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Abstract –  In many practical cases, product or process quality is defined by frequency table of two or more 

qualitative variables. This frequency table is called contingency table. Monitoring the contingency tables is an 

area in statistical process control with many applications in industrial and service units. 

On the other hand, reducing quality costs is the most fundamental issue preoccupying the minds of managers. 

It is clear that a quicker diagnosis of the assignable causes can reduce the quality costs. Estimating change 

point by limiting the probable interval of change, reduces the cost and time of detecting assignable causes. In 

this research, using maximum likelihood approach, the  step and linear drift  change points estimators are 

proposed for multivariate multi-nominal contingency tables. After the change point, parameters are estimated 

with making the average in the proposed step estimator, and using the linear regression in the proposed linear 

drift estimator. Results of the simulations demonstrated that the proposed step change point estimator carries 

out very well in all shift types and shift magnitudes from small to large. Furthermore, the proposed estimator 

of the linear drift change point has relatively good performance in moderate changes. Finally, the proposed 

estimators’ performance is assessed by a numerical example. 

 

 

Keywords– change point estimation, contingency table, statistical process control, step and linear drift change, 

maximum likelihood approach. 
                

I. INTRODUCTION 

In some practical situations, the quality of a product or a process is defined with frequency table between two or more 

qualitative variables entitled contingency table. Such tables are expressed as r×c tables in some cases, in which r and c 

stand for the number of rows and columns, respectively. Monitoring contingency table evaluates the equality of sample 

proportions at column levels for all societies (i.e., all levels of the row variable). As there are many cases in practice where 

qualitative characteristics are defined as multivariate discrete variables in contingency table, some approaches have been 

presented for monitoring contingency tables in the statistical process control literature. In order to monitor the contingency 

tables, the stability of the multivariate discrete variables in each sample of the process should be examined. In general, 

monitoring a process can be considered in Phase I and Phase II. Agresti (2002) has provided some information about the 

contingency table and its structure. In statistical process control (SPC), contingency tables are used in monitoring 

multivariate multinomial processes, simultaneously. Yashchin (2012) applied contingency table for monitoring 

production line air-quality control with two multinomial variables named particle types and an air filtration system. 

Processes with contingency table quality characteristics, can be formulated with linear logarithmic model. For example, 
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Zou and Tsung (2011) used Exponentially Weighted Moving Average (EWMA) control chart for monitoring the model 

parameters. Besides, Yashchin (2012) utilized the likelihood ratio test (LRT) for developing control chart to monitor 

multinomial observations. Furthermore, he has conversed about the parameter estimation of multivariate data with a 

sudden change. Li et al. (2012) presented a LRT to monitor contingency table via multivariate binomial/multinomial 

distribution through linear logarithmic model in Phase II. They used Generalized LRT (GLRT) and EWMA statistics so 

that the GLRT control chart was strengthened under small parameter changes in linear logarithmic model. Also, Li et al. 

(2013) suggested a multivariate non-parametric control chart for monitoring model parameters by integrating multivariate 

and EWMA control charts. A control chart for monitoring a multivariate multinomial / binomial process was introduced 

by Li et al. (2014). They provided linear logarithmic model to show the relationships between multinomial variables 

following multivariate multinomial / binomial distributions. 

Kamranrad et al. (2017a) suggested two generalized linear test (GLT) and EWMA-GLT control charts based on GLT 

to monitor contingency tables. Besides, a diagnostic approach was proposed to the parameters that triggered out-of-control 

alarms. Kamranrad et al. (2017b) proposed two control charts using WALD and STUART statistics to monitor 

contingency tables in Phase II. Also, they proposed EWMA-WALD and EWMA-STUART control charts to improve the 

efficiency of Shewhart-type control charts for identifying small and medium changes in the parameters of contingency 

tables. Kamranrad et al. (2019) introdused three methods including Hoteling's T2, standardized LRT (SLRT), and F for 

monitoring ordinal multivariate contingency table in Phase I. Furthermore, they developed an estimator of the step change 

point using SLRT in Phase I. Perry (2020) also proposed an EWMA control chart in order to categorical process 

monitoring. Hakimi et al. (2019) suggested multivariate ordinal-normal statistic to design their new control chart for 

monitoring ordinal contingency tables in Phase II. Bersimis and Sachlas (2019) introduced one-sided approach for 

monitoring contingency tables. Xiang et al. (2021) considered monitoring sparse contingency table of a multivariate 

categorical process. 

An issue in SPC is that the time at which the control charts indicate an out of control signal, T, is not the real time of 

change and change in the process has occurred before out of control signal. The unknown real time of change is named 

the change point, 𝜏. Estimating change point through limiting the probable change period makes it easier to search for the 

assignable causes and speeds it up. Searching for assignable causes requires a lot of time and cost. If quality control team 

spend less time to search for assignable causes, the relevant cost will reduce. Also, by estimating change point and finding 

assignable causes sooner, the out-of-control process comebacks to the in-control situation sooner. Hence, less defective 

products are produced in the out-of-control situation leading to less cost of product reworks and rejects. Hence, Thus, 

estimating the change point has a significant effect on reducing quality cost. In the literature of change point estimation, 

there are various methods for estimation of change point. Overall, the approaches used to find change points so far are 

the internal estimators approach of EWMA and CUSUM control charts, the maximum likelihood approach, clustering 

and Artificial Neural Networks (ANNs). Amiri and Allahyari (2012) made a comprehensive review of the literature on 

the field of change point estimation. Page (1954) has defined the internal estimator of CUSUM control chart.  Nishina 

(1992) proposed an internal EWMA estimator to estimate the change point. Using the maximum likelihood Estimation 

(MLE) approach is a common approach for estimating change point, and many researchers use this approach. Given the 

existence of step change in process parameters, extensive studies have been done in the literature. For instance, Samuel 

et al. (1998), Samuel and Pignatiello (1998), Pignatiello and Samuel (2001), Perry and Pignatiello (2010), Noorossana et 

al. (2009), Nedumaran et al. (2000), Perry and Pignatiello (2011), Niaki and Khedmati (2014a), Steward and Rigdon 

(2017) estimated the step change point using MLE method in some processes. 

In addition, considering a linear drift change in process parameters using maximum likelihood method, Perry and 

Pignatiello (2006), Perry et al. (2006), Fahmy and Elsayed (2006), Kazemzadeh et al. (2015) carried out some researches. 

Amiri and Khosravi (2013), Perry et al. (2007), Noorossana and Shadman (2009), Niaki and Khedmati (2014b), Movafagh 

and Amiri (2013), Ashuri and Amiri (2016) considered monotonic change point estimation. Venegas et al. (2016) also 

focused in change point estimation.  

Some researchers used the clustering approach for estimating the change point. For exapmle, Ghazanfari et al. (2008), 
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Alaeddini et al. (2009), Zarandi and Alaeddini (2010), Kazemi et al. (2014) suggested some approaches based on 

clustering methods.  Kazemzadeh et al. (2015), Ayoubi et al. (2014) and Ayoubi et al. (2016) considered estimating 

change point in multivariate linear profiles’ mean.Via artificial neural networks, Atashgar and Noorossana (2011), 

Noorossana et al. (2011) and Atashgar and Noorossana (2012), Amiri et al. (2015), Yeganeh et al. (2021) and Ghazizadeh 

et al. (2021) considered estimating the change point. He et al. (2019) also focused on detecting change point in multivariate 

categorical processes based on the hierarchical log-linear model. Maleki et al. (2018) estimated change point of poisson 

profiles in the presence of autocorrelation. Dette, et al. (2022) Estimated change point of high-dimensional covariance 

matrices.  

In this paper, step and drift change points in contingency tables are estimated using maximum likelihood approach. 

After the step change point, the unknown parameters are also estimated by averaging the calculated probability of each 

cell, and the unknown shift slopes after the drift change point are approximated using forced regression to pass the origin 

of the axis of coordinates. The structure of the paper is such a way that in section II the contingency tables model based 

on the probability of each cell is described. The applied monitoring approach of EWMA-WALD control chart is explained 

in section III. The proposed step change point estimator is derived in section IV. Section V presents the calculations of 

the proposed drift change point estimator. Section VI shows the simulation results of performance evaluation. Confidence 

set of the proposed estimators is constructed in section VII. Section VIII reports the consequences of a numerical example. 

The last section consists of concluding remarks.   

II. UNDERLYING MODEL OF CONTINGENCY TABLE BY USING THE PROBABILITY OF 

EACH CELL  

The contingency table is one of the most efficient tools to analyze multivariate multinomial categorical variables. 

According to the number of categorical variables, two broad categories are defined which are Tow-Way Contingency 

Table (with two categorical variables), and Multi-Way Contingency Table (with more than two) categorical variables, 

Agresti (2002). Now considering two-way contingency table with I and J classes for both row and column variables, 

Kamranrad et al. (2017) defined the contingency table parameters as in Table I.   When ∑ ∑ 𝑛𝑖𝑗 = 𝑁𝐽
𝑗=1

𝐼
𝑖=1 , and  

∑ ∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1

𝐼
𝑖=1 . The observations of 𝑛𝑖𝑗  follow multivariate multinomial distribution with sample size N and 

probability vector of 𝜋. 

TABEL I. NOMENCLATURE OF CONTINGENCY TABLE PARAMETERS 

N sample size 𝝅+𝒋 =
𝒏+𝒋

𝑵
 probability of jth column 

𝑛𝑖𝑗 
Number of observations in cell (i, j)  for    𝑖 =

1,2, . . . , 𝐼, 𝑗 = 1,2, . . . , 𝐽 𝜋̂𝑖𝑗 =
𝑛̂𝑖𝑗

𝑁
 

estimated probability of (i,j)th 

cell 

𝑛𝑖+

=∑𝑛𝑖𝑗
𝑗

 
sample size in ith row 

∀𝑖= 1 .  2 .  … .  𝐼 𝜋̂𝑖+ =
𝑛̂𝑖+
𝑁

 
estimated probability of ith 

row 

𝑛+𝑗

=∑𝑛𝑖𝑗
𝑖

 
sample size in jth column 

∀𝑗= 1 .  2 .  … . 𝐽 𝜋̂+𝑗 =
𝑛̂+𝑗

𝑁
 

estimated probability of jth 

column 

𝜋 probabilities vector of contingency table 
𝜇𝑖𝑗
= 𝑁𝜋𝑖𝑗 

expected observation value for 

(i,j)th cell 

𝜋𝑖𝑗 =
𝑛𝑖𝑗

𝑁
 probability of (i,j)th cell 

𝜇𝑖+
= 𝑁𝜋𝑖+ 

expected observation value for 

ith row 

𝜋𝑖+ =
𝑛𝑖+
𝑁

 probability of ith row 
𝜇+𝑗
= 𝑁𝜋+𝑗 

expected observation value for 

jth column, 
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III. MONITORING APPROACH: EWMA-WALD CONTROL CHART 

Kamranrad et al. (2017b) introduced the WALD statistic for monitoring contingency tables in Phase II. For a 

contingency table with two categorical variables in the row and column with respectively i (𝑖 = 1,2, . . . , 𝐼) and j (𝑗 =

1,2, . . . , 𝐽) levels,  the WALD statistic is defined as follows:  

𝑊 = 𝑁𝑑′𝑉̂−1𝑑.                                     (1) 

Thus, W has a chi-square distribution with 𝐼 − 1 degrees of freedom. In addition, 𝑑′ = (𝑑1, . . . , 𝑑𝐼−1) whose values 

are calculated as follows: 

𝑑𝑖 = 𝜋+𝑖 − 𝜋𝑖+           (2) 

where, and 𝑉̂ is a variance-covariance matrix whose entries can be calculated as follows: 

𝑉̂𝑖𝑗 = −(𝜋𝑖𝑗 + 𝜋𝑗𝑖) − (𝜋+𝑖 − 𝜋𝑖+)(𝜋+𝑗 − 𝜋𝑗+),

𝑉̂𝑖𝑗 = 𝜋+𝑖 + 𝜋𝑖+ − 2𝜋𝑖𝑖 − (𝜋+𝑖 − 𝜋𝑖+)
2,

     i ≠ j , i=j  (3) 

 

 

The main problem in this statistic is that the sample variance-covariance matrix inverse cannot be calculated because 

its determinant is near zero. Thus, Singular Value Decomposition (SVD) algorithm used by Kamranrad et al. (2017b), is 

considered in this paper. EWMA-WALD statistic is calculated using the following equation: 

𝑍𝑡 = 𝜆𝑊𝑡 + (1 − 𝜆)𝑍𝑡−1          (4) 

where at time t, the WALD statistic is shown by 𝑊𝑡.𝜆 is smoothing constant. 𝑍0 is the initial value of EWMA which 

is set equal to WALD average (as WALD has chi square distribution with I-1 degrees of freedom, the average of this 

statistic is I-1 and the value 𝑍0 = 𝐼 − 1 is considered.) 

EWMA-WALD statistical control limit can be also calculated as follows: 

𝑈𝐶𝐿𝐸𝑊𝑀𝐴−𝑊𝐴𝐿𝐷 = 𝜇𝑤 + 𝐿. 𝜎𝑤 . √
𝜆

2−𝜆
         (5) 

𝐶𝐿𝐸𝑊𝑀𝐴−𝑊𝐴𝐿𝐷 = 𝜇𝑤           

𝐿𝐶𝐿𝐸𝑊𝑀𝐴−𝑊𝐴𝐿𝐷 = 𝜇𝑤 − 𝐿. 𝜎𝑤. √
𝜆

2−𝜆
.          

Here, L stands for the coefficient of the control limit and is set to obtain a desired value of the in-control average run 

length (ARL). In addition, 𝜇𝑤is the mean and 𝜎𝑤 is the standard deviation of the WALD statistic, which follows chi 

square distribution and it has (𝐼 − 1) degrees of freedom; in other words, 𝜇𝑤 = 𝐼 − 1 and 𝜎𝑤 = √2(𝐼 − 1) 

IV. THE PROPOSED STEP CHANGE POINT MAXIMUM LIKELIHOOD ESTIMATOR    

As the focus of this study is on the estimate of the change point in Phase II, it is assumed that the in-control vector of 

𝜋0 is definite and known. In order to obtain the proposed maximum likelihood estimator, it is also assumed that before 

the actual change point (𝜏) the process is in-control and there is no changes in the probability vector (so, 𝜋 = 𝜋0), but 

after the change point, the step change in the parameters is created according to the following equation: 

𝜋1 = 𝜋0 + 𝑠            (6) 

Here, 𝑠 is the vector whose elements show the magnitudes of step shifts in model parameters. 𝑠 has the identical 

dimension to 𝜋0. The density function of a multivariate multinomial distribution is as follows (for two variables with 
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levels I and J): 

𝑓(𝑛𝑖𝑗) =
𝑁!

∏ ∏ 𝑛𝑖𝑗!
𝐽
𝑗=1

𝐼
𝑖=1

∏ ∏ 𝜋̂
𝑖𝑗

𝑛𝑖𝑗𝐽
𝑗=1

𝐼
𝑖=1 .         (7) 

Hence, the likelihood function can be defined as follows: (assuming there are two variables which have I and J levels, 

respectively)  

( )

τ

1 1 1
1 1
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1 1

0
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1 1
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ij

j

I J

I J
k i jiji j

T I J

I J ij
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iii j
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jj
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

= = =
= =

= + = =
= =

=



 
 
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n

n

π

i

n

π
n

                    (8) 

where, ∑ ∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1

𝐼
𝑖=1 and also at sample T , the out of control signal is triggered. In addition, k is the sample 

number. After taking natural logarithm, the following equation is obtained: 

𝑙𝑛 𝐿 = ∑ 𝑙𝑛 𝑁𝜏
𝑘=1 ! − ∑ ∑ 𝑙𝑛(𝑛𝑘𝑢!)

𝐼𝐽
𝑢=1

𝜏
𝑘=1         (9) 

+∑ ∑ 𝑛𝑘𝑢 𝑙𝑛( 𝜋0)𝑘𝑢
𝐼𝐽
𝑢=1

𝜏
𝑘=1 +∑ 𝑙𝑛 𝑁𝑇

𝑘=𝜏+1 !  

−∑ ∑ 𝑙𝑛(𝑛!𝑘𝑢)
𝐼𝐽
𝑢=1

𝑇
𝑘=𝜏+1 +∑ ∑ 𝑛𝑘𝑢 𝑙𝑛(𝜋1)𝑘𝑢

𝐼𝐽
𝑢=1

𝑇
𝑘=𝜏+1   

In the above equation, ∑ 𝑙𝑛𝑁𝜏
𝑘=1 ! + ∑ 𝑙𝑛𝑁 !𝑇

𝑘=𝜏+1  equals ∑ 𝑙𝑛𝑁𝑇
𝑘=1 ! is a constant number, and because of its large 

quantity, it is eliminated for better results. vector of 𝛑0 is known in Phase II, but  vector of 𝛑1 have to be estimated. 

Hence, the proposed estimator of the step change point is as the following equation: 

𝜏̂𝑆𝑡𝑒𝑝 𝑐ℎ𝑎𝑛𝑔𝑒 =                       (10) 

𝑎𝑟𝑔
0≤𝑡≤𝑇−1

𝑚𝑎𝑥{ − ∑ ∑ 𝑙𝑛(𝑛𝑘𝑢!)
𝐼𝐽
𝑢=1

𝑡
𝑘=1 + ∑ ∑ 𝑛𝑘𝑢

𝐼𝐽
𝑢=1

𝑡
𝑘=1 𝑙𝑛( 𝜋0)𝑘𝑢  

−∑ ∑ 𝑙𝑛(𝑛!𝑘𝑢)
𝐼𝐽
𝑢=1

𝑇
𝑘=𝑡+1 + ∑ ∑ 𝑛𝑘𝑢

𝐼𝐽
𝑢=1

𝑇
𝑘=𝑡+1 𝑙𝑛(𝜋̂1)𝑘𝑢},      

To estimate vector of 𝜋̂1, we use the averaging method using all samples after the change point. For this purpose, 

Probability vector of sample k is first obtained using 𝜋̂𝑘 =
𝑛𝑘

𝑁
, and then the vector of 𝜋̂1 is calculated by averaging the 

calculated vectors using 

T

1
1

ˆ
ˆ

T

kk t

t

= +=
−

 π
π

.   

V. THE PROPOSED LINEAR DRIFT CHANGE POINT MAXIMUM LIKELIHOOD ESTIMATOR       

As the focus of this paper is on estimating the change point in Phase II, it is assumed that vector of 𝝅0 has known 

elements. In order to obtain linear drift maximum likelihood estimator, it is assumed that before the actual change point 

of 𝜏, the process is in-control and there is no changes in the probability vector (thus, 𝜋𝑘 = 𝜋0), but after the change point, 

the linear drift shift is exposed to the  process parameters according to the following equation: 

𝜋𝑘 = 𝜋0 + (𝑘 − 𝜏)𝛽, 𝜋𝑘 = 𝜋0 + (𝑘 − 𝜏)𝛽,                    (11) 

Here, 𝛽 is a vector whose elements show the slope of linear drift changes in its corresponding parameters of  𝜋0. Using 

the density function of Equation (7), the likelihood function with linear drift change in multivariate multinomial 

contingency tables (assuming there are two variables with I and J levels) is defined as: 
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where, ∑ ∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1

𝐼
𝑖=1 , and T is the time of out of control signal time of the EWMA-WALD control chart and 𝜏 is 

the change point. In addition, k is the sample number.  

After taking natural logarithm, the following equation is derived: 

𝑙𝑛 𝐿 = ∑ 𝑙𝑛 𝑁 ! − ∑ ∑ 𝑙𝑛(𝑛𝑘𝑢!)
𝐼𝐽
𝑢=1

𝜏
𝑘=1

𝜏
𝑘=1 +∑ ∑ 𝑛𝑘𝑢 𝑙𝑛(

𝐼𝐽
𝑢=1

𝜏
𝑘=1 𝜋0)𝑘𝑢  

∑ 𝑙𝑛 𝑁𝑇
𝑘=𝜏+1 +! − ∑ ∑ 𝑙𝑛(𝑛!𝑘𝑢)

𝐼𝐽
𝑢=1

𝑇
𝑘=𝜏+1 +∑ ∑ 𝑛𝑘𝑢

𝐼𝐽
𝑢=1 𝑙𝑛(𝜋0 + 𝛽(𝑘 − 𝜏))

𝑘𝑢
,𝑇

𝑘=𝜏+1                      (13) 

In the above equation, ∑ 𝑙𝑛𝑁 ! +𝑡
𝑘=1 ∑ 𝑙𝑛 𝑁𝑇

𝑘=𝑡+1 ! equals ∑ 𝑙𝑛 𝑁𝑇
𝑘=1 ! is constant, and because of its large value, it is 

eliminated for better results. In the above equation, 𝛽 is an unknown vector and have to be estimated. Hence, the proposed 

estimator of the linear drift change point is derived as: 

𝜏̂𝐷𝑟𝑖𝑓𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 =  

𝑎𝑟𝑔
0≤𝑡≤𝑇−1

𝑚𝑎𝑥{ − ∑ ∑ 𝑙𝑛(𝑛𝑘𝑢!)
𝐼𝐽
𝑢=1

𝑡
𝑘=1 + ∑ ∑ 𝑛𝑘𝑢 𝑙𝑛(

𝐼𝐽
𝑢=1

𝑡
𝑘=1 𝜋0)𝑘𝑢  

−∑ ∑ 𝑙𝑛(𝑛!𝑘𝑢)
𝐼𝐽
𝑢=1

𝑇
𝑘=𝑡+1 + ∑ ∑ 𝑛𝑘𝑢 𝑙𝑛 (𝜋0 + 𝛽̂(𝑘 − 𝑡))

𝑘𝑢

𝐼𝐽
𝑢=1

𝑇
𝑘=𝑡+1 }.                  (14) 

To estimate the slope vector of 𝛽, we use the forced regression to pass the origin of the axis of coordinates using 

calculated probability vectors of all samples after the change point, i.e. 𝜋̂𝑘 =
𝑛𝑘

𝑁
. Then considering the linear drift model 

of 𝜋̂𝑘 = 𝜋0 + 𝛽(𝑘 − 𝜏), one can obtain 𝜋̂𝑘 − 𝜋0 = 𝛽(𝑘 − 𝜏). So, Considering (𝑘 − 𝜏) as an independent variable and 

𝜋̂𝑘 − 𝜋0 as a dependent variable, the vector of 𝛽̂ is calculated as follows: 

( ) ( )

( )

T

k 0k 1

2 T 2

k 1

ˆ

t

ˆ
k t

.
k

i i t

i
t

x y

x

= +

= +

−  −
= =

−


 

π π
β                     (15) 

VI. PERFORMANCE EVALUATION OF THE PROPOSED STEP AND LINEAR DRIFT  

ESTIMATORS  OF THE CHANGE POINT    

In this section, proposed estimators’ performance is assessed using 5000 simulation runs. In each iteration, when the 

EWMA-WALD control chart issues an out-of-control warning, the corresponding estimator of the change point is used. 

Value of 𝜆 = 0.2 is used for the simulations. Ayoubi et al. (2014) investigated the smoothing constant effect on the change 

point estimators. Generally, while λ increases, the proposed change point estimators’ performance becomes worse in 

small shifts and better in large shifts. Also, when λ decreases, change point estimators performs better in small shifts and 

also worse in large shifts.    

In addition, the in-control ARL of 200 is considered for the EWMA-WALD control chart. In doing so, the value of 

4.075 is chosen for L to reach the in-control ARL of 200. In order to deal with the false alarms, as EWMA-WALD 

statistics consist of the previous samples information, it is not possible to delete the only last sample in which the control 

chart falsely issues an alarm. Thus, all samples up to the false alarm are removed, also the first sample after the false 

alarm is then fixed as the process first sample. Hence, the change point changes in each iteration. For instance, it is 

assumed in this paper that 𝜏 = 25. Hence, 25 in-control samples are generated in each iteration. If false alarm occurs at 
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sample 15, so the first 15 samples are deleted and sample 16 is considered as the first sample of the process. If we do not 

have false alarms in the rest of the samples, 10 other samples are generated 𝜏 = 10 is considered for the corresponding 

iteration. The underlying in-control table used by Kamranrad et al. (2017b) is shown in Table II.  

Table II. Assumed in-control contingency table 

𝒙𝟐 
𝒙𝟏 4 3 2 1 

20 39 20 65 1 

21 28 67 29 2 

30 10 35 36 3 

33 27 32 12 4 

The simulation results are summarized in Tables III and IV for the step estimator, and in Tables V and VI for the drift 

estimator. In the accuracy sections, the mean of square error of estimates is reported in parenthesis.  

For monitoring contingency tables, sum of all elements in the vector of 𝜋 must be equal to one due to the condition of 

∑ ∑ 𝜋𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1 = 1. Hence, to impose shifts to the parameters, increasing and decreasing shifts with the same size must be 

occurred together to satisfy ∑ ∑ 𝜋𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1 = 1. For example in Table III, the element of 𝜋11has decreasing shift of 𝜋11 −

𝑠11and the element  of 𝜋34 has increasing shift of 𝜋34 + 𝑠34 in which 𝑠11 = 𝑠34, i.e. if an increasing shift occurs in a 

parameter, a decreasing shift with the same size must be occurred  in other parameters.  

Table III.  Proposed step estimator’s accuracy and precision under step shifts in 𝝅𝟏𝟏 − 𝒔𝟏𝟏 and 𝝅𝟑𝟒 + 𝒔𝟑𝟒. 

 
𝒔𝟏𝟏 = 𝒔𝟑𝟒 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 

A
cc

u
ra

cy
 

P
er

fo
rm

an
ce

s 𝐴𝑅𝐿̂  72.776 24.5236 10.3354 5.9052 3.837 2.237 1.6026 1.417 

𝜏̄̂𝑠𝑡𝑒𝑝  
25.3418 

(35.5222) 

24.8428 

(4.9684) 

24.9078 

(1.507) 

24.934 

(0.724) 

24.9758 

(0.2022) 

24.996 

(0.0048) 

25 

(0) 

25 

(0) 

P
re

ci
si

o
n

 
P

er
fo

rm
an

ce
s 𝑝̂(|𝜏̂ − 𝜏| = 0) 0.2468 0.604 0.819 0.933 0.9762 0.9964 1 1 

𝑝̂(|𝜏̂ − 𝜏| ≤ 1) 0.4648 0.8364 0.9542 0.9842 0.9978 0.9996 1 1 

𝑝̂(|𝜏̂ − 𝜏| ≤ 3) 0.681 0.9496 0.99 0.9956 0.9988 1 1 1 

𝑝̂(|𝜏̂ − 𝜏| ≤ 5) 0.7914 0.976 0.9944 0.9964 0.9992 1 1 1 
𝑝̂(|𝜏̂ − 𝜏| ≤ 7) 0.8604 0.987 0.9962 0.9978 0.9992 1 1 1 
𝑝̂(|𝜏̂ − 𝜏| ≤ 10) 0.9134 0.9918 0.9972 0.9988 0.9992 1 1 1 

Table IV.  Proposed step estimator’s accuracy and precision under step shifts in 𝝅𝟐𝟐 − 𝒔𝟐𝟐 and𝝅𝟑𝟒 + 𝒔𝟑𝟒. 

 𝒔𝟐𝟐
= 𝒔𝟑𝟒 

0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 

A
cc

u
ra

cy
 P

er
fo

rm
an

ce
s 

𝐴𝑅𝐿̂  73.788 24.0236 10.2288 5.7458 3.8812 2.231 1.5998 1.4126 

𝜏̄̂𝑠𝑡𝑒𝑝   
25.438 

(37.5796) 
24.8608 
(4.6972) 

24.9104 
(1.1872) 

24.9386 
(0.5494) 

24.9732 
(0.2328) 

24.9972 
(0.0032) 

25 
(0) 

24.9998 
(0.0002) 
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P
re

ci
si

o
n

 P
er

fo
rm

an
ce

s 

𝑝̂(|𝜏̂
− 𝜏|
= 0) 

0.2438 0.5946 0.8152 0.9228 0.977 0.9974 1 0.9998 

𝑝̂(|𝜏̂
− 𝜏|
≤ 1) 

0.4516 0.8302 0.9544 0.9828 0.9944 0.9998 1 1 

𝑝̂(|𝜏̂
− 𝜏|
≤ 3) 

0.6678 0.949 0.9912 0.9956 0.9988 1 1 1 

𝑝̂(|𝜏̂
− 𝜏|
≤ 5) 

0.7762 0.9798 0.9952 0.997 0.9994 1 1 1 

𝑝̂(|𝜏̂
− 𝜏|
≤ 7) 

0.8452 0.9884 0.9966 0.998 0.9996 1 1 1 

𝑝̂(|𝜏̂
− 𝜏|
≤ 10) 

0.9078 0.9928 0.998 0.9992 0.9996 1 1 1 

The results of Tables III and IV show that estimating the proposed step change point in all small to large shifts has a 

very good performance in terms of both accuracy and precision of estimates. Its performance also improves with 

increasing the shift size.  

Table V.  Proposed drift estimator’s accuracy and precision under drift shifts in 𝝅𝟏𝟏 − 𝜷𝟏𝟏(𝒌 − 𝝉) and 𝝅𝟑𝟒 + 𝜷𝟑𝟒(𝒌 − 𝝉). 

 𝜷𝟏𝟏

= 𝜷𝟑𝟒 
0.001 0.002 0.003 0.004 0.005 0.007 0.009 0.015 

A
cc

u
ra

cy
 

P
er

fo
rm

an
ce

s 

𝐴𝑅𝐿̂  26.1064 16.5814 12.817 10.5946 9.0564 7.3634 6.2174 4.4826 

𝜏̄̂𝑑𝑟𝑖𝑓𝑡   
46.5494 

(555.1494) 
37.642 

(187.7084) 
34.181 

(99.8818) 
31.9878 

(58.6446) 
30.8662 

(41.9782) 
28.8562 

(24.6386) 
27.4056 

(28.1412) 
22.716 

(97.6584) 

P
re

ci
si

o
n

 P
er

fo
rm

an
ce

s 

𝑝̂(|𝜏̂
− 𝜏|
= 0) 

0.0046 0.0072 0.0084 0.0166 0.0152 0.0322 0.0594 0.1552 

𝑝̂(|𝜏̂
− 𝜏|
≤ 1) 

0.0174 0.0206 0.0312 0.04 0.0532 0.1142 0.2018 0.416 

𝑝̂(|𝜏̂
− 𝜏|
≤ 3) 

0.0456 0.0538 0.0812 0.1232 0.1782 0.4192 0.5906 0.7068 

𝑝̂(|𝜏̂
− 𝜏|
≤ 5) 

0.0698 0.0938 0.1634 0.3 0.4382 0.7432 0.8542 0.8406 

𝑝̂(|𝜏̂
− 𝜏|
≤ 7) 

0.0912 0.16 0.314 0.5632 0.729 0.9328 0.9562 0.848 

𝑝̂(|𝜏̂
− 𝜏|
≤ 10) 

0.1326 0.3212 0.6184 0.8754 0.9572 0.993 0.9758 0.849 
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Table VI.  Proposed DRIFT ESTIMATOR’S ACCURACY AND PRECISION UNDER DRIFT SHIFTS IN 𝝅𝟐𝟐 − 𝜷𝟐𝟐(𝒌 − 𝝉) 
AND 𝝅𝟑𝟒 + 𝜷𝟑𝟒(𝒌 − 𝝉). 

  
𝜷𝟐𝟐

= 𝜷𝟑𝟒 
0.001 0.002 0.003 0.004 0.005 0.007 0.009 0.015 

A
cc

u
ra

cy
 

P
er

fo
rm

an
ce

s 𝐴𝑅𝐿̂  25.8772 16.6722 12.778 10.5546 9.1254 7.2762 6.2174 4.4718 

𝜏̄̂𝑑𝑟𝑖𝑓𝑡   
46.1484 
(538.951

2) 

37.717 
(190.038

2) 

34.2384 
(100.571

6) 

32.0476 
(59.789

6) 

30.7274 
(40.288

6) 

29.3344 
(26.327

2) 

28.0334 
(24.212

2) 

23.768 
(72.442

4) 

P
re

ci
si

o
n

 P
er

fo
rm

an
ce

s 

𝑝̂(|𝜏̂
− 𝜏|
= 0) 

0.0068 0.0084 0.0076 0.0158 0.0164 0.026 0.0364 0.168 

𝑝̂(|𝜏̂
− 𝜏|
≤ 1) 

0.0192 0.0244 0.028 0.0414 0.0542 0.087 0.1398 0.45 

𝑝̂(|𝜏̂
− 𝜏|
≤ 3) 

0.0464 0.0564 0.0808 0.1284 0.1946 0.3342 0.5198 0.7546 

𝑝̂(|𝜏̂
− 𝜏|
≤ 5) 

0.0704 0.0934 0.1596 0.2948 0.4564 0.6902 0.8396 0.884 

𝑝̂(|𝜏̂
− 𝜏|
≤ 7) 

0.0928 0.1552 0.3052 0.5414 0.7472 0.9136 0.9666 0.8898 

𝑝̂(|𝜏̂
− 𝜏|
≤ 10) 

0.1388 0.304 0.6126 0.8718 0.9622 0.9958 0.9856 0.8898 

The results of Tables V and VI indicate that linear drift change point estimator has relatively good performance 

considering estimations accuracy and precision in moderate shift   sizes. Nevertheless, in the case of very small and very 

large shifts, its performance is weak. Overall, the estimated performance of the proposed step estimator for the step change 

point estimation is better than the performance of the proposed linear drift estimator under the drift shifts. Simulation 

results confirm that proposed estimators make it easier to search for the assignable causes and speed it up. for example, 

consider the shift size of 0.01 in Table III. The actual change point is 𝜏 = 25but the EWMA-WALD control chart issues 

an out-of-control warning averagely at the time of 72.776+25=97.776 which is far from the actual change point. The 

proposed step estimator also identifies the change point averagely at 25.3418 which is close to the true change point of 

25 leading to find assignable causes sooner, because practitioners search for assignable causes only around the estimated 

change point.    

Since, 𝜏̄̂ of the proposed estimators is closer to the true change point of 25 than average signal time of the control 

chart, i.e. 𝐸(𝑇) = 𝐴𝑅𝐿̂ + 25, we can conclude that our proposed estimators have an acceptable performance in detecting 

change point.  

VII. CARDINALITY AND COVERAGE PROBABILITY OF CONFIDENCE SETS     

Perry et al. (2006) recommended calculating cardinality and coverage probability of the change point estimators by 

constructing confidence set that helps quality engineers to start the search for assignable causes by a set of probable 

change points.   

Confidence sets for the proposed change point estimators satisfying Equation (16), are constructed in this section. 

Note that the natural logarithms of the likelihood function for the proposed drift estimator are negative, hence the absolute 
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value of the 𝐿𝑛 𝐿(𝜏̂) − 𝐿𝑛 𝐿(𝑡)is considered as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑒𝑡 = {𝑡: |𝐿𝑛 𝐿(𝜏̂) − 𝐿𝑛 𝐿(𝑡)| < 𝐷}                   (16) 

In the above equation, 𝐿𝑛 𝐿(𝜏̂) is the maximum value of the natural logarithms of the likelihood function over all 

possible change point t. Cardinality is defined as the number of elements in confidence set if the confidence set contains 

the actual change point. The simulation is repeated 5000 times and the mean cardinality and coverage probability are 

calculated. Coverage probability is the probability that the actual change point is in the confidence set. The values of D 

are calculated using try and error to obtain coverage probability between all range of 0 to 1. If D is chosen less, coverage 

probability is near zero and if D is chosen more, the coverage probability is near one. Tables VII and VIII report the 

coverage probability and mean cardinality of the proposed step and drift change point estimators, respectively.  

For example, Table VII shows that if quality practitioners want to have maximum mean cardinality of almost 15 and 

coverage probability more than 0.8 to detect small shift size of 0.01, they should choose the value of D=5 for the proposed 

estimator of the step change point. Also with the value of D=55, the coverage probability for all shift sizes is more than 

0.9 that is because of increase in mean cardinality. 

Results of Table VIII for the proposed drift change point estimator is also the same as Table VII. It is clear that for 

each shift size, the coverage probability increases when mean cardinality increases.  

Table VII.  Coverage probability and mean cardinality of the proposed step estimator under step shifts in 𝝅𝟏𝟏 − 𝒔𝟏𝟏 and 

𝝅𝟑𝟒 + 𝒔𝟑𝟒. 

  𝒔𝟏𝟏 = 𝒔𝟑𝟒 

 
D 0.01 0.03 0.05 0.07 0.1 

C
o

v
er

a
g

e 
p

ro
b

a
b

il
it

y
 

1 0.284 0.1018 0.0174 0.0038 0.0010 

5 0.8502 0.4772 0.1154 0.0198 0.0016 

10 0.9434 0.8462 0.4138 0.0952 0.0022 

15 0.9748 0.899 0.7322 0.2938 0.0136 

25 0.9818 0.9064 0.8966 0.768 0.1486 

35 0.9818 0.9104 0.897 0.886 0.5268 

45 0.9832 0.915 0.893 0.9006 0.7884 

55 0.9832 0.9172 0.9066 0.8944 0.8706 

M
ea

n
 c

a
rd

in
a

li
ty

 

1 1.1061 0.1986 0.0298 0.0061 0.001 

5 15.3436 1.7316 0.2998 0.0415 0.0025 

10 32.737 5.577 1.4124 0.2283 0.0038 

15 44.0876 9.5714 3.5578 0.8598 0.0283 

25 56.1998 17.3696 8.9058 4.2234 0.3384 

35 64.7098 23.2576 14.4062 8.7322 1.6163 

45 71.141 27.0322 18.6348 13.0262 4.5122 

55 76.2638 29.2632 22.181 16.8226 9.476 
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Table VIII.  Coverage probability and mean cardinality of the proposed drift estimator under drift shifts in 𝝅𝟐𝟐 −

𝜷𝟐𝟐(𝒌 − 𝝉) and 𝝅𝟑𝟒 + 𝜷𝟑𝟒(𝒌 − 𝝉). 

  𝜷𝟐𝟐 = 𝜷𝟑𝟒 

 

D 0.001 0.003 0.005 0.007 0.009 0.015 

C
o

v
er

a
g

e 
p

ro
b

a
b

il
it

y
 

150 0.0078 0.1074 0.2346 0.2948 0.4124 0.5336 

200 0.0236 0.3652 0.4718 0.523 0.5696 0.6534 

250 0.185 0.591 0.5854 0.6456 0.6632 0.699 

300 0.5074 0.6886 0.6964 0.6876 0.7176 0.7228 

350 0.6764 0.7276 0.724 0.7246 0.7336 0.7376 

400 0.7514 0.7636 0.7514 0.7758 0.7544 0.75 

450 0.8066 0.7786 0.7654 0.7536 0.7562 0.7646 

500 0.8268 0.792 0.7772 0.7756 0.764 0.7598 

1000 0.9054 0.8402 0.808 0.8092 0.8194 0.7864 

M
ea

n
 c

a
rd

in
a

li
ty

 

150 0.0277 3.2735 7.0076 8.6102 11.915 14.5347 

200 0.5934 12.5703 14.7159 15.8085 16.6832 17.9716 

250 8.4153 20.6276 18.9594 19.9986 19.612 19.8474 

300 24.043 24.5586 22.7423 21.591 21.7268 20.8736 

350 32.1004 26.317 24.018 22.9248 22.4460 21.4515 

400 36.4337 28.0482 25.0792 24.4894 23.1964 21.904 

450 39.4169 28.8286 25.7885 24.1406 23.3922 22.459 

500 40.3462 29.3301 26.2654 24.9196 23.6826 22.3388 

1000 45.2882 31.3186 27.4167 26.0974 25.4832 23.1238 

VIII. A NUMERICAL CASE 

A numerical example is now illustrated based on the real case of kidney patients used by Kamranrad et al. (2019) to 

show the application of the proposed estimators. For this purpose, we chose to use age and disease type as the two 

variables. For each variable three levels are considered. categories of age are 20-40, 41-60 and 61-80. Three categories 

of disease type are also chosen from existing categories which are kidney stone (KS), hydronephrosis (HN), kidney 

transplant (KT). Kamranrad et al. (2019) reported 7 samples of phase I. In this section to obtain an underlying model for 

Phase II, we add data for all 7 samples and for both male and female. Hence the underlying contingency table model is 

shown in Table IX.  

After receiving out-of-control warning from the EWMA-WALD control chart with the parameters of 𝜆 = 0.2and 𝐿 =

145.9to reach the in-control ARL of 200, the proposed estimators are used to estimate the change point. 

Table IX. The Underlying Contingency Table Model 

  
Disease type 

 

 KS HN KT 

Age 

20-40 107 62 29 

41-60 150 95 31 

61-80 95 69 26 

The step changes are imposed to the parameters after the actual change point of 𝜏 = 25 such that changes are 𝜋12 −

0.03 and 𝜋33 + 0.03. Results are summarized in Fig. 1.  
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Fig. 1 shows that estimated change point using the proposed step and drift estimator are 25 and 22, respectively. 

Hence, the performance of the estimators is acceptable.  

 

Fig 1.  The proposed estimators’ performance in numerical example 

IX. CONCLUSION AND FUTURE RESEARCH 

In this study, maximum likelihood estimators were developed for estimating the step and drift change points in 

contingency table-based processes. The averaging method was used for calculating unknown parameters in the step 

change, and for estimation unknown shift slopes in linear drift change, the forced regression to pass the origin of the axis 

of coordinates was used. Simulation results reported the excellent performance of the proposed step estimator. However, 

the proposed drift change point performed better in moderate shifts and weak in very small and large shift sizes. In 

addition, the proposed step estimator was more accurate and more precise than the proposed estimator of the linear drift 

change in all shifts from small to large. Cardinality and coverage probability of the confidence sets were also calculated. 

Finally, performance of the proposed estimators assessed by a real example. 

In the area of change point estimation in contingency tables, estimating monotonic change point and also estimating 

sporadic change point in Phase II, can be considered as future research. 
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