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Abstract- Recently proposed distributed incremental fractional tap-

length (FT) variable-length least mean square (LMS) technique do not 

consider noisy links errors, which occur during the communication of 

local estimations between nodes. In this paper, we study the noisy links 

effect on the performance of this algorithm. We derive a mathematical 

formulation for the steady-state length at each node. Our derived 

relationship shows how steady-state tap-length is affected by noisy links. 

Simulations confirm that there is a good match between the theory and 

simulated tap-length. Furthermore, the critical result is that, as the noise 

level increases, the steady-state tap-length decreases compared to the 

ideal link version. However, in low noise conditions, this length is still 

larger than the optimal filter length.  
 

Index Terms- Adaptive networks, distributed estimation, fractional tap-length, noisy links, 

steady-state tap-length.  

 

 

I. INTRODUCTION 

A wireless sensor network (WSN) consists of distributed sensors that cooperate to estimate and track 

the desired parameter, such as target position, average temperature, etc. In general, such a task in WSNs 

can be performed by either a centralized strategy or a decentralized one [1]. A distributed approach is 

scalable concerning both communication resources and computational power. In this strategy, 

information distributes through the network, and each sensor participates in the estimating task. 

Networks that perform the processing task with distributed adaptive estimation algorithms [2]-[7] are 

called adaptive networks. Employing cooperative adaptive processing facilitates the tracking of both 

environmental and network topology variations. 

Various distributed adaptive techniques have been reported in the literature. These methods classify 

based on the cooperation strategy between sensors (diffusion and incremental) and the adaptive 
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algorithm they use. The incremental cooperation requires a cyclic path through the network, and all 

sensors communicate with their neighbors within this path. This cooperation strategy reduces the 

required power and communication resources. While, in diffusion cooperation, each sensor 

communicates with all of its neighboring nodes as dictated by the network topology. This strategy is 

proper when more communication and power resources are available. 

In the reported works [2]-[7], the length of the adaptive filter at each sensor is considered to be fixed, 

which is not proper for some conditions. The number of tap coefficients is a critical parameter that 

significantly affects the performance of an adaptive algorithm. In the stand-alone filter domain, several 

variable tap-length algorithms are available that attempt to accelerate the convergence of the least mean 

square (LMS) technique [8]-[10]. This is not the only motivation for the variable tap-length adaptive 

approaches. They are also considered in conditions where tap-length is unknown or even variable. So, 

structure adaption algorithms have been proposed. Many algorithms have been introduced in the stand-

alone filter domain for this purpose [11]-[22]. The most practical technique among them is the fractional 

tap-length (FT) algorithm [22]. This algorithm, is simple and yet has shown a good performance. 

Therefore, it is suitable to be considered as a popular algorithm. So, it is no surprise that this algorithm 

has only been considered for structure adaption in the adaptive networks domain among all variable 

tap-length techniques. Reference [23] has been developed the FT algorithm with the incremental 

strategy for distributed networks. In [23], the data have been assumed to be communicated between 

sensors without any distortion. This assumption, however, may not be logical in practical situations due 

to the link noises. Here, we analyze the impact of noisy links on the performance of the distributed 

incremental FT variable tap-length LMS algorithm. We present an analysis for this algorithm in the 

incremental distributed networks with noisy links. According to the performed analysis, an expression 

for the steady-state tap-length at each node is derived. Our study shows how the steady-state tap length 

is affected by noisy links. Nevertheless, the critical result is that, as the noise level increases, the steady-

state tap-length decreases compared to the ideal link version. However, in low noise conditions, this 

length is still larger than the optimal filter length. Computer simulations support the theoretical analysis 

and discussions.  

The roadmap of this paper is as follows. In section II, we review the distributed incremental 

FT variable tap-length LMS algorithm. In section III, we reformulate this algorithm when links 

between sensors are noisy. In section IV, we analyze the performance of incremental FT 

variable tap-length LMS algorithm with noisy links and provide a mathematical expression for 

the steady-state tap-length at each node. Then, we discuss the derived theoretical results. 

Theoretical results are compared with the simulations in section V, and section VI provides 

concluding remarks. 
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II. INCREMENTAL FT-LMS ALGORITHM 

We consider a collection of N sensors distributed over some areas. The primary purpose is to estimate 

both the length optL  and coefficients of the desired vector 
opt

o

Lw  from collected measurements at sensors, 

i.e., from time realizations   ,,k k id i u  of zero-mean spatial data  d ,k ku , where each ku  is a 1 L  

row regression vector, and each d k  is a scalar measurement. 

Let 
( )i

k  be a local estimate for the unknown vector at sensor k and time i. In [2], a distributed 

incremental LMS (DILMS) strategy for estimation of the desired vector coefficients has been presented 

as follows: 

    ( ) ( ) *

1 , , 1 ,
ii i

k k k k i k k i k kµ d i    u u    (1) 

where kµ  is the local step-size parameter.  

In [23], a solution has been proposed to estimate the unknown vector length by extending the FT 

algorithm within the incremental strategy. With the assumption that , ( )k f i  indicates the local 

estimation of the fractional tap-length at sensor k at time i, in this algorithm, the sensor k updates its 

local estimate as [23]: 

   
     

   
2 2

( ) ( )

, 1, 1 1, ,
( ) ( ) ( ) ( )k k

k k

L i L ii i

k f k f k k k kk L i k L i
i i a e e  

 
     

   (2) 

where 

 
      ( ) ( )

1 , 1,

k

k

L i i i

k k k i kk L i
e d i  u   (3) 

and 

 
          ( ) ( )

1 , 1,
(1: ) (1: )k

k

L i i i

k k k i k k kk L i
e d i L i L i 

   u   (4) 

in which  , (1: )k i kL i u  and  ( )

1(1: )i

k kL i   consist of the initial  kL i   entries of ,k iu  and 

( )

1

i

k  respectively, where   is an integer which prevents the length to be suboptimal. In (2), ka  denotes 

the local leakage factor and k  is the local step-size for , ( )k f i  adaption at node k. The length , ( )k f i  

is no longer considered to be an integer. The local integer length, ( )kL i , is computed as [23]:  

 
 

 

, ,

1

( ) ( )k f k k f k

k

k

i if L i i
L i

L i otherwise




     


 

(5) 

where k  is a small integer, and .   is the floor operator. Also, during the tap-length evolution, the 

tap-length is forced to be not less than a lower bound minL , where minL    . The requirement of this 

operation is due to utilizing  kL i   as a tap-length in the distributed estimation process. With the 
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current tap-length  kL i , the tap-weights are then updated by (1), where the length of ,k iu  and 
( )

1

i

k  

are adjusted by  kL i . 

 

III. EFFECTS OF NOISY LINKS 

Under noisy links condition, local estimates of coefficients and filter length, exchanged between 

neighboring nodes, are affected by link noise. In other words, in the presence of noisy links, instead of 

receiving 
( )

1

i

k  and 1, ( )k f i  in node k, the following values are received: 

( )

1 ,

i

k k i  q  (6) 

1, , ,( )k f q k ii   (7) 

The vector ,k iq  and the scalar , ,q k i  are the channel noise between sensors 1k   and k added to the 

local estimations of unknown parameter and fractional tap-length, respectively. We assume that ,k iq  is 

a time realization of a zero-mean random process kq with covariance matrix kQ , and , ,q k i  is a time 

realization of a zero-mean random process ,q k  with variance 
2

,c k . Considering (6) and (7), the DILMS 

and the incremental FT update equations can be written as: 

 ( ) ( ) * ( )

1 , , , 1 ,( )i i i

k k k i k k i k k i k k id iµ 
      q u u q    (8) 

and 

    
     

   
2 2

, 1, , , , ,
( ) k k

k k

L i L i

k f k f q k i k k k L i k L i
i i a e e 

 
      

 
(9) 

where 

 
     ( )

, 1 ,,
( )k

k

L i i

k k i k k ik L i
e d i   u q  (10) 

 
          ( )

, 1 ,,
(1: )( (1: ) (1: ))k

k

L i i

k k i k k k k i kk L i
e d i L i L i L i

     u q  (11) 

in which  , (1: )k i kL i u ,  ( )

1(1: )i

k kL i   and  , (1: )k i kL i q  consist of the initial  kL i   

entries of ,k iu ,  
( )

1

i

k  and ,k iq  respectively. The local estimate of integer length  kL i  in node k is 

obtained by (5). 

 

IV. PERFORMANCE ANALYSIS OF INCREMENTAL FT ALGORITHM IN THE PRESENCE OF NOISY LINKS 

In this section, we derive a mathematical formulation for the steady-state tap-length of the 

incremental FT algorithm in the presence of noisy links. We consider a linear measurement model as: 
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   ,opt opt

o

k L k i L kd i v i u w  (12) 

where  kv i  is some spatially and temporally white noise with zero mean and variance 
2

,v k  and 

independent of ,optL ju  and  d j  for all  and j. In (12), ,optL k iu  is a vector of length optL . Since the 

length of the vectors changes iteration by iteration in this scenario, it is helpful to consider an upper 

bound for the length and make the length of the vectors equal to this upper bound by zero-padding them. 

So, we consider an upper bound for tap-length as: 

  ,ub opt kL max L L i for all i  (13) 

By this definition, the unknown parameter 
opt

o

Lw  is denoted as 
ubLw , where 

ubLw  is obtained by 

padding 
opt

o

Lw  with ub optL L  zeros. Also, we define the vector 
( )

, 1ub

i

kL   that is obtained by padding 

( )

1

i

k  with ( )ub kL L i  zeros. We partition the unknown vector 
ubLw  as: 

 
 
 
  

w

w

w

 

(14) 

where w  and w are the portions modeled by 
( )

1

i

k  and 
( )

1

i

k , respectively, such that 

   ( )

1 1(1: )
ii

k k kL i     (15) 

      ( )

1 1 1:
ii

k k k kL i L i      (16) 

where 
   1(1: )
i

k kL i   consists of the initial  kL i   entries of 
 

1

i

k  and 

      1 1:
i

k k kL i L i    consists of the last   entries of 
 

1

i

k  and w is the undermodeled part of 

ubLw . We define 
   

, ,b b b  
u u u

i i

L k 1 L Lw  k-1 , which measures the difference between the desired 

parameter 
ubLw  and its estimate at node 1k  , and we partition it into three parts: 

 

  

 

 

( )( )
11

( )

, 1 1

1 1

b

ub k

ii
kk

ii

k k

i
L L i k



  

  

   
   

      
           

u

i

L k 1

0

w

w

w



  



 

(17) 

For the ease of analysis, also, we partition the regression vector , ,ubL k iu  with length ubL  into three 

parts ,k iu , ,k iu  and ,k iu . Also, we partition the channel noise vector ,k iq  into two parts ,k iq  and ,k iq  

corresponding to 
( )

1

i

k  and 
( )

1

i

k , respectively. With these definitions and substituting (12) into (10) and 

(11) and by zero-padding all of the vectors in (12), (10), and (11) to make their length equal to ubL , we 

have: 
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 
    

       
 

 

( )

, , 1 , ,,

( )
,1

, , , , , ,

111

,

, , , 1 , ,

        

        

k

opt optk

opt

ub ub ub

ub kub kub opt

ub ub ub

L i o i

L k i L k i k k i k i kk L i

i
L k ik

L k i L k i L k i k

L L iL L iL L

k ii

L k i L k L k i

e v i

v i





   



   

     
       
        

 

o

000

0

u w u u q

w q
u u u

q
u u






  

 

 

  

 

 

,

, , , , , ,

,

1

( )

1

1

(

,

,

1

)

1 1 , ,

        

        

ub k

ub k

k i

k i k i k i k i k i k i k i

k i k i k i k i k

k

L L i

i

k

i

k k

L L i

ii

k k

v i

v i

 





 

 

 
 

  

   
   

           
   

     

   

0

q

u u u u u u q

w

u u u w u q





   , , ,k i ki k i v i u q

 

 (18) 

and 

 
      

     

  
 

( )

, , 1,

, ,

( )

1

,

,

,

1

(1: ) (1: )

              (1: ) (1: )

             

             

k

opt optk

u

ub

b k

ub

L i o i

L k i L k i k k kk L i

k i k k i k k

i

k

L

k i

L k i k i k

L L i

e L i L i

L i L i v i

v i





  

   

   

 
  

    
   

 

0

u w u

u q

w -

w

u
q

wu





 ,

.. ...
( )

1, , , ,k i k i k i k i k

i

k ki v i    w wu u u u q

 

(19) 

Substituting  (18) and (19) in the key term in (9) results: 

 
     

   
2 2

, ,

                

 

            

                                

 

 

  

k k

k k

L i L i

k L i k L i
e e

A B C D E F G H

I J K L M N O P




       

       

 

(20) 

where 

        

     
 

 

 

 

1

( ) ( )

1 1 1

2 2

1

1

, ,

, , , ,

, ,

, , , ,

, ,

2 , 2

2 , 2

,

2 , 2

2 , 2

k i k i

k i k i k i k i

k i k i

k i k i k i k

i

k k k

i i i

k k k

i

i

i

k

k

i k

k

k i

A v i B v i

C D

E F

G H

I v i J



  





 

 

       

 

 

u u w

u u u u w

u u w

u wu u w u w

u q



  





 

 

, , ,

, , , , , ,

, ,

2

, , ,

, , , , , ,

( )

1

,

1

12 , 2

2 ,

2 , 2

k i k i k i

k i k i k i k i k i k i

k i k i k i k i k i

k i k i k i k i k i k i k i

i

k

i

k

i

k

K L

M N

O P







 

    

 

u u q

u u q u wu q

u q u u q

u q u w u q u q







 

(21) 

From (9), and (20) we have: 



Journal of Communication Engineering, Vol. 10,  No.1, January-June 2021                                                133 

 

 
  

 

, 1, , ,

         

( )

    

k f k f q k i k

k

i i a

A B C D E F G H I J K L M N O P

  

               
 

(22) 

Now, based on (22), we perform the steady-state analysis. The following assumptions, commonly 

considered in the literature of adaptive networks, are made to simplify this analysis. 

1) The regressors ,ubL k iu  are temporally and spatially independent and the components of them are 

drawn from a zero-mean white Gaussian process with variance 
2

,u k . 

2) The channel noise ,k iq  is independent of  ,ubL ju , , jq  and  v j  for all , j ; 

3) The tap-length at each sensor will converge to a fixed value ( )kL   at steady-state.  

4) The tail entries of the unknown parameter 
opt

o

Lw  are assumed to be drawn from a zero-mean white 

signal with variance 
2

o . 

5) In the steady-state 
   

( ) ( )

1 1 2

, 1

1 1

T
i i

k k

ki i

k k

I
 



 

     
    

        



 

 
  , where 

2

, 1k   is the variance of the elements 

of 
( )

1

i

k  and 
 

1

i

k . 

Assigning  kL   and  1kL    as the steady-state tap-length of nodes k and 1k  , and considering 

that  , , 0q k iE  , we take expectations from both sides of (22) in the steady-state: 

    

 

1

              ,

k k k

k

L L a

E A B C D E F G H I J K L M N O P i

   

                
 

(23) 

Using the assumptions (1)-(5), the moments in (23) can be calculated as: 

             

                    0

E A E B E C E D E G E H E I

E J E K E L E M E O E P

     

      
 

(24) 

          
        

,

2

1 1 1

2
2 2

,

, ,

, 1 1 1          

k i

i i iT T

k k k

i i iT

u k k k

i k

u k

k i

k

E E E E tr

tr I E E 

  

  

  
 

 

u u u  

  

 

(25) 

     
2 2

,

2

,u kk iE F E E   u w w  
(26) 

      

         

, ,

, , ,,

2

2 2

, , , ,

, ,, ,         

k i k i

k i k i k iu k u k k

T T

k i k i k i k i

T T T

k i k i k i

E N E E tr

tr E E tr E tr 

   

  

u q u u q q

u u q q q Qq

 

(27) 

In (27), kQ  is a matrix that includes only the last   rows and columns of kQ . Substituting (24)-(27) 
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in (23) results: 

            
2 22

1 , 1 ,
i

k k k k u k k kL L a E E tr i         w Q  
(28) 

 By defining 
 

, 1, 1 ubub L kL k



 P   and partitioning , 1ubL kP  similar to  
 

, 1ub

i

L k  in (17) into three parts 

1kP , 1kP  and 1kP , we can rewrite (28) as:   

           2 22

1 , 1k k k k u k k kL L a E E tr        P Qw  
(29) 

To evaluate the term  2

1kE P , we use the reported results in [24]. According to the performed 

analysis in [24]:  

   
2 1

, 1 ,11
ubL k k kE s



  P  
(30) 

Where 

𝑘,𝑙 = 𝛽𝑘−1𝛽𝑘−2 … 𝛽
1
𝛽

𝑁
𝛽

𝑁−1
. . . 𝛽

𝑘+𝑙
𝛽

𝑘+𝑙−1
                                                                                            (31) 

 

𝑆𝑘 = 𝑘,2𝑓𝑘 + 𝑘,3𝑓𝑘+1 + ⋯𝑘,𝑁−1𝑓𝑘−3 + 𝑘,𝑁𝑓𝑘−2 + 𝑓𝑘−1 (32) 
 

 

With                                                                                                                                                

  2 2 4

, , 11 2 2k k u k k u k kL                                                                                        

 

(33) 

   
22 2 2 2 2

, , , , 12 1 ( )k k u k k u k k v k u k k k kf L tr            Qw  (34) 

Now, using (30)-(34), we compute  2

1kE P . To do so; we rewrite the steady-state mean squared 

deviation (MSD) as follows:  

       
2 2 2 2

, 1 1 1ubL k k kE E E E    P P wP  
(35) 

According to assumption (5), we have: 

    
2

2

1 1 , 1-k k kE L     P                                                                                                    
(36) 

 2
2

1 , 1k kE   P   
(37) 

and so  

     
2 22

, 1 1 , 1ubL k k kE L E    P w  
(38) 

From (37) and (38), we have: 
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       
2 2 21

, 1 1ub

k

L k k

L
E E E



 



 P P w  

(39) 

According to (30) and (39) we have: 

   
 

 
 

2 1 2

1 ,1

1 1

1k k k

k k

E s E
L L





 

  
 

 
P w  

(40) 

Substituting (40) into (29) results: 

    

 
 

 
     

1

1 2 22

, ,1

1 1

             1

k k k

k u k k k k

k k

L L a

s E E tr
L L

 





 

   

   
     

   

w w Q
 

(41) 

The values of moments  2
E w and  2

E w  in (41) depend on the relative values of  1kL    

and optL . If   1 -k optL L    , then in the steady-state 0w , but, if   1 -k optL L    , then for 

 1k optL L   , w consists of  1- +opt kL L     nonzero elements of 
optL

o
w and for  1k optL L    it 

consists of    nonzero elements of 
optL

o
w , so we have: 

 
 

    

   

1

2 2

1 1

2

1 1

0 +

- + ,

 

    

       

               + 

+

k opt

opt k o opt k opt

o k opt k opt

if L L

E L L if L L L

if L L and L L







 

 

   


      

     

w  

(42) 

About w , if  1k optL L    then in the steady-state w = 0 , but, if  1k optL L   then w  consists 

of  1-opt kL L    nonzero elements of 
optL

o
w , so we have: 

 
 

    

12

2

1 1   -        

0

,  

k opt

opt k o k opt

if L L
E

L L if L L



 

  
 

  

w  

(43) 

In fact, even if  kL   and  1kL    are not precisely equal, they will be approximately equal, then 

we temporarily assume    1k kL L     , and rewrite (41) as: 

 
 

 
     

1 2 2

,1 2

1 1 ,

1 k
k k k

k k k u k

a
s E E tr

L L  



 


     



 
w Qw  

(44) 

From (42) and (43), it is observed that for    1 +k optL L    , both  2
E w  and  2

E w  are 

zero. So, the left-hand side of (44) is non-negative, but the right-hand side is negative. Hence, in the 

presence of noisy links, indeed    1 +k optL L    , in other words, the error caused by the noisy links 

will not lead to the overestimation of tap-length.  

Our studies have shown that under high noise conditions, there will be no convergence for length. In 
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this condition, the tap-length will fluctuate sharply and will not tend to a constant value. However, under 

low noise conditions, as we will show, the length can still be slightly larger than the optimal tap-length. 

According to these results, we have: 

 
    

 

2 2

1

1
2

- +
+

0

opt k o

opt k opt

E L L
if L L L

E





   


    
 


w

w

 

(45) 

So, we can rewrite 
 

   2 2

1k

E E
L 





w w in (41) as: 

 
      

2 2 2

1

1

- +opt k o

k

E E L L
L






   


w w  

(46) 

Substituting (46) into (41) results: 

    

 
      

1

12 2

, ,1 1

1

             1 - + 

k k k

k u k k k opt k o k

k

L L a

s L L tr
L

 









   

  
      

  

Q
 

(47) 

Equation (47) can be arranged in the following manner: 

     

   

2 2

, 1

12 2

, ,12 2

1

1
             + - 1

k k u k o k

k u k o opt k k k k

o o

L L

L s tr a

  

  
 





   

 
      

 
Q

 

(48) 

where 

  ,2 ,3 1 , 1 3 , 2 1

1

k
k k k k k k N k k N k k

k

s
s f f f f f

L
    



    


 
(49) 

and 

 
 2 2 2

, ,

1

k
k k v k u k k k

k

f
f tr

L
   



  


Q  
(50) 

where the first term of kf  is neglected, since w is zero. The term k  is defined as: 

 
  2 2 4

, ,

1

1 2 2 /k
k k u k k u k opt opt

k

L L
L

 


 


    


 
(51) 

where, for the sake of simplicity  1kL    is approximated by optL . If the step size is chosen 

considerably small, then the term  2

1kE P will be small enough. Therefore, the applied 

approximations in kf  and k  will not considerably affect the steady-state tap-length value. By defining 

kh  and kg  as: 
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2 2

,1-k k u k oh    (52) 

   
12 2

, ,12 2

1
+ - 1k k u k o opt k k k k

o o

g L s tr a  
 

 
     

 
Q  

(53) 

equation (48) can be written as: 

   1k k k kL h L g     (54) 

This equation involves both  kL   and  1kL   , i.e., data from two spatial locations. To solve this 

challenge, we use ring topology [2]-[4]. In this manner, we will have: 

   
1

1 ,11k k kL m


     
(55) 

Where 

𝑘,𝑙 ≜ ℎ𝑘−1ℎ𝑘−1 … ℎ1ℎ𝑁ℎ𝑁−1 … ℎ𝑘+𝑙ℎ𝑘+𝑙−1     𝑙 = 1, … , 𝑁                                                                                 (56) 

𝑚𝑘 ≜ 𝑘,2𝑔
𝑘

+ 𝑘,3𝑔
𝑘+1

+...𝑘,𝑁−1𝑔𝑘−3 + 𝑘,𝑁𝑔𝑘−2 + 𝑔𝑘−1                                                                                           (57) 

  

Due to the complicated form of (55), it is not easy to derive straightforward interpretations about the 

steady-state tap-length. To obtain a clear insight, we simplify this equation. First, we assume a same 

tap-length adaption step size for all nodes, i.e., ,k k    , also we assume that 
2

,u k uR I . 

With these assumptions, we have: 

2 21-k u oh    (58) 

Furthermore, we assume 𝛾𝜎𝑢
2𝜎𝑜

2 ≪ 1  such that: 

 2 2 2 2

,1 1 2 1- 1-
N

k N u o u oh h h N        
(59) 

 Also, km  can be approximated as: 

     
12 2 2 2

,1

1 1 1 1

+ 1
N N N N

k k u o opt u k k u k k

k k k k

m g N L s tr a  


   

          Q  
(60) 

Substituting (59) and (60) in (55) results: 

       
1

1
1 ,12 2 2 2

1 1

1
+ 1

N

kN N
k

k opt k k k

k ko o u o

a

L L s tr
N N N  






 

    


  


  Q   

(61) 

 

From (61), several results can be concluded as follows: 

1) In the steady-state tap-length relation, there isn’t any trace of the noise , ,q k i  added to the local 

estimate of the fractional tap-length, and the noise term added to the local estimation of the unknown 

parameter, ,k iq , only appears in it. So, , ,q k i  doesn’t have any effect on the steady-state tap-length. This 
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is perhaps unexpected, but it can be justified by noting that in (9), , ,q k i  plays the same role as the 

leakage factor. In other words, proper selection of the leakage factor could compensate for the adverse 

effect of , ,q k i . 

2) The noise appears in two terms  
1

,12
1 k k

o

s



  and  2

1
k

o

tr


Q , where their difference affects 

the steady-state tap-length relationship (61). As mentioned earlier, as the noise level increases, the 

steady-state tap-length decreases compared to the ideal link version. But, under low noise conditions, 

this length is still larger than the optimal filter length. 

 

V. SIMULATIONS 

To confirm the derived theoretical equations, we provide numerical simulation results in this section. 

The steady-state tables and curves are resulted from averaging the last 1000 samples of 5,000 iterations. 

All results are averaged over 100 independent runs of the same experiment. We consider a network with 

N=12 sensors investigating a desired vector with length optL .  According to assumption (4), the 

unknown parameter elements are drawn from a random white signal with zero mean and variance 

2 0.1o  .  

The regressors and observation noise are independent zero-mean Gaussian with  2

, 0.5, 2u k  and 

 2

, 0.01, 0.1v k   for every node k. The step size for the DILMS algorithm is set as 0.01k   for all 

sensors. For the incremental FT algorithm, the parameters are chosen as 1k  , and 4  . The initial 

length is set equal to the minimum tap-length 6minL  . 

Table I shows the simulated steady-state tap-lengths, together with the theoretical results from 

expression (55) for 40optL   and channel noise with statistics 

5 2 5 4 2 4

, ,10 , 10 , 10 , 10k c k k c k       I IQ Q  and 
3 2 3

,10 , 10k c k  IQ . 

 Since with increasing noise, the tap-length fluctuates sharply, so by increasing the noise level, we 

reduced the parameters k  and ka  to decrease the fluctuations. On this basis, we set k  and ka  as 

   1, 0.001 , 0.5, 0.001 ,k k k ka a      and  0.1, 0.00001k ka    for noise levels 

5 2 5 4 2 4

, ,10 , 10 , 10 , 10k c k k c k       I IQ Q  and 
3 2 3

,10 , 10k c k  IQ  respectively. As this 

table shows, there is a good match between the simulations and the theoretical results.  
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Table I. Simulated and theoretical steady-state tap-lengths for different nodes, with 40

opt
L  . 

 

 

 

 

 

 

 

 

 

 

 

Also, as the theoretical findings show, the steady-state tap length decreases with the increasing noise 

level. However, as long as the noise level is low, the length reaches a fixed value. 

The evolution curves of the fractional tap-length with the derived theoretical steady-state tap-length 

for node 1k   and channel noise with different statistics are shown in Fig. 1 to provide clear insight. 

It can be observed from this figure that the presence of noisy links decreases the steady-state tap-length 

compared to the ideal link version, but as long as the noise level is low, this does not cause the under-

modeling phenomenon. Also, this figure illustrates that the theoretical results match well with the 

simulations.  

In the next simulation, the tap-length is considered to be 20optL  . The setup for this simulation is 

the same as those in the previous simulation.  

Table II shows the simulated steady-state tap-lengths, together with the theoretical results for all 

nodes and channel noise with statistics 
5 2 5 4 2 4

, ,10 , 10 , 10 , 10k c k k c k       I IQ Q  and 

3 2 3

,10 , 10k c k  IQ . 

 Fig. 2 shows the evolution curve of the fractional tap-length with the derived theoretical steady-state 

tap-length for node 1k  . Obviously, the derived theoretical expression for tap-length can predict the 

steady-state performance of the incremental FT algorithm in the presence of noisy links. 

 

 

 

 

 

 

Node 

5 5

,
0 ,  0
 

 
2

k c k
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tap-length 
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tap-length 

1 43.9517 43.9004 43.7384 43.4561 41.7006 41.4285 

2 43.9514 43.8999 43.7381 43.4553 41.7007 41.4292 

3 43.9510 43.8993 43.7377 43.4552 41.7006 41.4305 

4 43.9512 43.8979 43.7379 43.4565 41.7006 41.4334 

5 43.9512 43.8984 43.7379 43.4574 41.7007 41.4307 

6 43.9506 43.8980 43.7373 43.4564 41.7006 41.4308 

7 43.9509 43.8964 43.7375 43.4568 41.7004 41.4289 

8 43.9514 43.8973 43.7379 43.4562 41.7005 41.4285 

9 43.9514 43.8962 43.7381 43.4550 41.7005 41.4293 

10 43.9509 43.8971 43.7376 43.4547 41.7005 41.4290 

11 43.9510 43.8967 43.7376 43.4551 41.7004 41.4298 

12 43.9511 43.8971 43.7376 43.4562 41.7004 41.4301 
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Fig. 1. Evolution curves of the fractional tap-length with the derived theoretical steady-state tap-length for node 1k  , and 

for 40optL  . 
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Table II. Simulated and theoretical steady-state tap-lengths for different nodes, with 20

opt
L  . 
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1 23.9584 24.1352 23.7787 23.8926 22.0775 22.5759 

2 23.9581 24.1366 23.7785 23.8920 22.0775 22.5764 

3 23.9577 24.1365 23.7781 23.8917 22.0775 22.5764 

4 23.9579 24.1369 23.7783 23.8928 22.0775 22.5781 

5 23.9579 24.1371 23.7783 23.8927 22.0775 22.5775 

6 23.9573 24.1364 23.7776 23.8924 22.0774 22.5778 

7 23.9576 24.1359 23.7778 23.8916 22.0772 22.5770 

8 23.9581 24.1359 23.7783 23.8914 22.0773 22.5766 

9 23.9581 24.1373 23.7784 23.8911 22.0774 22.5749 

10 23.9576 24.1363 23.7779 23.8912 22.0773 22.5755 

11 23.9577 24.1356 23.7780 23.8918 22.0772 22.5752 

12 23.9577 24.1339 23.7779 23.8922 22.0772 22.5758 

 

 

 

 

Fig. 2. Evolution curve of the fractional tap-length with the derived theoretical steady-state tap-length for node 1k  , and 

for 20optL  . 
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VI. CONCLUSIONS 

This paper provided a steady-state analysis for the distributed incremental FT variable tap-length 

LMS algorithm under the noisy link conditions. Based on this analysis, we derived a mathematical 

formulation for the steady-state tap-length at each node. Numerical experiments confirmed that there is 

a good match between simulation results and our theoretical derived expressions. Our derived equations 

show how the steady-state tap-length value is affected by noisy links. However, several critical results 

were induced. Firstly, as the noise level increases, the steady-state tap-length decreases compared to the 

ideal link version. However, under low noise conditions, this length is still larger than the optimal filter 

length. Secondly, there isn’t any trace of the noise , ,q k i  in the steady-state tap-length relation. The 

noise term added to the local estimation of the unknown vector, ,k iq , only appears in this relation. So, 

, ,q k i  doesn’t have any effect on the steady-state tap-length. It could be explained by the fact that , ,q k i  

plays the same role as the leakage factor. In other words, proper selection of the leakage factor could 

compensate for the negative effect of , ,q k i . 
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