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Abstract- In this paper, an iterative algorithm for direction of arrival 

(DoA) estimation of coherent sources with a uniform circular array 

(UCA) is proposed. There is an additional error in the DoA estimation of 

signals after mapping UCA to virtual uniform linear array (VULA), due 

to approximation of beamspace transformation. This error depends on 

the direction of emitters. In the proposed algorithm, the dominant term 

of error is reduced using two beamformers. Then, the DoA of coherent 

sources is estimated by construction of Toeplitz covariance matrix and 

using the MUSIC algorithm. The processes of DoA estimation and 

reduction of the approximation error are done iteratively. Also, an 

analytical expression is derived for the approximation of bias for DoA 

estimation of coherent sources. Simulation results show that the proposed 

algorithm has a better performance in comparison to the conventional 

methods.  
 

Index Terms- Direction of arrival (DoA) estimation, coherent sources, uniform circular array 

(UCA), beamspace transformation (BT), bias reduction. 

 

 

I. INTRODUCTION 

Direction of arrival (DoA) estimation is one of the most important research areas in array signal 

processing which has so many applications in localization, tracking, surveillance, and navigation [1-4]. 

Sub-space based DoA estimation methods, such as MUSIC [5] and ESPRIT [6] which are based on the 

Eigen structure of the received vector covariance matrix are the most powerful methods for DoA 

estimation. However, these methods are unable to estimate the DoA of coherent sources. At the presence 

of coherent sources, the source covariance matrix is not full-ranked (is rank deficient). Some modified 

methods have been proposed for DoA estimation of coherent sources in uniform linear arrays (ULAs) 

such as: Spatial Smoothing (SS) [7-10], reconstruction of the Toeplitz structure of covariance matrix 
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[11-12], Spatial Differencing (SD) [13], 1,2M -MUSIC [14], and Beamspace matrix reconstruction 

[15].  

Uniform circular arrays (UCAs) have some advantages over ULAs such as uniform estimation error 

over [0, 360]o. But the steering matrix of the UCA is not Vandermonde [16]. By using some 

preprocessing operations, the UCA can be mapped to a virtual uniform linear array (VULA) with 

Vandermonde structured steering vectors. Some examples of these mappings are Array Interpolation 

Techniques (AIT) [17-18], Beamspace Transform (BT) [19-20] and Manifold Separation Technique 

(MST) [21-22]. In these methods, the steering vectors of UCA are mapped to new steering vectors with 

Vandermonde structure which is called VULA.  

AIT uses a transformation matrix to map the steering vectors of UCA in some predefined and 

quantized angles (called grid points) to the corresponding steering vectors of a ULA. By application of 

this transformation, the power of noise vector is increased, because the transform matrix is usually ill-

conditioned [23]. In addition to this drawback, AIT leads to a considerable error, when the true DoAs 

are not on the quantized grid points. 

The Vanderomonde structure of ULA steering vectors makes it possible to use root-MUSIC 

algorithm, which has a better performance in comparison to the MUSIC method. Since the steering 

vector of UCA is not Vandermonde structured, root-MUSIC algorithm can not be applied directly. In 

[24], MST was proposed to convert the steering vector of UCA, such that the root-MUSIC algorithm 

can be applied. Since the root-MUSIC algorithm is unable to find the DoAs of correlated sources, then 

the MST is not applicable for this purpose. 

Based on the above discussion, among the aforementioned transforms, BT is a more suitable 

transformation, which does not change the power of noise and as we will propose in this paper, it can 

be used for DoA estimation of coherent sources. Using BT leads to the reduction of the complexity of 

DoA estimation as well as performance improvement in comparison to the conventional element-space 

methods [20]. But the mapping from element domain to beam domain produces additional errors which 

can relieve these advantages. 

Similar to ULAs, in UCAs, conventional subspace-based methods such as MUSIC are unable to 

estimate the DoA of coherent sources. SS algorithm [25], Modified UCA-ESPRIT [26], MODE-TOEP 

algorithm [26] and modified MUSIC algorithm [27] are some methods which have been proposed for 

DoA estimation of coherent sources in circular arrays. Among these methods, the SS algorithm is more 

complex due to use of sub-arrays, while Modified UCA-ESPRIT has lower computational complexities. 

Furthermore, the last two algorithms can detect more coherent signals under certain conditions.  

The accuracy of the above-mentioned algorithms is degraded due to the residual error caused by BT, 

when it is applied to UCAs. In BT transformation, phase mode excitation principle is used to convert 

the steering vectors of UCA to the steering vectors of a VULA. The approximation in this conversion 

leads to residual errors, which introduces bias or additional error variance in DoA estimation [20]. Since 
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the resulted error depends on the DoAs of signals, there is not a direct method to remove the residual 

error and iterative methods must be used in which estimation of DoAs and removal of residual errors 

are done iteratively. 

In [20], it has been shown that the residual error of BT for noncoherent sources can be reduced 

iteratively, but there is no proposed method for reduction of the residual error of BT for coherent 

sources. In this paper, an Iterative Mode Toeplitz and Bias Removal (IMTBR) method for DoA 

estimation of coherent sources in UCA has been proposed. At the first step of IMTBR, conventional 

BT is applied to the UCA received vector and Toeplitz covariance matrix is constructed. Then, the 

initial estimated DoAs are obtained by application of MUSIC algorithm to the Toeplitz structured 

covariance matrix. This initial estimation has error due to the noise and bias caused by BT. At the 

second step, the error caused by BT is reduced using the beamformers presented in [20] and the first 

step is repeated. The processes of DoA estimation using Toeplitz structured covariance matrix and 

removal of the dominant term of BT bias are repeated iteratively. Also, an analytical expression for the 

first approximation of the bias in DoA estimation of the coherent sources is obtained. 

The paper is structured as follows: In section II, the system model of DoA estimation in circular 

arrays is presented. In section III, phase mode excitation principle is described briefly. In section IV, 

BT is defined. The proposed iterative algorithm for DoA estimation of coherent sources is introduced 

in section V. A first-order approximation of the bias in DoA estimation of coherent sources is obtained 

in section VI. Computational complexity of the proposed method is calculated in section VII. 

Simulation results are shown in section VIII. Finally, section XI concludes the paper. 

Notations: Scalars, matrices and vectors are represented by normal letters, boldface uppercase and 

boldface lowercase letters, respectively. ℂ is the set of complex numbers,   represents the real part 

operation, and diag{.}  denotes a diagonal matrix. NI  and NI  denote N N  identity and exchange 

matrices, respectively. ʘ is HadamardSchur (element by element) product and  denotes complexity 

order. (.)T
, 

*(.) , (.)H
, 

1(.) , 
†(.)  stand for the transpose, conjugate, conjugate transpose, inverse, and 

pseudo-inverse, respectively. 

 

II. SYSTEM MODEL 

It is assumed that there are K  narrowband sources, and an ideal UCA consists of ( )N N K  identical 

and omnidirectional antennas located uniformly on a circle with radius r . The n -th antenna has been 

located on a circle of radius r  and in direction of  
2

0,1, .., 1n

n
n N

N


     . The Cartesian 

coordinate of the n -th antenna is 2 2
cos , sin , 0

n n
r r

N N

    
  







    


. Assuming that coupling effects between 

different antennas are zero, the output vector, x(t)ℂN×1, at discrete time index t  (the continuous 
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equivalent time is t t , where t  is sampling period) can be represented as  

    ( ) ( )t t t x A s n                                                                                      (1) 

where 𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑘(𝑡)]𝑇 ∈ ℂ𝑘×1 is the source signal vector and  𝑛(𝑡) =

[𝑛1(𝑡), 𝑛2(𝑡), … , 𝑛𝑘(𝑡)]𝑇 ∈ ℂ𝑁×1 denotes the noise vector. The noise of antennas is assumed to be 

spatially and temporally white complex Gaussian random process with zero mean and similar variance 

of 2 . Also, A()∈ ℂ𝑁×𝑘  is the steering matrix which is defined by [20] 

  1 2[ ( ), ( ),..., ( )]K   A a a a                                                                                       (2) 

where 

     0 1 1

2 2 2
cos cos cos

( ) , , ,
k k k N

T
j fr j fr j fr

c c c
k e e e

  
     


   

  
 

a                                                                    (3) 

is the k -th column of ( )A  and k  is the angle of arrival of the k -th source as shown in Fig. 1. It has 

been assumed that the sources and antennas are located at the same plane. 

If   is defined by 2 /fr c , then ( )ka  can be rewritten as 

     0 1 1cos cos cos
( ) , , ,k k k N

T
j j j

k e e e
        

     
 

a                                                                                 (4) 

It is clearly obvious that the steering matrix of UCA is not Vandermonde structured, thus it is not 

possible to use properties of Vandermonde matrices to estimate DoAs. Therefore, preprocessing 

methods such as BT, which is based on the phase mode excitation principle, are used to map the steering 

matrix of UCA array to a matrix with Vandermonde structure corresponding to a VULA. 

 

III. PHASE-MODE EXCITATION PRINCIPLE 

The ideal configuration for applying phase-mode excitation principle is to consider a continuous array 

that is not practically implementable [20]. Thus, we review the phase-mode excitation principle in 

continuous circular array and then it is investigated in discrete case with uniform placement of N  

elements in circular configuration. DoA problem is dual of beamforming. Thus, the principle of mode 

excitation has been described based on beamforming in [20], which has been briefly described in the 

following subsections. 

A. Continuous Circular Aperture 

Consider a continuous circular array that has been excited by the excitation function ( ),   

0 2   . It means that the point mounted on the array in angular position   is excited by the voltage 

( )  . Any excitation function in continuous circular aperture is periodic with period of 2 ,  
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Fig. 1. UCA with N  antenna. 

 

and it can be shown by a Fourier series. Using Fourier series representation, the excitation function 

( )   can be expressed as   jm

m

m

c e  




  , where the m -th phase mode   jm

m e     is a spatial 

harmonic to excite the array, and its corresponding coefficient is mc . In [20], the normalized far-field 

pattern resulted from the m -th phase-mode is calculated as (5), which is shown in the next page. 

   2 cos

0

1
( )

2

jc

m mf e d
   

   



                                                                                               (5) 

The superscript c  stands for continuous case. This pattern can be expressed in terms of Bessel 

function [20]: 

 ( )c m jm

m mf j J e                                                                                                                          (6) 

where  mJ   is the Bessel function of the first kind of order m . The term jme   in (6) shows that the 

far filed pattern has the same variation with   as the m -th phase mode excitation,   jm

m e    . 

Therefore, different excitations with proper coefficients, mc , can be used to produce any far-field pattern 

in continuous circular arrays. Due to the amplitude and the elevation dependence of the far-field pattern 

via the Bessel function, only a finite number of modes can be excited by a given circular aperture. To 

calculate the highest excitable order mode ( M ), it should be considered that the amplitude of the m -

th excited mode is  mJ   and the value of the Bessel function is negligible when the arguments of this 

function exceeds its order i.e., m  . Thus, the highest excitable mode,  mJ  , is the highest integer 

that 2 /M fr c    and excitable modes are  ,m M M  . 

B. Discrete Uniform Circular Array 

In a discrete version of circular array (UCA), a limited number of antennas are uniformly placed on 

a circle (at angular positions 0 1 1, ,...., N    ).The normalized beamforming weight vector that excites the 

array with phase mode  ,m M M   changes to The superscript s stands for sampled or  
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0 11

2 2 ( 1)

  
1 1

, , , 1, , ,N

H
m m N

j jH
jm jmjm N N

m e e e e e
N N

 
  

 
     

 
w                                                         (7) 

The resulting array pattern is 

   
1

cos

0

1
( ) nn

N
jjms H

m m

n

f e e
N

   






  w a                                                                                  (8) 

discrete array. In [20], it has been shown that this pattern for m M  can be written as 

        
1

s m jm g jg h jh

m m g h

q

f j J e j J e j J e     






                                                                    (9) 

where h Nq m   and g Nq m  . In (9), the principal term (the first term) is equal to the far-field 

pattern of continuous aperture as shown in (6). The two other terms, which are called the residual terms 

are resulted from sampling of continuous aperture. Thus, the residual error term is defined by 

      
1

g jg h jh

m g h

q

j J e j J e   






                                                                                           (10) 

and (9) can be rewritten as 

𝑓𝑚
𝑠 () − 𝑗𝑚𝐽𝑚()𝑒𝑗𝑚 +∈𝑚 ()                                                                                                        (11) 

In order to obtain the ideal case performance, the residual term must be minimized. In [20], it has 

been shown that if 2N m , then the principal term in (11) is dominant one. Since the highest excited 

mode is M , then the number of elements, must be chosen such that 2N m . This result looks like the 

Nyquist sampling criterion in which M  defines the maximum spatial component for array excitation. 

Although the above limitation on the number of elements guarantees that the principle term is 

dominant, but the residual term may still be considerable. To show this phenomenon, we have calculated 

the main term and residual error terms for a UCA with 3M   excitable modes ( 1f GH , 

/ 2r Mc f ). Table I shows the values of different terms of (11), for 3, 2, 1,0,1,2,3m     in case 

of 50  . 

It is observed that the main term is more significant in comparison to the residual terms. Also, the 

residual error term for 1q   is considerable. Therefore, we only consider the residual errors resulted 

from 1q  . Thus, the resulting array pattern is approximated by 

         
 ( )

j N m j N ms m jm N m N m

m m N m N mf j J e j J e j J e
    

   

                                               (12) 

If the number of antennas of UCA, N , is chosen such that the residual terms are negligible for mode 

orders m M , the array patterns for discrete aperture UCA are identical to continuous circular 

aperture. Then the residual term can be ignored and we can use the following approximation  

( ) ( )s m jm

m mf j J e                                                                                                                            (13) 
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Table I. The values of different terms of array pattern at 50   

m  Main term Error term  1q   Error term  2q   Error term  3q   

3  
13.0906 10  

24.3028 10  
82.6591 10  

178 1.81 6 01   

2  
14.8609 10  

21.1396 10  
82.8800 10  

186.0348 10  

1  
13.3906 10  

22.5340 10  
82.9306 10  

193.9594 10  

0  
12.6005 10  

27.5600 10  
89.5466 10  

202.4793 10  

1  
13.3906 10  

22.5340 10  
82.9306 10  

193.9594 10  

2  
14.8609 10  

21.1396 10  
82.8800 10  

186.0348 10  

3  13.0906 10  
24.3028 10  

82.6591 10  
178 1.81 6 01   

 

IV. BEAMSPACE TRANSFORM 

The BT maps the steering vectors of UCA into the steering vectors of a VULA with Vandermonde 

structure. This transform makes it possible to apply some widely used and efficient methods for UCA 

that were originally designed for ULA, such as root-MUSIC, ESPRIT, and SS [20]. 

In [20], the matrix H

eF  has been used to transform element space to beamspace. The UCA steering 

vector of (4) is mapped to the VULA array through this beamformer, which is defined by 

H H

e vF C V                                                                                                                                          (14) 

where  1 0 1diag , , , , , ,M M

v j j j j j     C  and 0[ , , , , ]M MN   V w w w . The columns of V , 

)( , , 1,..., 1,mN m M M M M    w  are defined by (7). Applying beamformer
H

eF  to the UCA 

steering vector, based on (9) and (13), the new steering vector is obtained as  

0

0

0

0

( ) ( ) ( ) [ ,..., ,..., ] ( )

[ ( ),..., ( ),..., ( )]

[ ( ) ,..., ( ),..., ( ) ]k k

H H H

e k e k v k v M M k

H H H T

v M k k M k

jM jMM M T

v M M

N

N

N j J e j J j J e
 

   

  

  









  





a F a C V a C w w w a

C w a w a w a

C

                                                  (15) 

Using the property    | |( 1)m

m mJ J    , (15) can be rewritten as 

          
        

0

0

diag ,..., ,...,

diag ,..., ,...,

k k

k k

M jM jMM

e k v M M

jM jM

M M k

N j J e J j J e

N J e J J e N

 

 



   

   

  

 

 

 

a C

J a

                                      (16) 

where 

  0, , , , , ,k k k k
T

jM j j jMj

k e e e e e
         a                                                               (17) 

is the steering vector of VULA with Vandemonde structure and 

 1 0 1diag ( ), , ( ), ( ), ( ), , ( )M MJ J J J J       J                                                  (18) 

The obtained new steering vector in (16) is an approximation and to make it more accurate, two 
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additional terms are also taken into account in [20]. Thus, a more accurate representation of ( )e ka  is 

as follows 

        1 2e k k k kN      a J a Δd Δd                                                              (19) 

where 𝑑1() = 𝐽
−1𝐶𝑣 ∈(1) (

𝑘
) and ∈(1) (𝑘) =∈2

(1)
(𝑘) +∈2

(1)
(𝑘) such that ∈1

(1)
(𝑘) and 

∈2
(1)

(𝑘) are defined as follows: 

   

     

     

   

     

     

1 1

1

1

1

1 1

1

.

.

.

.

k

k

k

k

k

N M j N M

N M

N M j N M

N M

j NN
k N

N M j N M

N M

N M j N M

N M

j J e

j J e

j J e

j J e

j J e















 





  



    

 



    

 

  



 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

                                                             (20) 

   

     

     

   

     

     

1 1

1

1
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1 1

1

.

.

.

.
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k

k
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N M j N M

N M

N M j N M

N M
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k N

N M j N M

N M

N M j N M
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j J e

j J e

j J e

j J e

j J e















 





 



   

 

   

 

 



 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

                                                             (21) 

Since  2 kΔd  includes high order error terms in (19) and considerably small compared to  1 kΔd

, thus equation (19) can be approximated as 

      1e k k kN    a J a Δd                                                                           (22) 

V. IMTBR  ALGORITHM FOR DOA ESTIMATION OF COHERENT SOURCES 

In [20], a modified BT, based on phase-mode excitation principle, is introduced. This transform 

performs mapping from element-space to beamspace domain by taking into account the error caused 

by the transform. The authors proposed an iterative technique to remove the bias introduced by the BT 

in the DoA estimation. In addition, they have derived an expression, which approximates the bias in 

DoA estimation caused by BT transform. 

In this section, we present an algorithm using two beamformers, 
1

H

eF  and 
2

H

eF , which are introduced 
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in [20] to improve the accuracy of DoA estimation of coherent sources. Applying the BT of (14) to the 

output vector of the array,  tx , the new vector,  ty , can be obtained as 

                

       

1

1 1

1 2( ) ( ) ( ) ( )

H H H H

e e e e

H

v e

t t t t N t t

N t t

 



 

  

     

   

y F x F As F n J A J Δd s F n

J A C s F n
                               (23) 

where        1 2, , ..., K      A a a a  is the VULA steering matrix, 

       1 1 2[ , ,..., ]K   Δd Δd Δd Δd , ∈1
(1)

() [∈1
(1)

(1), ∈1
(1)

(2), … ∈1
(1)

(
𝑘

)] and 

               1 1 1 1

2 2 1 2 2 1, ,..., K    
 

.        

In order to improve the accuracy of DoA estimation of coherent sources in UCA, we use two 

beamformers which are presented in [20]: 

   
1

1†

1 ]ˆ [ H H

e vN F CA                                                                                        (24) 

   
2

1†

2 ]ˆ [ H H

e vN F CA                                                                                        (25) 

where  
1

†ˆ (ˆ ˆ)( ˆ) ( )H  


A A A A . Applying these two beamformers to the array output vector, two 

output vectors  1 ty  and  2 ty  are obtained as  

            
1 1

1

1 1

H H

e v et t N t t  y F x C s F n                                                                                  (26) 

            
2 2

1

2 2

H H

e v et t N t t  y F x C s F n                                                                                  (27) 

To eliminate the bias, we have to remove the difference between the beamspace data vector  ty  and 

   1 2t ty y  as 

                      
1 2 1 21 2

ˆ H H H H H H

e e e e e et t t t t N t t          y y y y F F F x J A s F F F n    (28) 

Since 
(1)

1 2( ) 1‖ ‖  and 
(1)

2 2( ) 1‖ ‖ , then 
1 2

( )H H H

e e e F F F  is very close to unitary and 

1 2 1 2 2 1( )( )H H H H H H H H

e e e e e e e e M      F F F F F F F F I . Therefore, the statistics of the noise will not be 

changed considerably. 

When the signals are coherent, the source covariance matrix is not full-rank and the MUSIC algorithm 

is not applicable to estimate the DoAs of coherent signals. Thus, we have to make the source covariance 

matrix full-rank. This matrix can be obtained by using the MODE-TOEP algorithm which is proposed 

in [27]. 

By the multiplication of the beamspace vector, ( )ty  in (23), by the matrix 

1

N




J

, the new vector, ( )tz

, can be obtained as 
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 
1

1( ) ( ) ( ) ( ) ( ) ( )t t t t
N


 



   
J

z y A Δd s n                                                                                       (29) 

where  
1

( ) H

et t
N






J

n F n . Since the matrix 
1



J  is diagonal, then the new noise vector ( )tn  is non-

uniform, but still uncorrelated. Considering K  coherent signals received at array such that 

 1( ) ( ), 2, ...,k ks t s t k K   and also the central virtual antenna as the reference, the received signal in 

the h -th virtual antenna at discrete time index t  can be expressed as 

       

     

1,

1

1 1,

1

( )

( ) , 1,2,...,2 1

( )

( )

K

h h k h k k h

k

K

h k h k k h

k

z t a d s t n t

s t a d n t h M

 

  





   

     




                                                      (30) 

In (30),  h ka  ,  1,h kd  , ( )hz t  and  hn t  are the h -th elements of the vectors  ka ,  1 kΔd ,

 tz  and  tn , respectively. Also, s (t)k  is the k -th elements of the vector  ts . For the simplicity, 

we have considered that the signal of the sources is completely correlated. It means that the absolute 

value of the correlation coefficient between any pair of the sources is equal to one. The proposed 

algorithm also works for the cases where the signals are partially correlated. 

Spatial correlation between the reference and the h -th virtual antenna can be defined by 

   *

11 ( ) ( ) M hr M h E z t z t                                                                                                             (31) 

It is noteworthy that  1Mz t  is the signal of the virtual reference antenna. Also, with some 

modification, we can rewrite the equation (31) as follows: 

   * * * *

1 1 1, 1 1,

1 1 1 1

* * 2

1, 1 1,

1 1

( ) ( ) ( )

1

( ) (1

, 1,2,,.

)

( ) ( ) ..,2

K K K K

p q M p h p q M p

M

q qM p h

p q p q

K K

p q M qp h h

p q

r M h P a a P a d d

P d a h M

        

     

  

   

 

 

      

    

 


          (32) 

where     *

1 1P E s t s t ,     2 *

1 1M ME n t n t   , and 1,M h   is Dirac delta function which is equal 

to one when 1h M  , otherwise it is zero. The covariance matrix with Toeplitz structure is defined 

as follows: 

     

     

     

    2

1

0 1

1 0 1
( )

1 0

 H

c M

r r r M

r r r M

r M r M r

    

   
 

     
 
 

  

R G CG B I                                  (33) 

where  1 2diag , ,..., Kc c cC  with *

1

K

k k p

p

c P 


  ,  G  is the steering matrix of a linear array with 

M  antennas which can be expressed as (34). 
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 
1 2

1 2

1 1 1

K

K

j j j

jM jM jM

e e e

e e e

  

  



 
 
 
 
 
 

G                                                                                                      (34) 

and  B  can be defined as  

 

     

     

     

1, 1 1, 2 1,2 1

1, 1, 1 1,2

1,1 1,2 1, 1

M M M M M M

M M M M M M

M M M M

b b b

b b b

b b b

  

  


  

     

   

   

 
 
 
 
 
  

B                                                                       (35) 

where  1,M hb   is  

           * * * *

1, 1, 1 1 1, 1 1,

1 1 1 1

, 1,2,,...,2 1

( )
K K K K

M h p q M p h q p q M p M p h q

p q p q

b P d a P a d d

h M

            

   

     

 

 
       (36) 

As can be seen from (32) and (33), although the powers of the elements of the noise vector, ( )tn , are 

not the same, but the effect of the noise after Toeplitz construction of covariance matrix is appeared as 

2

1M I . It means that the power of noise is distributed uniformly among the components of VULA. 

Equation (33) has the form of the autocorrelation matrix in DoA estimation methods except the term 

 B  that must be eliminated. In the first step of the proposed algorithm, by applying the BT transform 

to the output vector of the array, the beamspace vector, ( )ty , can be derived. Then, ( )ty  is multiplied 

by 

1

N




J

 to generate the new vector ( )tz . In practice the covariance matrix, cR , is unavailable and it 

can be estimated from L  snapshots of the received signal vector as follows: 

     

     

     

ˆ ˆ ˆ0 1

ˆ ˆ ˆ1 0 1

ˆ ˆ ˆ1 0

c

r r r M

r r r M

r M r M r

   
 

  
 
 

  

R                  (37) 

where      *

1

1

1
ˆ 1

L

M h

t

r M h z t z t
L





    . DoAs are estimated using the MUSIC or root-MUSIC 

algorithm while neglecting the effect of  B . In the next step, using the estimated DoAs,  , we 

calculate 
 1

1 ( )  and 
 1

2 ( )  using (20) and (21), and 
1e

F  and 
2eF  are generated using (24) and (25). 

Then    
11

H

et ty F x  and    
22

H

et ty F x  are calculated using (26) and (27). ˆ ( )ty  will be derived after 

subtracting 1 2( ) ( )t ty y  from ( )ty . Using ˆ ( )ty , we can estimate the new ˆ
cR . In this procedure,  
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   H

et ty F x    
1

ˆt t
N






J

z y

Calculation of 

MUSICCalculation of        from (37)

Calculation of 

̂

 1 ty

 2 ty

     *

1

1

1
ˆ 1

L

M h

t

r M h z t z t
L





   
 tx  ˆ ty

 .
H

 .
H

   
1

1†

1
ˆ

H
H

e vN  
 

F A C

   
2

1†

2
ˆ

H
H

e vN  
 

F A C

ˆ
cR

 

Fig. 2. Block diagram of the proposed IMTBR algorithm. 

 

by repeating the aforementioned steps, the effect of  B  will be eliminated and we can have a more 

accurate estimation of DoAs. The proposed method is terminated if 
( ) ( 1)

2
ˆ ˆi i   ‖ ‖  or the maximum 

number of iterations is reached, where   is a predefined estimation error and the superscript i  stands 

for the iteration. The proposed IMTBR algorithm is summarized in Algorithm 1. 

Fig. 2 demonstrates the block diagram of the proposed algorithm in order to increase the accuracy of 

coherent sources DoA estimation. 

 

Algorithm 1 Iterative Mode Toeplitz and Bias Removal 

Input: ( ), 1,2,...,t t Lx , number of iterations, itrN , and  . 

Output: 
1 2

ˆ ˆ ˆ ˆ, ,...,
T

K    
 

 

Initialization: 0i   

Step 1: 

a. Apply beamspace transform to the output vector of the array, ( )tx , and obtain the initial beamspace 

vector as ( ) ( )H

et ty F x . 

b. Multiply the beamspace vector, ( )ty , by 
1

N




J  to yield ( )tz  and then estimate the covariance matrix of 

 VULA using L  snapshots of ( )tz  as (37). 

c. Estimate the initial DoAs, 
(0)̂ , using the MUSIC or root-MUSIC algorithm. 

d. 1i i   

Step 2: 

while (   itri N ) do 

a. Calculate the 
 1 ( 1)

1
ˆ( )i

k


 and 
 2 ( 1)

1
ˆ( )i

k


for 1,2,...,k K  using (20) and (21), respectively. 

b. Calculate the estimated UCA steering matrix with 
( 1)i




 according to (2), and consequently, 

 
1

† ˆ ˆ ˆ( ) ( ) ( )H  


 A A AA . 
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c. Form the beamformers 
1

H

eF  and 
2

H

eF  using (24) and (25), respectively. 

d. Calculate the correction vectors, 
11( ) ( )H

et ty F x  and 
22 ( ) ( )H

et ty F x . 

e. Obtain  1 2
ˆ( ) ( ) ( ) ( )t t t t  y y yy . 

f. Multiply ˆ ( )ty  by 

1

N




J

 to yield ( )tz  and then re-estimate the covariance matrix. 

g. Compute the next estimation of the DoAs using MUSIC or root-MUSIC 

 algorithm. 

h. 1i i   

if ( ) ( 1)

2
ˆ ˆi i   ‖ ‖  then 

Stop the procedure and exit the loop 

end if 

end while 

 

VI. IMPACT OF THE RESIDUAL ERROR ON THE SIGNAL AND NOISE SUBSPACES 

As shown in (33), the transformation error, 1Δd , will be appeared as the matrix ( )B  in the 

covariance matrix cR . The IMTBR method eliminates the effect of this error iteratively. In this  

section, we will show that if the estimation and elimination of this error is not performed, we have a 

bias in the estimated DoAs.  

The Eigen decomposition of the Toeplitz covariance matrix, cR , can be written as 

  
      

2

2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆH H H

c s s s

HH

s s s s s s

 

   









 

     

R EΛE E Λ E E E

E ΔE Λ ΔΛ E ΔE E ΔE E ΔE
              (38) 

where ˆ
s s s  E E E  denotes perturbed signal subspace eigenvectors, ˆ

s s s Λ Λ ΔΛ  shows the 

eigenvalues associated with the signal subspace and ˆ
   E E ΔE  presents perturbed noise subspace 

eigenvectors. The columns of the matrices sE , E  and diagonal elements of the matrix sΛ  contain the 

true signal subspace Eigen vectors, true noise subspace Eigen vectors and true signal subspaces Eigen 

values, respectively. Similarly, sΔE , ΔE , and sΔΛ  contain the errors of signal subspace Eigen 

vectors, the noise subspace Eigen vectors and the signal subspaces Eigen values due to the effect of 

( )B , respectively. From (38), for 1,2,...,k K  the following relationships are valid: 

    ˆH

k  g E 0                        (39) 

   H

k  g E 0                        (40) 

where  kg  is the k -th column of the matrix  G . In the MUSIC algorithm, DoAs are estimated 
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through finding some values of   which minimize the following relationship 

       ˆ ˆ ˆ .H Hf     g E E g                     (41) 

Using Eigen decomposition, we have 

  2ˆ ˆ
c  R E E                       (42) 

Substituting the cR  from (33) in (42), we have 

        2 2ˆ ˆH

       G CG B I E E                  (43) 

Considering ˆ
   E E ΔE  and  H

 G E 0 , (44) will be derived. 

         1( )H

      ΔE G CG B B E                    (44) 

The first-order expansion of 'ˆ ( )f   can be used to evaluate the estimation error. If the error is 

considered to be small enough, the first-order expansion of 'ˆ ( )f   about ˆ
k  is written as follows: 

  ' ' "ˆˆ ˆ0 ( ) ( ) ( )( )  k k k k kf f f                            (45) 

From (41), the first-order derivative of ˆ ( )kf   can be obtained as 

              ' 'ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )   ' 2 'H H H H H H

k k k k k k kf               g E E g g E E g g E E g          (46) 

where  '

kg  is 

   
 '

0

k

k

j

k

k

k

jM

je

jMe










 
 


  
 
 
 

g
g                  (47) 

Considering ˆ
   E E E , the first-order derivative of ˆ ( )kf  can be rewritten as 

          ' 'ˆ 2
HH

k k kf         g E E E E g             (48) 

From (40) and (44) and by neglecting the terms that orders higher than one, the first-order derivative 

of  ˆ
kf   can be derived as follows: 

                ' ' 1ˆ 2 ( )H H H H H H

k k kf           g E E B G C G B g       (49) 

Similarly, the second order derivative would be as  
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k k k k
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 


       



       





 
       

  

B
g E E B g E E G C G B g

g E E B D g G C G B g

(50) 

where  "

kg ,  D , 
 

k









B
, are defined as (51)-(53) 
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In (53), 
 1,M h

k

b 


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
 can be defined as 
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(54) 

Combining (49) with (50), estimation error for the k -th source is  

 
 

 

'

"

ˆ
ˆ

ˆ

 k

k k

k

f

f


 


                (55) 

In the next section, this bias term is derived using simulations and numerical methods. 

 

VII. COMPUTATIONAL COMPLEXITY 

In this section, the computational complexity of the proposed method is investigated based on the 

implementation details, which are introduced in section V. Also, we compare the complexity order 

of the proposed method with the previous ones, MODE-TOEP [26], Forward Backward Spatial 

Smoothing (FBSS) [28], and Modified UCA-ESPRIT [29]. 

In our proposed method, calculation of the initial beamspace vectors, ( ), 1,...,t t Ly , has the 

complexity order of ( )MNL . The complexities of 

1

ˆ ( )t
N




J

y  and construction of the Toeplitz structured 
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covariance matrix are ( )ML . The main steps of MUSIC algorithm are calculation of noise subspace 

using Eigen decomposition, calculation of spatial spectrum and finding its peak values. The orders of 

the complexity of the first two steps of MUSIC algorithm are 3( )M , 2( )M , respectively. The 

complexity of the third step can be ignored, because after the first iteration, we can limit the search area 

of spatial spectrum around the estimated values of DoAs. For computation of 
1e

F  and 
2eF , pseudo 

inverse of N K  matrix, ( )A , must be calculated, which has the complexity of 2( )NK . The 

complexity order of calculation of 1( )ty  and 2 ( )ty  for all snapshots is ( )MNL . 

In MODE-TOEP method, after the application of BT and construction of Toeplitz covariance matrix, 

MUSIC algorithm is applied to find DoAs. In this method, the residual error of BT is not compensated. 

FBSS is one of the most important techniques in DoA estimation of coherent sources [28]. In this 

algorithm after the application of BT, the main array (in our case VULA array) is divided into multiple 

overlapping sub-arrays. In each sub-array, the covariance matrix will be estimated. The final forward 

backward smoothed covariance matrix is given by [28] 

1 1 1 1 *
2 1 2 1

1

  
1

[ ( ) ]
2

D
T H H

M Mfb l e e e e l

lD
   

   
 



  x xR H J F R F J I J F R F J I H       (56) 

where 
01 1, ,...,l l l l L  

   H e e e  with le  denoting the l -th column of the identity matrix of size 2 1M  , 

D  is the number of sub-arrays, and 0 2 2L M D    is the sub-array length. 

Both FBSS and MODE-TOEP methods are applied after BT, thus they have the complexity order of 

( ) ( )MNL ML  for calculation of ( ), 1,2,...,t t Lz  using (23) and (29). The main difference 

between FBSS and MODE-TOEP is type of construction of covariance matrix and its dimension. 

Dimension of covariance matrix in FBSS method is 0 0L L  while it is ( 1) ( 1)M M    in MODE-

TOEP and IMTBR methods. Based on (56), the complexity order of calculation of covariance matrix 

in FBSS method is 
2( )DN L . Also, the complexity of MUSIC algorithm for FBSS method is 

3 2

0 0( ) ( )L L . Therefore, the total complexity order of FBSS is 

2 3 2

0 0( ) ( ) ( ) ( ) ( )MNL ML DN L L L    .  

Similar to FBSS and MODE-TOEP methods, Modified UCA-ESPRIT is applied after BT. 

Complexity order of this step is ( ) ( )MNL ML . In the second step, a Hermitian Toeplitz covariance 

matrix can be reconstructed from the obtained vectors with complexity of 
2( )M L . Finally, the DoAs 

are estimated by applying ESPRIT method on the obtained covariance matrix, where its complexity is 

3( )M .  Table II shows the complexity order of IMTBR, MODE-TOEP, FBSS and Modified UCA-

ESPRIT algorithms. 
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Table II. Comparison of computational complexity.  

Algorithms Complexity order Dominant terms 

IMTBR-MUSIC 

3 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

itr itr itr itr

itr itr itr itr

MNL N ML N ML N M N M

N NK N NK N MNL N MNL

   

   
 ( )itrN MNL  

MODE-TOEP 3 2( ) ( ) ( ) ( ) ( )MNL ML ML M M     ( )MNL  

FBSS 
2 3 2

0 0( ) ( ) ( ) ( ) ( )MNL ML DN L L L     2( )DN L  

Modified UCA-ESPRIT 3( ) ( ) ( )MNL ML M   ( )MNL  

 

Since L  is larger than N , M , K , 0L  and D , the dominant terms of complexity order of IMTBR-

MUSIC, MODE-TOEP, FBSS, and Modified UCA-ESPRIT algorithms are  itrN MNL ,  MNL , 

 2DN L ,  MNL , respectively. Since M N  and D  is of order of itrN (both are assumed to be 

3 in simulations), the complexity of IMTBR is less than FBSS and higher than MODE-TOEP and 

Modified UCA-ESPRIT. Simulation results in next section shows that IMTBR with only three iterations 

can achieve better performance with respect to estimation error in comparison to FBSS, MODE-TOEP 

and Modified UCA-ESPRIT methods. Thus, the cost of higher complexity in comparison to MODE-

TOEP and Modified UCA-ESPRIT methods is reasonable against this profit. 

VIII. SIMULATION RESULTS 

In this section, the performance of IMTBR method will be evaluated for the DoA estimation of 

coherent sources. Also, the performance of IMTBR method is compared with the previous ones, 

MODE-TOEP [26], FBSS [28] and Modified UCA-ESPRIT [29]. Depending on the application of 

MUSIC or root-MUSIC algorithm in each iteration (see Fig. 2), the proposed algorithm is called 

IMTBR-MUSIC and IMTBR-root MUSIC, respectively. Root Mean Square Error (RMSE) is used as a 

performance metric to evaluate the accuracy of  DoA estimation methods and it is defined as follows 

[30]: 

 
2

,

1 1

1 ˆRMSE
MCNK

k k e

k eMCN K
 

 

 


          (57) 

where ,
ˆ
k e  is the estimation of k  in the e -th Monte-Carlo trial. The number of Monte-Carlo trials is 

assumed to be 1000MCN  .  

Cramér-Rao Bound (CRB) is an upper bound on the performance (lower bound on the error variance) 

of any unbiased estimation method. CRB for DoA estimation of coherent sources is obtained as [31] 

   
1

1 1

2

1
CRB ( ( )( ( ) ( )) ( ) ) ( ) ( )

2

T
H H H H

N
L

      



    

  s x sD I A A A A D R A R A R    (58) 
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Fig. 3. Comparison between the spatial spectrum of different algorithms: IMTBR-MUSIC, MODE-TOEP, and FBSS with 

  500L   and SNR = 10dB for two coherent sources with angles 1 50   and 2 140  . 

 

where 
     1 2

1 2
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Kd d d
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  
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 

a a a
D ,  ( ) ( )HE t tsR s s , and  ( ) ( )HE t txR x x . The  ,k k -th 

entry of the matrix CRB  is equal to CRB of the DoA estimation error of the k -th source. Average 

CRB is obtained by taking average of the CRB of K  sources. For two sources with powers of 

 1 2

T
P PP  and correlation coefficient of 1,2 , the above-mentioned matrices can be calculated as 

1 1,2 1 2

1,2 1 2 2

P PP

PP P





 
  
  
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    
x
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R a a I

a
             (60) 

In the first set of simulations, it is assumed that there are two coherent narrowband signals with 

azimuths 1 50  , 2 140  , a UCA with radius / 2r Mc f , 1f GHz  and 8N   antennas. Also, 

by assuming 3M  , the virtual array contains 7 antennas. In IMTBR method, it has been assumed that 

the maximum number of iterations is 3itrN  , while the stopping threshold in Algorithm 1 is chosen 

210  . 

Fig. 3 shows the spatial spectrums of FBSS, MODE-TOEP, and IMTBR-MUSIC after 3 iterations at 

SNR = 10dB and 500L  . It is observed that the peaks of spatial spectrum in IMTBR algorithm are 

more accurate and sharper than the other ones.  

Fig. 4 depicts the RMSE of proposed algorithm with different number of iterations for two coherent 

sources. Increasing SNR will improve the performance of IMTBR algorithm in different iterations. As 

shown in this figure, the estimation accuracy of proposed algorithm in different iterations using MUSIC 

or root-MUSIC is almost the same. Simulation results show that the proposed IMTBR algorithm 

converges after 3 iterations and its performance is very close to CRB. 
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Fig. 4. RMSE of proposed IMTBR method versus SNR using different iterations for two coherent sources with 1 50   

and 2 140  ,   500L   and stopping threshold 
210  . 

 

Fig. 5. Comparison between the RMSE of FBSS, MODE-TOEP and IMTBR methods versus SNR for two coherent sources 

with 1 50  , 2 140  ,   50L  , stopping threshold for IMTBR-MUSIC 
210   and 3itrN  . 

 

Fig. 5 shows the RMSE of IMTBR method for DoA estimation of two coherent signals in comparison 

to FBSS and MODE-TOEP algorithms. The results indicate that increasing SNR will improve the 

performance of algorithms. It can be observed that the RMSE of proposed algorithm is lower than that 

of MODE-TOEP and FBSS. In MODE-TOEP and FBSS algorithms, the residual error of BT is not 

compensated. Hence, performance of these algorithms is saturated when SNR is increased, which is 

due to the BT residual error, while IMTBR does not suffer from error saturation. 

In Fig. 6, the RMSE of IMTBR has been compared with MODE-TOEP and FBSS algorithms for the 

different number of snapshots, L . In this figure, the SNR is equal to 0dB. It is observed that the IMTBR 

has a better performance than that of MODE-TOEP and FBSS algorithms. Although by increasing the 

number of snapshots we achieve a better approximation of covariance matrix, but the RMSE of MODE-

TOEP and FBSS algorithms is saturated due to the residual error of BT. 
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Fig. 6. Comparison between the RMSE of FBSS, MODE-TOEP and IMTBR methods versus number of snapshots,  

L , for two coherent sources with 1 50   and 2 140  , stopping threshold for IMTBR-MUSIC 
210   and  

3itrN   at SNR = 0dB. 

 

Fig. 7. RMSE versus SNR for two partially correlated sources with different correlation coefficients, 1 50  , 2 140  , 

256L  , stopping threshold for IMTBR-MUSIC 
210   and 3itrN  . 

 

In Fig. 7, two sources with different correlation coefficients are assumed and the RMSE of proposed 

algorithm is compared with CRB. It is observed that the proposed algorithm also works well (close to 

CRB) for the cases where the signals are partially correlated. 

In Fig. 8, the effect of the residual error on the performance of MODE-TOEP method is illustrated. 

In this figure, we have shown the bias of DoA estimation using simulation results and then it has been 

calculated using the results of section VI. As can be seen, first order approximation which is derived in 

section VI for the bias of DoA estimation of coherent sources using BT is completely matched with 

simulations. It is noteworthy that when the SNR increases, the RMSE of estimation decreases.  
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Fig. 8. Comparison between the RMSE of MODE-TOEP method using MUSIC algorithm and the first-order 

approximation of the bias for two coherent sources with azimuths 1 50  , 2 140   and 256L  . 

 

Fig. 9. Comparison between the RMSE of Modified UCA-ESPRIT, FBSS, MODE-TOEP and IMTBR methods versus 

different number of antennas, N , for two coherent sources with 1 50  , 2 140  ,   100L  , SNR = 25dB, stopping 

threshold for IMTBR-MUSIC 
210   and 3itrN  . 

 

However, a bias term appears as an error floor. 

In the next simulation, RMSE of different methods versus number of UCA antennas, N , is evaluated. 

Similar to the previous simulations, two coherent sources with DoAs 1 50  , 2 140   are considered. 

As shown in Fig. 9, RMSE of different methods is decreased by increasing the number of antennas. The 

obtained results show that the IMTBR method has lower RMSE in comparison with the Modified UCA-

ESPRIT, FBSS and MODE-TEOP methods. 

Following, we consider a case that the number of coherent sources is 3K   with angles 1 50  , 

2 140  , and 3 250  . The RMSE of different methods are compared in Fig. 10. As can be observed 

from this figure, by increasing the SNR of received vectors, the RMSE of IMTBR method is decreased, 

whereas, the other methods have a fixed. 
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Fig. 10. Comparison between the RMSE of Modified UCA-ESPRIT, FBSS, MODE-TOEP and IMTBR methods versus 

SNR, for three coherent sources with 1 50  , 2 140  , 2 250  ,   1000L  , stopping threshold for IMTBR-MUSIC 

210   and 3itrN  .  

 

Fig. 11. RMSE of IMTBR method for 2K   coherent sources at SNR=50dB,   1000L  , 1 50   and  2 5,360


 , 

8N  , 3M  , stopping threshold for IMTBR-MUSIC  
210  , and 3itrN  . 

 

 

In the last simulation, the effect of closely spaced sources is investigated. In this simulation, two 

coherent sources are considered, wherein the first source is fixed with 1 50  , while the angle of the 

second source is varied in  2 5,360


  with 5-degree steps. Figure 11 shows the RMSE of IMTBR 

method for 1000L   and SNR = 50dB. As can be seen, when two sources are not closely spaced, the 

RMSE of IMTBR method tends to zero. However, by decreasing the difference of DoAs, the angle of 

one of sources will be estimated with high error. 
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IX. CONCLUSION 

In this paper, a new algorithm for DoA estimation of coherent sources with the UCA is proposed. At 

the first step the steering vectors of UCA is mapped to the steering vector of an array with the 

Vandermonde structure, using the beamspace transformation. This transformation method causes an 

additional error in DoA estimation, which is a function of direction of emitters. To reduce the RMSE 

of DoA estimation of the coherent sources in UCA, an iterative algorithm was proposed. The MODE-

TOEP algorithm was used to overcome the source correlation problem and the MUSIC algorithm was 

used for DoA estimation. In this algorithm, the dominant error term is reduced using two beamformers 

and the first-order approximation of bias for the DoA estimation of coherent sources 

was derived. Finally, the simulation results showed that the proposed algorithm has lower RMSE 

compared to the conventional algorithms and its performance is very close to CRB. 
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