problem. However, as the size of the instances increase, the exact methods lose their effectiveness
because of the high complication of the problem and in such cases, estimated methods such as heuristic or meta-

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 45

heuristic algorithms have to be utilized. In this study, the ICA approach has been presented for the considered problem
and its effectiveness in solving different instances has been evaluated. The ICA approach is a meta-heuristic algorithm
which is based on population of solutions, and proposed by Atashpaz-Gargari and Lucas (2007). This algorithm is
proposed to solve optimization problems and has been gradually developed by various researchers to solve scheduling
problems. For example, Zandieh et al. (2017) developed an ameliorated ICA approach for F-JSP. Ahmadizar et al.
(2019) developed an ICA approach for unrelated parallel machine scheduling problem.

The ICA approach starts with the initial population of solutions, each called a country. Some of the best countries
are chosen as imperialists and the other countries are allotted to these imperialists as colonies. The whole power of an
empire depends on the imperialist and its colonies. Each imperialist will gradually try to attract its colonies to itself,
which will lead the search to the good areas of the solution space. Also, the occurrence of a revolution in a colony can
cause changes in it, which can lead to the search for new areas of solution space. Over time, if a colony achieves a
better position (according to the objective that the problem pursues it) than its imperialist, it will replace it. After the
formation of the early empires, the imperialist competitive algorithm for the possession of each other's colonies begins
amongst them; in each iteration of the algorithm, a competition is formed between the empires to seize the weakest
colony of the weakest empire. Any empire that lose outs to enlarge its power will gradually lose its colonies during the
competition and eventually will be eliminated. This process continues until all the empires drop and only one empire
stands with control over the rest of the countries. Since reaching such a state can be very time-consuming, a top limit for
the number of iterations of the proposed approach is also considered as a stop condition; if the number of iterations gets
to a certain amount, the algorithm terminates. In the following section, the various components of the proposed
algorithm are examined.

A. Solution representation
Solution representation is the first and most important step in the development of meta-heuristic algorithms. Thus,

for the proposed algorithm, an effective solution representation with an efficient and greedy decoding methodology is
adopted to lessen the search space. The job-based encoding is used for this problem to represent a solution, i.e., a
sequence of the execution order of the job on the machines. For an instance with n jobs, this presentation gives a
sequence of n elements in which each job emerges exactly one time. Due to the no-wait constraint in the problem and
the method of performing and sequencing operations, the first operation of a job starts when all subsequent operations
belonging to that job continue without any interruption. For this reason, all operations of a job can be joined together
and considered as an operation that is processed at specific intervals and on predetermined machines without any
interruption. After processing one job, the next job is processed. Therefore, the length of the solution vector is
tantamount to the sum of the total jobs (n), and the location of the jobs inside the solution vector is the order of their
processing on the machines. For example, Fig.1 shows the solution for a problem with four jobs, where each job
consists of some operations.

1 4 2 3

Fig. 1. An encoded solution for a problem with four jobs

To calculate the amount of the objective function of a solution, it must first be decoded. In the literature related to
JSPs, various approaches to decoding have been proposed. In this research, the decryption algorithm developed by
Brizuela et al. (2001) for problems with no-wait constraint has been used to decode the problem under study. The steps
of the decryption algorithm are as follows:

46 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

Step 1: An idle times list is provided for each machine, and at the beginning of the schedule when no job is started, each
machine is completely idle except periods that are assigned for maintenance activities.

Step 2: The operations of the first unprocessed job in the solution representation should be processed respectively.
Step 3: The list of machine idle times is updated.
Step 4: If the processing of all jobs is finished, the algorithm stops; otherwise, it returns to step 2.

Due to the objective that the problem pursues it, it is clear that according to a greedy approach, the jobs should be
processed as soon as possible to minimize total tardiness. To better illustrate the decoding approach, consider a solution
which is shown in Fig. 1 with 4 jobs and 3 stages. It is remarkable that processing each job may not require machines of
all stages. The processing route for each job is shown in Fig.2, and jobs processing time on machines is presented in
Table 2.

Machines also become unavailable once every 5-time units due to preventive maintenance and repair activities. The
length of the unavailability period for each machine is two-time units. In the beginning, the list of machines' idle times
is presented in Table 3. According to the encoded solution in Fig.1, at first, job 1 must be processed, therefore, job 1 is
scheduled according to the timetable in Fig.3. After scheduling for job 1, the machines' idle times are updated, as shown
in Table 4.

Fig. 2. Jobs processing routes

Table 2. jobs processing times

Jobs
Stage 1 Stage 2 Stage 3

𝑀𝑀1 𝑀𝑀2 𝑀𝑀2
′ 𝑀𝑀3

1 3 - - 2

2 - 1 1 2

3 3 1 2 1

4 - 3 2 3

Processing route in stages (St)

Job

St 1 St 3 1

St 2 St 3 2

St 2 St 1 3 St 3

St 3

St 2 4

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 47

Table 𝟑𝟑. Machines idle times list in the beginning

Idle time Machine
[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀3

Fig. 3. Timetable for job 1 according to presented encoded solution

Table 𝟒𝟒. Machines idle times list after scheduling job 1

Idle time Machine
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀3

After updating the idle times' list, it should be examined when the processing of job 4 should start so that all its
operations are able to be processed in a row on various required machines without interruption. Job 4 is scheduled
according to the timetable in Fig.4. After scheduling for jobs 1 and 4, the machines' idle times are updated, as shown in
Table 5.

After updating the idle times' list, it should be examined when the processing of job 2 should start so that all its
operations are able to be processed in a row on various required machines without interruption. Job 2 is scheduled
according to the timetable in Fig.5. After scheduling for jobs 1, 4 and 2, the machines' idle times are updated, as shown
in Table 6.

𝑀𝑀1

M
ac

hi
ne

s

𝑀𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀𝑀2
′

𝑀𝑀3

Time

1

1

48 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

After updating the idle times' list, it should be examined when the processing of job 3 should start so that all its
operations are able to be processed in a row on various required machines without interruption. Job 3 is scheduled
according to the timetable in Fig. 6.

Fig. 4. Timetable for job 1 and 4 according to presented encoded solution

Table 5. Machines idle times list after scheduling jobs 1 and 4

Idle time Machine
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2
′

[7,12] ∪ [14,19] + … 𝑀𝑀3

Fig. 5. Timetable for jobs 1, 4 and 2 according to presented encoded solution

𝑀𝑀1

M
ac

hi
ne

s

𝑀𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀𝑀2
′

𝑀𝑀3 4

Time

1

4

1

𝑀𝑀1

M
ac

hi
ne

s

𝑀𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀𝑀2
′

𝑀𝑀3 4

Time

1

4

1

2

2

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 49

Tabe 6. Machines idle times list after scheduling jobs 1, 4 and 2

Idle time Machine
[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀𝑀2

[0,3] ∪ [8,12] ∪ [14,19] + … 𝑀𝑀2
′

[7,8] ∪ [10,12] [14,19] + … 𝑀𝑀3

Fig. 6. Timetable for all jobs according to presented encoded solution

As shown in Fig.6, due to the no-wait constraint and the machines availability constraint, job 3 cannot start earlier

than time unit 7. As the processing of all jobs is completed, the decoding algorithm is stopped and the timetable in Fig.6
is selected as the final timetable of the encrypted solution in Fig.1.

B. Formation of initial Empires
At first, the initial population has been produced then, the Nimp number of the best members is selected as the

imperialist. To assign the rest of the members to the imperialists, the normalized amount of each imperialist's objective
function is first calculated by equation 71:

f́(imp) = fmax − f(imp) (71)

Where f (imp) is the amount of the imperialist objective function for imp and fmax is the maximum amount of the

objective function among the imperialists. Note that normalization is done because minimizing the problem’s objective
function is intended; Now, minimizing f (imp) is equivalent to maximizing f ́ (imp). Then, the comparative power of
each imperialist is calculated and the colonized countries are distributed among the imperialists based on equation 72.

pw(imp) = f́(imp)
∑ f́(τ)Nimp
τ=1

� (72)

𝑀𝑀1

M
ac

hi
ne

s

𝑀𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀𝑀2
′

𝑀𝑀3 4

Time

1

4

1

2

2

3

3

3

50 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

 ↓ ↓

4 6 7 2 5 3 1 :Imperialist

6 2 4 7 1 5 3 :Colony

 7 2 5) :a(

 4 7 2 5 1) :b(

6 4 7 2 5 1 3 :Assimilated

Fig. 7. Assimilation process

 ↓ ↓

4 6 7 2 5 3 1 :Colony

4 3 7 2 5 6 1 : after revolution

Fig. 8. Revolution process

C. Assimilation operator
According to what is called the assimilation policy, each imperialist tends its colonies towards it from different

social and political dimensions to gradually cause their evolution. In the developed ICA, an operator is used to execute
the assimilation policy. To illustrate this operator, consider an example with 7 jobs. First, two cells are randomly
selected and the numbers between them are copied from the imperialist to the assimilated colony (Fig.7 (a)). Then, the
numbers that existed in the initial colony between the two selected cells and were not copied, are copied into the
assimilated colony after matching the numbers that occupied their place. In other words, the number 1 is copied in place
of number 5 and the number 4 is copied in place of number 2. Finally, the remaining numbers of the assimilated colony
are allocated like the order of the initial colony (Fig.7 (b)).

D. Revolution operator
In some cases, a social-political revolution can suddenly change the characteristics of a country. In the proposed

ICA approach, the revolution is modeled by moving a colony to a new random circumstances, and due to the diversity
of the search path, prevents it from dropping into the trap of local optimal. In the proposed meta-heuristic, after the
assimilation process, a revolution occurs in each colony with a probability of Prev (which is called the revolution rate).
The operator of the revolution is that two cells are randomly chosen and their jobs are moved together (Fig.8).

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 51

E. Imperialist competitive
Empires compete for possession of each other's colonies and aim to increase their power. Imperialist competition

gradually enhances the strength of stronger empires and diminishes the power of weaker empires. If an empire fails to
boost its power, it will eventually be eliminated from the competition. To compete in each iteration of the algorithm, the
total power of each empire in relation to the power of the imperialist and its colonies is computed as follows:

Tf(imp) = f(imp) + αfavgcol(imp) (73)

Where favgcol(imp) is the average objective function value of the colonies in the imp empire and α is also a number
between zero and one. Since in most implementations, α equal to 0.05 has led to favorable results, the same value has
been used in this study. The normalized value of the whole power of each empire is then computed by equation 74:

Tf ′(imp) = Tfmax − Tf(imp) (74)

Where Tfmax is the whole power of the weakest empire. Finally, the probability of taking over the weakest colony of
the weakest empire by each imp empire is computed by equation 75:

Ppos(imp) = Tf ′(imp)
∑ Tf ′(τ)Nimp
τ=1

� (75)

Thus, the weakest colony of the weakest empire will not necessarily be seized by the strongest empire, but the
stronger empires will compete with more chances. Fig.9 shows the flowchart of the ICA approach.

V. COMPUTAIONAL RESULT
In this study, the mathematical model is solved with GAMS software and the CPLEX solver is used. In this

software, the maximum solution time for each instance is 7200 seconds and if the optimal solution is obtained during
this period, it is reported. On the other hand, the ICA approach and its components are coded in the Python
programming language and performed all the computational experiments on a Laptop with an Intel RCoreTMi7-4600U
CPU clocked at 2.10 GHz with 8GB of memory operating under the Windows 10 operating system. To adjust the
parameters of the proposed ICA, different values were considered for each parameter, and then, by solving some
numerical problems in the initial experiments, the appropriate values were selected as described in Table 7 for use in
subsequent experiments.

Table 7. Parameters of the ICA approach

Parameter Adjusted value

Population size 10 × n
Max Number of iterations 100
Number of initial empires 0. 3 × n
Revolution rate 0.4
𝛼𝛼 0.05

52 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

In Table 7, n indicates the number of jobs that is used to determine the population size of the algorithm. In this
research, the primary population is generated randomly and due to the random nature of the proposed algorithm, each of
the generated problems has been solved 5 times by the ICA approach and the minimum, average and maximum values
of the objective function for obtained solutions have been reported. Also, to facilitate the comparison of the results, the
following comparative percentage deviation has been used to measure the value of the objective function of each
solution (sol) for a given problem:

RPD = �
f(sol) − f(solbest)

f(solbest)
� × 100 (76)

solbest is the best solution for that problem among the obtained solutions. The RPD indicator compares each

solution with the best solution obtained for that problem and declares their discrepancy as a percentage; the lower the
value of this indicator, the better the quality of the solution.

As shown in Table 8, the results obtained from solving different sizes of the problem are reported, in which the RPD
values for the problems that the mathematical model was able to find the optimal solution are bolded. In all instances
presented in Table 8, the processing of each job requires exactly one machine from each stage. In small instances
(problems with a maximum of 7 jobs) Gams software can produce an optimal solution in a sensible time and ICA
approach also shows high efficiency and provides the optimal solution every 5 times. In large instances, since the Gams
software loses its efficiency, the ICA approach does very well and provides a suitable solution in a sensible time. In
other words, in large instances of the problem, the Gams software cannot find the optimal solution, and present solution
that has low quality in comparison with the solution provided by the ICA approach. This discrepancy in quality of the
solutions becomes more visible in large instances which is completely obvious in the instance 22 , 23 and 24. The
weakness of Gams software becomes more obvious when it cannot find a solution in cases that have more than 25 jobs.
The solution obtained from the ICA approach is reliable because it provides the optimal solution in small instances
every 5 times such as exact method. The remarkable point of the proposed ICA is the low deviation of its presented
solutions for each instance and this confirms the convergence of the algorithm. In general, according to the results, it
can be asserted that the ICA approach performs well and can gain good solutions in an acceptable time, especially for
large instances of the problem.

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 53

Fig. 9. ICA approach flowchart

Start

Initialize the empires

Is imperialist
changed?

No

Yes

Move the colonies toward
their relevant imperialist

Revolve some colonies

Exchange the positions of the
colony and its imperialist

Compute the total cost
of all empires

Imperialist competition

Is there an empire
with no colonies?

Yes
Eliminate this empire

No

Update the cost of each empire

Is the
condition
satisfied?

No

End

Yes

54 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

Table 8. Comparison outcomes of the mathematical model and ICA approach

ICA GAMS

No. stages No. job Instance
Run time (s)

Output (RPD)
Run time(s) Output (RPD)

Max Avg Min

61 0 0 0 2231 0 5 5 1
70 0 0 0 2768 0 7 5 2
68 0 0 0 3952 0 9 5 3
86 0 0 0 4721 0 5 6 4
79 0 0 0 5147 0 7 6 5
91 0 0 0 5772 0 9 6 6

104 0 0 0 6692 0 5 7 7
113 0 0 0 7083 0 7 7 8
129 0 0 0 7200 0 9 7 9
122 0 0 0 7200 0 5 8 10
149 0 0 0 7200 0.04 7 8 11
167 0.04 0.01 0 7200 0.07 9 8 12
160 0.04 0.02 0 7200 0.15 5 9 13
173 0.05 0.02 0 7200 0.23 7 9 14
209 0.08 0.05 0 7200 0.26 9 9 15
196 0.15 0.06 0 7200 0.37 5 10 16
245 0.10 0.05 0 7200 0.41 7 10 17

231 0.12 0.08 0 7200 0.38 9 10 18

416 0.52 0.36 0 7200 1.17 5 15 19

452 0.63 0.35 0 7200 1.74 7 15 20

478 0.84 0.51 0 7200 1.98 9 15 21

610 1.38 0.78 0 7200 3.25 5 20 22

592 1.65 0.94 0 7200 4.18 7 20 23

640 1.86 1.27 0 7200 4.71 9 20 24

795 1.93 1.54 0 7200 - 5 25 25

846 2.39 1.64 0 7200 - 7 25 26

817 2.28 1.47 0 7200 - 9 25 27

923 2.86 1.84 0 7200 - 5 30 28

992 2.53 1.54 0 7200 - 7 30 29

1031 2.70 1.73 0 7200 - 9 30 30

368.1 0.74 0.47 0 6558 0.78 Average

Journal of Quality Engineering and Production Optimization / Vol. 8, No. 1, Winter & Spring 2023, PP. 33-56 55

VI. CONCLUSION AND FUTURE RESEARCH
In this work, the NW-F-JSP with machines availability constraint for periodic maintenance activities and machines

processing capability to minimize the sum of weighted tardiness has been formulated. Duo to its combinatorial
complexity, the ICA approach is developed. The proposed ICA as well as GAMS software presented good performance
in solving small instances. In addition, the ICA approach was able to solve large instances (which involve hundreds of
operations) and show good performance according to quality and run time factors. The application of the considered
problem is in the production of perishable products where delay during production can be very destructive and often
production process is undertaken without any delay. In such production environments, it is common to consider
periodic machines maintenance activities to prevent machine failure, and for this reason, these conditions have been
considered in this research.

For future research, the possibility of waiting during production process due to machine failure can be considered by
allowing interruption during operations processing time. In addition, due to the discrete solution space of the problem,
heuristic algorithms based on neighborhood search can be used.

REFERENCES
Ahmadian, M. M., Salehipour, A., & Cheng, T. C. E. (2020). A meta-heuristic to solve the just-in-time job-shop scheduling problem.

European Journal of Operational Research.

Ahmadizar, F., Mahdavi, K., & Arkat, J. (2019). Unrelated parallel machine scheduling with processing constraints and sequence
dependent setup times. Advances in Industrial Engineering, 53(1), 495–507.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic
competition. 2007 IEEE Congress on Evolutionary Computation, 4661–4667. IEEE.

Benttaleb, M., Hnaien, F., & Yalaoui, F. (2018). Two-machine job shop problem under availability constraints on one machine:
Makespan minimization. Computers & Industrial Engineering, 117, 138–151.

Boyer, V., Vallikavungal, J., Rodríguez, X. C., & Salazar-Aguilar, M. A. (2021). The generalized flexible job shop scheduling
problem. Computers & Industrial Engineering, 160, 107542.

Brizuela, C. A., Zhao, Y., & Sannomiya, N. (2001). No-wait and blocking job-shops: Challenging problems for GA’s. 2001 IEEE
International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No.
01CH37236), 4, 2349–2354. IEEE.

Bürgy, R., & Bülbül, K. (2018). The job shop scheduling problem with convex costs. European Journal of Operational Research,
268(1), 82–100.

Caldeira, R. H., & Gnanavelbabu, A. (2019). Solving the flexible job shop scheduling problem using an improved Jaya algorithm.
Computers & Industrial Engineering, 137, 106064.

Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling
problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143–157.

Defersha, F. M., & Rooyani, D. (2020). An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with
sequence dependent attached/detached setup, machine release date and lag-time. Computers & Industrial Engineering, 147,
106605.

El Khoukhi, F., Boukachour, J., & Alaoui, A. E. H. (2017). The “Dual-Ants Colony”: A novel hybrid approach for the flexible job
shop scheduling problem with preventive maintenance. Computers & Industrial Engineering, 106, 236–255.

Fan, H., & Su, R. (2022). Mathematical Modelling and Heuristic Approaches to Job-shop Scheduling Problem with Conveyor-based
Continuous Flow Transporters. Computers & Operations Research, 148, 105998.

Fattahi, P., Messi Bidgoli, M., & Samouei, P. (2018). An improved Tabu search algorithm for job shop scheduling problem trough
hybrid solution representations. Journal of Quality Engineering and Production Optimization, 3(1), 13–26.

Gao, Jie, Gen, M., & Sun, L. (2006). Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm. Journal
of Intelligent Manufacturing, 17(4), 493–507.

Gao, Jinsheng, Zhu, X., Bai, K., & Zhang, R. (2021). New controllable processing time scheduling with subcontracting strategy for
no-wait job shop problem. International Journal of Production Research, 1–21.

56 Mohammadi, M. et al. / Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities …

García-León, A. A., Dauzère-Pérès, S., & Mati, Y. (2019). An efficient Pareto approach for solving the multi-objective flexible job-
shop scheduling problem with regular criteria. Computers & Operations Research, 108, 187–200.

Li, J., Deng, J., Li, C., Han, Y., Tian, J., Zhang, B., & Wang, C. (2020). An improved Jaya algorithm for solving the flexible job shop
scheduling problem with transportation and setup times. Knowledge-Based Systems, 106032.

Li, X., Yang, X., Zhao, Y., Teng, Y., & Dong, Y. (2020). Metaheuristic for Solving Multi-Objective Job Shop Scheduling Problem in
a Robotic Cell. IEEE Access, 8, 147015–147028.

Lu, C., Li, X., Gao, L., Liao, W., & Yi, J. (2017). An effective multi-objective discrete virus optimization algorithm for flexible job-
shop scheduling problem with controllable processing times. Computers & Industrial Engineering, 104, 156–174.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219–223.

Miyata, H. H., Nagano, M. S., & Gupta, J. N. D. (2019). Integrating preventive maintenance activities to the no-wait flow shop
scheduling problem with dependent-sequence setup times and makespan minimization. Computers & Industrial Engineering,
135, 79–104.

Nohair, L., El Adraoui, A., & Namir, A. (2022). Solving Non-Delay Job-Shop Scheduling Problems by a new matrix heuristic.
Procedia Computer Science, 198, 410–416.

Ozolins, A. (2020). A new exact algorithm for no-wait job shop problem to minimize makespan. Operational Research, 20(4), 2333–
2363.

Samarghandi, H. (2019). Solving the no-wait job shop scheduling problem with due date constraints: A problem transformation
approach. Computers & Industrial Engineering, 136, 635–662.

Samarghandi, H., & Firouzi Jahantigh, F. (2019). Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow
Shop Problem with Due Date Constraints. Journal of Quality Engineering and Production Optimization, 4(1), 17–24.

Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem with sequence-dependent
setup times. European Journal of Operational Research, 265(2), 503–516.

Tamssaouet, K., Dauzère-Pérès, S., & Yugma, C. (2018). Metaheuristics for the job-shop scheduling problem with machine
availability constraints. Computers & Industrial Engineering, 125, 1–8.

Valenzuela-Alcaraz, V. M., Cosío-León, M. A., Romero-Ocaño, A. D., & Brizuela, C. A. (2022). A cooperative coevolutionary
algorithm approach to the no-wait job shop scheduling problem. Expert Systems with Applications, 194, 116498.

Weng, W., Chen, J., Zheng, M., & Fujimura, S. (2022). Realtime scheduling heuristics for just-in-time production in large-scale
flexible job shops. Journal of Manufacturing Systems, 63, 64–77.

Winklehner, P., & Hauder, V. A. (2022). Flexible job-shop scheduling with release dates, deadlines and sequence dependent setup
times: a real-world case. Procedia Computer Science, 200, 1654–1663.

Wu, X., Shen, X., & Li, C. (2019). The flexible job-shop scheduling problem considering deterioration effect and energy
consumption simultaneously. Computers & Industrial Engineering, 135, 1004–1024.

Yazdani, M., Aleti, A., Khalili, S. M., & Jolai, F. (2017). Optimizing the sum of maximum earliness and tardiness of the job shop
scheduling problem. Computers & Industrial Engineering, 107, 12–24.

Ying, K.-C., & Lin, S.-W. (2020). Solving no-wait job-shop scheduling problems using a multi-start simulated annealing with bi-
directional shift timetabling algorithm. Computers & Industrial Engineering, 146, 106615.

Zandieh, M., Khatami, A. R., & Rahmati, S. H. A. (2017). Flexible job shop scheduling under condition-based maintenance:
Improved version of Imperialist competitive algorithm. Applied Soft Computing, 58, 449–464.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job shop scheduling problem with
multiple time constraints. Swarm and Evolutionary Computation, 54, 100664.

Zhang, G., Sun, J., Lu, X., & Zhang, H. (2020). An improved memetic algorithm for the flexible job shop scheduling problem with
transportation times. Measurement and Control, 0020294020948094.

Zhang, S. J., Gu, X. S., & Zhou, F. N. (2020). An improved discrete migrating birds optimization algorithm for the no-wait flow shop
scheduling problem. IEEE Access.

Zhu, N., Zhao, F., Wang, L., Ding, R., & Xu, T. (2022). A discrete learning fruit fly algorithm based on knowledge for the distributed
no-wait flow shop scheduling with due windows. Expert Systems with Applications, 198, 116921.

Zhu, Z., & Zhou, X. (2020a). An efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling problem
with hierarchical job precedence constraints. Computers & Industrial Engineering, 140, 106280.

Zhu, Z., & Zhou, X. (2020b). Flexible job-shop scheduling problem with job precedence constraints and interval grey processing
time. Computers & Industrial Engineering, 106781.

