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Abstract – Nowadays, enhancing the products' quality and gaining market share are the primary purposes of 

any company in a competitive market. So, applying a proper management approach could help companies to 

make optimal decisions. One of the efficient approaches is supply chain management that can manage the flow 

of final products and services continually. The present study develops a supply chain with integrating 

production and distribution activities and a multi-period routing problem. Also, in this problem, a Stackelberg 

competition occurs between the suppliers under normal and critical situations (in which procurement costs of 

materials are increased and the suppliers encounter the shortage). Therefore, some parameters are considered 

uncertain, and a two-stage stochastic optimization model is constructed. The model is also multi-objective to 

reduce cost, lost sales, and defective products. The GAMS software is used for solving a case study for the 

medicine industry. Due to the NP-hardness, we consider Non-Dominated Sorting Genetic Algorithms II 

(NSGA_II), Multiple Objective Particle Swarm Optimization (MOPSO), and a hybrid algorithm for the large-

sized instances. Subsequently, the performances of the proposed algorithms are considered. The obtained 

results reveal that the hybrid algorithm has a better function for solving the model in medium and large-sized 

instances.  

 

Keywords– Production-distribution, Routing, Competition, Two-Stage Stochastic Optimization model, Crisis 

            

I. INTRODUCTION 

There are many critical situations due to natural or manmade causes in the economy section which can significantly 

affect the profitability of the active components in these markets, even leading to the bankruptcy of some of these sectors. 

These events result in main decreases in the performance of the economic activists. For example, Economic sanctions, 

inflation of prices, devaluation of the national currency, change of government market regulation policies, change of 

monetary and banking policies of central banks, entry of new competitors and blowing up of products due to rapid change 

of technologies, delay in receiving orders due to natural disasters such as floods, hurricane or earthquake or due to 

manmade disasters such as military attacks and terrorism, are some of the main known crises which threaten market 

participants.  
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These crises from an intra-organizational perspective may contribute to decreased profitability, bankruptcy, closure 

of manufacturing companies, layoffs, a large-scale loss of satisfaction of customers, loss of key customers and market 

share compared to rivals, and so on. Also, from an Extra-organizational perspective, this crisis in large-scale cases may 

seriously affect the well-being and satisfaction of the citizens, the economic growth and increase in unemployment, and 

so on. To eliminate or reduce the negative effects of these unforeseen crises, economic participants must take these events 

into account in their planning and be prepared to manage these crises in advance. 

Our concern in this research deals with the cases where the suppliers encounter a sudden rise in prices of the raw 

materials for unpredictable reasons. One of the well-known solutions that could be applicable for dealing with and 

reducing the consequences of these issues, is cooperating and integrating the chain of supply in markets. A supply chain 

consists of some geographical facilities (belonging to suppliers, manufacturers, distributors, retailers, and markets), and 

these facilities work together to fulfill customer requirements (Abraham et al., 2015). Some integrated activities in a 

network are production, inventory, and distribution, and their planning is according to the preceding activities (Adulyasak 

et al., 2015). In the production section, decisions are related to labor hiring or firing, production in regular time or 

overtime, scheduling, and capacity of machines. Moreover, distribution planning determines which facilities distribute 

the volumes to the customers (Fahimnia et al., 2013). In this study, distribution planning consists of a multi-period routing 

problem between geographical facilities. This vehicle routing problem (VRP) selects routes to transfer materials and 

products to achieve the optimal cost in each period. Furthermore, fleet sizing that can determine the number of required 

vehicles helps to increase the level of quality (by speeding up service delivery) and minimize the transportation cost. 

These decisions could affect each other and integration of them could lead to more efficiency and decline the network’s 

costs (Miranda et al., 2018).  

The distributors are competing to improve their performance and intend to consolidate their position in the competitive 

market by gaining more market share. Two different types of horizontal competition occurred between the same levels of 

a chain including in-chain and chain-to-chain horizontal competition. The former expresses the competition at each level 

of a chain while the latter studies the competition between two different chains (Mahmoodi & Eshghi, 2014). The in-

chain horizontal competition considered in this paper is based on a strategic game known as the Stackelberg competition 

between a leader and a follower that competes based on price. The leader begins the game based on his/her predictions of 

the distributor's strategies. Then, observing the leader's strategy, the follower responds. The contributors in the 

Stackelberg competition must eventually determine their equilibrium strategies (Mahmoodi⸴ 2020; Rafiei et al., 2018).  
So, in this study, we integrate the production and distribution problems in a chain including suppliers, manufacturers, and 

retailers, where a Stackelberg competition is formed between two competitive suppliers.  

Due to the nature of uncertainties in crisis (Fang & Shou, 2015), most studies have modeled uncertain parameters with 

a two-stage stochastic programming model. The paper of (Barbarosoǧlu & Arda, 2004) was the first study to use this 

model for humanitarian logistics. Furthermore, (Alem et al., 2016) stated that the model is efficient for solving disaster 

problems with different scenarios. 

Many objectives must be optimized through this problem such as the minimization of the lost sales and the level of 

defective products to maximize the quality of the supply chain, and the minimization of the network cost including 

production, transportation, supplying, holding, and manpower. 

Concerning the above-mentioned problem, we develop a multi-objective mixed integer nonlinear programming 

(MOMINLP) model. In this model, we investigate the impacts of the crisis (in our case, rises in row materials' prices for 

the suppliers), on the Stackelberg competition between suppliers in an integrated production-distribution problem. We 

use a two-stage stochastic optimization model to consider parameters with different scenarios whose cost and available 

quantity will change dramatically under crisis conditions. Just by taking a glance at the related literature, the existing 

studies typically have considered one of these challenges, separately and their effects on each other in a competitive 

situation have been neglected. It is worth mentioning that in competitive markets the rivals, in addition to trying to survive 

and make profits through competition, try to counterbalance the crisis issues by cooperating with other participants of the 
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supply chain.  

To solve the proposed mathematical model, we obtain the exact solutions for a small instance of case study. For 

solving large-sized instances, a hybrid meta-heuristic algorithm is developed that consists of MOPSO and NSGA-II.  

The remainder of the paper is organized as follows. The relevant literature is reviewed in Section 2. The assumptions, 

problem definition, and the mathematical model are presented in Section 3. In Section 4, the developed meta-heuristic 

algorithms are explained. Afterward, the numerical example of the proposed model is illustrated in section 5. The results, 

conclusions, limitations, and ideas for future works are presented in section 6.  

II. LITERATURE REVIEW 

Supply chain management is known to be one of the most important topics for researchers. Several studies in the 

literature investigate it. In the following sub-section, we outline the major common lines of some existing research in P-

D planning problems, the developed solution methods, crisis, routing, and competition and then, apply them to explain 

the main distinctions between our work and them that was the key triggers of the current research. 

A. Production- distribution 

Recently, a new important approach to supply chain analysis is based on integrating the various optimized sequentially 

functions such as purchasing, producing, distributing, and so on into a simultaneous optimization model (Park, 2005). In 

reviewing the literature, specific studies have considered the problems of integrated production and distribution. Here are 

some of them. 

(Cohen & Lee, 1988) presented a model that can predict the network’s efficiency through the cost of products, the 

level of services, and the responsiveness and flexibility for manufacturers. 

(Erengüç et al., 1999) reported a review regarding a production and distribution planning in different scopes. 

Furthermore, (Lee et al., 2002) considered minimizing the total cost as an objective function in an integrated production-

distribution problem. Moreover, they used a hybrid analytic and simulation model concerning the dynamic operation time 

as a major constraint in the real system. 

Furthermore, (Park, 2005) presented a solution for an integrated production-distribution in a multi-plant, multi-retailer, 

and multi-period logistics.  

Moreover, (Amorim et al., 2012) suggested a multi-objective integrated production and distribution planning of 

perishable products. They exhibited the economic benefits of using an integrated approach. (Fahimnia et al., 2013) 

reviewed the current P-D planning models and classified them into seven categories. (Ma et al., 2016) proposed an 

integrated bi-level production-distribution planning for a supply chain. In this problem, a leader manages the total cost.  

In addition, (Khalili-Damghani & Ghasemi, 2016) proposed a P-D planning problem. Their study aimed to analyze 

the performance of two classes of the supply chain. They utilized fuzzy mathematical optimization for solving their model. 

(Nemati & Alavidoost, 2019) developed a multi-objective mixed-integer linear programming to integrate sale, production, 

distribution, and procurement planning. (Badhotiya et al., 2019) addressed an integrated production-distribution planning 

for a two-echelon supply chain network. This study took multiple manufacturers, multiple selling, and selling locations 

into consideration. Ultimately, (Ghadimi & Aouam, 2021) developed a production–distribution system with a guaranteed 

service approach (GSA) to optimize the production capacity and safety stocks. This system has one producer, one 

warehouse with limited storage capacity, and one retailer. Also, this integrated problem is formulated as a non-convex 

program and is solved using a nested Lagrangian relaxation heuristic algorithm.  
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The literature review demonstrates the previous study integrated with these activities to optimize the supply chain by 

minimizing the total cost that is presented in (Rafiei et al., 2018). Our study is also considered an integrated production 

and distribution to optimize the network. The literature review indicates the efficiency of this integration in this regard. 

B. Production- distribution problem under Competition 

The competitive nature of nowadays markets requires special consideration of the competition between different parts 

of the supply chain. Hence, some studies in the P-D area have been conducted to investigate them. For instance, (Giri & 

Sarker, 2016) considered a supply chain consisting of a single manufacturer and two retailers competing on the price and 

service of the same products. Moreover, (Yue & You, 2017) proposed a bi-level programming model as a solution 

algorithm for optimal design and operations for non-cooperative supply chains under the Stackelberg game with a leader 

and a follower.( Li & Chen, 2018) developed a Stackelberg game, in which the retailer sold a product with two brands to 

the customers who were homogenous in product valuation. (Sadjadi et al., 2018) studied the retailer Stackelberg game 

between two manufacturers and one retailer, who competed on the price, service and discount, simultaneously. Also, 

(Roy et al., 2018) presented a supply chain with one manufacturer and two retailers competing on their sales price and 

dependent demand.  

(Rafiei et al., 2018) presented an integrated P-D planning problem considering Cournot, Stackelberg, and quality 

competition to minimize the total cost and maximize the service level. (Jena et al., 2019) also studied the impact of 

branding on the total profit for a chain including two competing manufacturers and one retailer. Moreover, (Aazami & 

Saidi-Mehrabad, 2021) considered fixed lifetime for a new multi-period P-D planning for perishable products in a vertical 

competition framework between a seller and a buyer. (Rafiei et al., 2021) developed a competitive P-D model that was 

unimodular. The considered competition was Cournot and Stackelberg's competition. 

Our study considers a Stackelberg competition in a P-D planning problem between two suppliers. To the best 

knowledge of the authors, this competitive P-D planning problem considering routing and under a critical situation has 

not been studied yet. 

C. Routing 

Distribution planning is essential in logistic systems, involving the flow of products from manufacturing plants 

through the transportation network to consumers. It can impact the cost of the supply chain. So, scientists try to consider 

it in their problems for optimization in the network. 

In this scope, (Chiang & Russell, 2004) developed a model to integrate purchasing and routing into the gas supply 

chain. The problem included location, routing, and fleet sizing, simultaneously. The fleet sizing has a significant impact 

on increasing the level of servicing and optimizing network costs, which is also considered in our study. (Christiansen & 

Lysgaard, 2007) proposed the capacitated single depot vehicle routing problem with stochastic customer demand. In their 

work, the customers were serviced according to their needs. Furthermore, (Osvald & Stirn, 2008) modeled a vegetables 

distribution problem with time windows, time-dependent travel times, time dependence on the distance, and time of day 

and developed a Tabu search to solve the model. In addition,  (Liu & Chen, 2011)  modeled an inventory-routing problem 

and considered the effects of pricing on the problem. (Guerrero et al., 2013) developed an inventory-location-routing 

problem to minimize the cost. The presented mixed-integer linear programming model was multi-depot and multi-retailer. 

In their study, they considered vehicle services further and more helpful than a retailer in some periods. 

(Miranda et al., 2018)  developed an integrated production-distribution-routing into small Brazilian furniture 

companies. In their paper, they considered some assumptions, such as multi-items, multiple time windows, distribution 

routes developing over one or more periods, and customers’ due dates. (Marandi & Fatemi Ghomi, 2019 ) introduced a 

model for an integrated P-D problem. Their problem involved production, scheduling, and VRP. (Zheng et al., 2019) 

introduced an integrated location, inventory, and routing in a supply chain and proposed a benders decomposition to solve 

it. Finally, (Mhamedi et al., 2021) developed a routing problem with different capacity vehicles in a multi-echelon network 
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is proposed and an exact branch-price-and-cut (BPC) algorithm for solving the problem is applied. Moreover, they used 

some computational experiments on benchmark instances to show applicability of the model and some managerial insights 

are shown to make the structure of this routing problem.   

We consider the multi-period and multi-depot routing and fleet sizing problem to minimize the transportation cost. 

According to the literature review, fleet sizing and routing together were less common.  

D. Crisis 

As mentioned previously, crises include all types of unforeseen natural and manmade occurrences that could disrupt 

the performance of the supply chain. (Bozorgi-Amiri et al., 2013) suggested a multi-objective model including location, 

allocation, and routing for an earthquake. The objectives of their study included minimizing the maximum amount of 

shortages, calculating the sum of the expected value of the total cost, and identifying the variance of the total cost. They 

also considered uncertainty with a robust stochastic optimization approach. In addition, (Wang et al., 2014) presented a 

multi-objective model for location, distribution, and routing in post-earthquake. The objective functions minimized the 

cost and time and maximized the minimal reliability of the routes. They used two meta-heuristic algorithms which were 

NSGA-II and non-dominated sorting differential evolution algorithm (NSDE) to solve the problem. Furthermore, (Rezaei-

Malek et al., 2016) developed a new model for location, allocation, and inventory of perishable commodities in an urban 

area for a potential earthquake. The researchers used a scenario-based robust stochastic approach to determining 

uncertainty. The objective functions minimized the time and cost. An interactive approach (reservation level Tchebycheff 

procedure) was applied for solving the problem. 

Moreover, (Manopiniwes & Irohara, 2017) made a stochastic programming model with inventory prepositioning, 

evacuation, and relief vehicle planning for preparation and response phases. This study had three levels, and a case study 

for a flood disaster was conducted. (Torabi et al., 2018) proposed a model to determine the optimum level of relief 

commodities in strategic locations for preparation and procurements in the response phase of the earthquake in Iran. 

Therefore, a two-stage scenario-based combined with a fuzzy-stochastic programming model was determined. They 

considered a mixture of uncertain parameters. To solve this problem, a multi-step solution method was developed. (Beiki 

et al., 2020) designed an integrated network to optimize the pre and post-phases of an earthquake. Finally, Agarwal et al. 

(2021) proposed a mathematical model for decision-making in the pre- and post-disaster phases. This model consists of 

inventory, location and evacuation planning. Also, they used classical approach (CA), pattern search algorithm (PSA) 

and Genetic Algorithm (GA) to solve the proposed mathematical model and a real case study of India is applied to validate 

the proposed mathematical model.  

The literature shows that most studies on supply chain and crisis are related to the inventory control and distribution 

of final products. Our article, however, is about the effects of the crisis on the production and distribution of final products 

in the network. 

E. Solution methods for P-D problem 

The literature review illustrates routing problems as NP-Hard problems. The meta-heuristic algorithms are utilized for 

solving NP-Hard problems with large instances (Wang et al., 2019). (Shimizu & Wada, 2003) studied the agile problem 

for a p-Hub location and routing with capacity constraints. The non-linear integrated model was solved with the Tabu 

search algorithm. (Yun et al., 2009 ) presented a supply chain with plants, distribution centers, and retailers. They adopted 

a Genetic algorithm with an adaptive local search to obtain an answer which is the closest to the optimized answer. 

Moreover, (Abraham et al., 2015) proposed a P-D problem considering multiple plants and products and adopted a 

Genetic algorithm to solve the model. Furthermore, (Senoussi et al., 2018) proposed a P-D problem. This supply chain 

consisted of a manufacturer, several retailers, and five GA-based heuristics algorithms, which were proposed to solve the 

problem. Li et al. (2019)  developed a PSO and GA to solve their model. (Biuki et al., 2020) introduced a sustainable 

supply chain for perishable products. In this paper, location, routing, and inventory problem is developed. So, this NP-

hard problem is solved by two hybrid metaheuristics Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)). 
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(Emamian et al., 2021) developed an integrated model for production routing closed-loop supply chain with three-

objective function to minimize supply chain costs, maximize social responsibility or social benefits, and finally, minimize 

environmental emissions. They used the Bee Colony Optimization (BCO) algorithm to solve the model. 

Thus, in the current study, we develop a meta-heuristic algorithm to solve medium and large instances. In the 

following, we compare the common features of some previous papers with our study as could be seen in Table (I). 

Table I. The comparison between studies of the literature review 
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Location 
problem 
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algorithm 

 Lee et al. 

(2002) 
   ⸴    ⸴  Min(cost)    
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production 

and 
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Hybrid 

analytic-

simulation 
method 

Chiang & 
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Fang & 

Shou 

(2015) 
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Budget 

allocation, 

procurement, 
risk 

Two-phase 

heuristic 

algorithm 

Yue & 
You 

(2017) 

   ⸴   ⸴   Max(profit)    

Multi-

product, 

facility 
location, 

technology 

selection, and 
opening/shutti

ng-down of 

production 
lines 

Reformulatio

n-and-

decompositio
n algorithm 

Manopini
wes & 

Irohara 

(2017) 

⸴ ⸴ ⸴       Min (cost)    

Location, 

distribution, 

lateral 

distribution, 

multi-product 

Gurobi 

Optimizer 
and 

normalized 

weighted 
sum method 

Miranda 

et al. 

(2018) 

  
 

⸴ 
 

⸴ 
   ⸴  Min (cost)    

Multiple 

products, 
customers 

‘due dates. 

Relax and 
Fix heuristic 

Senoussi 
et al. 

(2018) 
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Algorithm 
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GAMS 

Sadjadi et 

al. (2018) 
      ⸴   Max(profit)  ⸴  
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discount, 

pricing, 
service 

decisions 

Stackelberg 

game 

Nemati & 
Alavidoos

t (2019) 

 ⸴ ⸴ ⸴  ⸴  ⸴ ⸴ 
Min(cost), 

Max( time) 
⸴ ⸴  Multi-product 

CPLEX 

solver 

Badhotiya 

et al. 

(2019) 

   ⸴  ⸴  ⸴ ⸴ 

Min(time) 
Min(cost) 

Min( 

backorder 
level) 

⸴ ⸴  Multi-product 
CPLEX 
solver 

Marandi 

& Fatemi 

Ghomi 
(2019) 

  ⸴ ⸴      
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s cost and 
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n cost) 

 ⸴  

Lateral 

transportation 

for 
manufacturers 

Improved 

Imperialist 
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algorithm 

Zheng et 
al. (2019) 

  ⸴   ⸴    Min( cost) ⸴  ⸴ 
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Benders 
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n 
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al efficiency) 
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Beiki et 
al. (2020) 

⸴ ⸴ ⸴       
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⸴  ⸴ 

Location of 
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Mhamedi 
et al. 

(2021) 
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Routing with 
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algorithm 

Aazami & 

Saidi-
Mehrabad 

(2021) 
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  ⸴ 
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Decompositi
on Algorithm 

(BDA) and 

Genetic 
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(GA) 

Agarwal 

et al. 
(2021) 

⸴ ⸴        Min (cost)   ⸴ 

A real case 

study of 

cyclone Fani, 
2019 in 

Orissa, India 

classical 

approach 
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(PSA) and 

Genetic 
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Ghadimi 
& Aouam  

(2021) 

   ⸴      
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Lagrangian 
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Emamian 
et al. 

(2021) 
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closed-loop 

supply chain, 

multi 
products 

BCO 

algorithm 

This paper ⸴ ⸴ ⸴ ⸴ ⸴ ⸴ ⸴ ⸴ ⸴ 
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A review of the present literature shows that since considering all these features make the problem complicated to 

solve, all the present studies have neglected some of these assumptions and paid attention to an oversimplified version of 

this problem. To study the effects of these assumptions on each other and make the present research more applicable to 

solve the realistic issues, this is necessary that we study all these assumptions, simultaneously. To sum up, the main 

distinctions between the current work and the literature are outlined as follows: 

 We study an integrated production and distribution problem along with considering a multi-period, multi-

objective and multi-depot routing, fleet sizing, and inventory management.  

 We consider a Stackelberg competition between suppliers where evaluates the impact of critical conditions 

that lead to an increase in cost or a lack of available raw materials on the competition. According to the 

present literature, this Stackelberg competition has not been studied in the previous studies.  

 In the developed mathematical model in the current research, we propound some critical situations such as 

considering both certain and uncertain parameters and also studying human resources management herein, 

which plays an important role in network optimization and is less discussed in the production-distribution 

problem. 

https://www.emerald.com/insight/search?q=Sachin%20Agarwal


Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 1, Winter & Spring 2022, PP. 121-159 129 

 

 Finally, in our research, the model is solved in the small-sized using GAMS software and a case study about 

pharmaceutical company is developed to show applicability of the model.  Afterward, the hybrid algorithm 

is utilized for solving medium and large-sized instances and the efficiency and effectiveness of the proposed 

algorithm are studied.  

In the next section, the problem description and assumptions are mentioned, and the model is presented. 

III. PROBLEM DESCRIPTION 

A multi-echelon supply chain including two suppliers, some manufacturers, some retailers, and a distributor are 

studied in this work. The suppliers, manufacturers, and retailers are considered as the nodes of a network that could 

connect through some arcs. The manufacturers procure their required raw materials from the suppliers and send them to 

the retailers after processing these materials and turning them into the final product.  

In the first level, two suppliers compete on their prices to achieve more market shares of the manufacturers. The lower 

the price offered by a supplier for its raw materials, the more manufacturers will be willing to buy from this supplier. Due 

to the time difference of suppliers in entering the market, one of the suppliers in the market plays the role of leader and 

the other one is following him/her. Compared to simultaneous games, Stackelberg games can better model real-world 

competitions. As a matter of fact, in the real world markets, due to having more knowledge from the market circumstances, 

the leader is more powerful and could affect the decisions made by the follower to the extent. To model this situation, a 

Stackelberg game is developed which will be described in more detail later. 

In the second level, the manufacturers, based on the prices offered by the suppliers, decide to buy their required raw 

materials from suppliers. They process this material and transform it into a product. Production planning can help the 

manufacturers to produce efficiently and at the lowest possible cost. Human resources management through hiring and 

firing the labor forces, managing the inventory levels, working in overtime hours, outsourcing, etc., are some of the 

common methods to plan optimally the production with the lowest costs.  Accordingly, the holding cost, and warehouses' 

capacities of the manufacturers and the suppliers are considered to manage the inventory level of raw material and 

products. Since this model considers the critical situations, to increase the level of resiliency, safety stock is added to 

decrease the lost sales in a difficult situation. These safety stocks are determined by the coefficient of demand. In addition, 

if demand exceeds safety stocks, we penalize the lost sales to control it in the supply chain. 

The manufacturers, after completing the production process of products, ship them to the retailers. Fig (1) represents 

how the parts of the supply chain are connected. 

As known, transportation is one of the important parts of the supply chain which distributes items among the suppliers 

and manufacturers, and among the manufacturers and the retailers. Routing the carriers between these sections bring about 

the increased performance and decreased the cost of the total supply chain. In this work, the routing is done for multi-

frequent periods, in which the distributor with multi-type of capacity-constrained vehicles tries to determine the fleet size 

and some optimum routes in each period to carry off the items from multi-depots to some predetermined nodes through 

the arcs. This routing problem for each period is the well-known capacity-constrained vehicle routing problem (CVRP).  

This model has three objective functions. The first objective function minimizes the penalty cost of lost sales and the 

removal cost of defective final products. The costs associated with transportation, production, holding, hiring, firing, 

salary, and vehicles are considered in the second objective function. Moreover, due to forming a Stackelberg competition 

between the suppliers, the third objective function is dedicated to the minimization of the differences between equilibrium 

values on the material quantity in this competition. 
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suppliers

manufacturers
retailers

 
Fig 1.The network of the considered supply chain 

Due to considering crisis conditions for the suppliers, some of the parameters are uncertain and include the material 

supplying cost, lost sale penalty cost, firing cost, hiring cost, salary cost, raw material cost for manufacturer, removal cost 

of defective final products, final products and raw materials holding cost for manufacturers and suppliers, the maximum 

available quantity of raw material, demand, allowed lost sale percentage of final products, the maximum and the minimum 

number of workers that are fired or hired, and the safety stock components. 

To handle this uncertainty, we use two-stage linear stochastic programming. In the next sub-section, this model will 

be described.  

A. Two-stage linear stochastic programming   

The form of this model is below: 

𝑚𝑖𝑛 𝑐𝑥 + 𝐸[𝑄(𝑥. ƺ)]           (1) 

Ax=b     x≥0              (2) 

In equations (1) and (2), 𝐸 is the expected optimal value of the second stage of the problem, 𝑥 is variable, 𝑎. 𝑏. 𝑐 are 

the parameters, and ƺ shows the data of the second stage. For solving the model, ƺ has a finite number of possible 

realizations called scenarios. These scenarios ( ƺ1. ƺ2. ⋯ . ƺ𝑠 ) has respective probability masses (𝜋1. 𝜋2. ⋯ . 𝜋𝑠) . 

Accordingly, we could write equation (3): 

𝐸[𝑄(𝑥. ƺ)] = ∑ 𝜋𝑠 × 𝑄(𝑥. ƺ𝑠)𝑆
𝑠=1          (3) 
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Moreover, once the number of the scenarios is finite, two-stage stochastic linear programs could be modeled as the 

large-sized linear programming problems (Shapiro & Philpott, 2007). In this regard, we considered some scenarios, whose 

number is finite. Each of them has a probability made by the uniform distribution. Our objective function consists of 

definitive phrases and expected optimal value for uncertain variables.  

Moreover, the constraints are written considering different scenarios. In these scenarios, uncertain parameters have 

different values, and we use the level of the available amount and cost of raw material for the supplier to make the critical 

scenarios. In our model, we normally assume that a critical situation such as natural, man-made disaster or economic 

crisis decreases the level of the available amount of raw material for the supplier. Therefore, the costs of raw materials 

increase, and a critical situation occur for the suppliers. The problem is developed under two situations. 

1. No crisis exists. The first situation comprised a competition with different levels of costs and available quantity 

for raw material in the different scenarios. 

2. The second situation involves the assumption of increasing the level of costs or decreasing the level of available 

quantity dramatically in different scenarios to create critical conditions for the suppliers. 

In this study, the following assumptions are considered: 

a) Hiring and firing the labor force are allowed in each period. 

b) Routing is heterogeneous. (One distributor with some different types of vehicles) 

c) Storage is not allowed in the distribution centers. 

d) Some percentage of the final product is defective and must be removed. 

e) Hiring and firing have limitations. 

f) Over time working and outsourcing are not allowed. 

g) One type of raw material and the final product is transferred through the network. 

h) The maximum available quantity of material for each supplier is different. 

i) Consumption coefficient of per unit of the raw material in per unit of the final product 

j) Two routing problems are formed in each period. A routing problem among the suppliers as depots and the 

manufacturers and the other among the manufacturers as depots and the retailers. 

k) The retailers must be served by at least one of the manufacturers.  

l) The manufacturers must be served by only one supplier. 

m) The fleet size is unknown. 

n) The vehicles are based at multi central depot (suppliers and manufacturers),  

o) Only the capacity restrictions for the vehicles are imposed. We consider a fleet made of different vehicles with 

given capacity for vehicle 𝑣  

p) It is assumed that ships are received at the first of periods in the nodes dedicated to the manufacturers and the 

retailers. 
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q) In each period, every vehicle exits from a depot finally returns to that depot. 

Notations of the mathematical model are defined as follows: 

Sets: 

𝑖:  Set of suppliers  𝑖 ∈ {1.2}  

m:  Set of manufacturers 𝑚 ∊ {1.2. 3. … . 𝑀} 

𝑣:  Set of distributor's vehicles 𝑣 ∊ {1. 2. … . 𝑉} 

𝑡:  Set of periods 𝑡 ∊ {1.2. … . 𝑇}  

𝑠:  Set of scenarios    𝑠 ∊ {1. 2 … . 𝑆} 

𝑟:  Set of retailers 𝑟 ∊ {1. 2. 3. … . 𝑅} 

𝑜, 𝑢: Set of suppliers and manufacturers 𝑜, 𝑢 ∊ {𝐼𝑈𝑀}    

𝑜′, 𝑢′: Set of manufacturers and retailers 𝑜′, 𝑢′ ∊ {𝑀𝑈𝑅} 

𝑜′′, 𝑢′′: Set of all nodes in network 𝑜′′, 𝑢′′ ∊ {𝐼𝑈𝑀𝑈𝑅} 

Uncertain variables: 

𝐿𝑖𝑚𝑣𝑠𝑡 The quantity of material that manufacturer 𝑚  purchases from supplier 𝑖  and transports by 

distributor’s vehicle type v in scenario s and period t  

𝑤𝑚𝑠𝑡  The quantity of final product produced by manufacturer 𝑚 in scenario 𝑠 and period 𝑡  

𝑍𝑚𝑠𝑡 The initial inventory level of the final product for manufacturer 𝑚 in scenario s and period t 

𝑍𝑃𝑚𝑠𝑡  The remained inventory of the final product for manufacturer 𝑚 in scenario 𝑠 and period t 

𝐿′𝑚𝑟𝑣𝑠𝑡  The quantity of final product that manufacturer 𝑚 sends to retailer 𝑟 in scenario 𝑠 that transported 

by distributor’s vehicle type v and period t  

𝑆𝐴𝑟𝑠𝑡 The quantity of the final product that retailer r sales in scenario s and period t 

𝐷𝑟𝑠𝑡  The quantity of lost sale for retailer r in scenario s and period t 

𝐹𝑚𝑠𝑡 The number of workers who fired by manufacturer m in scenario s and period t 

𝑅𝑚𝑠𝑡 The number of workers who employed by manufacturer m in scenario s and period t 

𝑁𝑚𝑠𝑡  The number of workers who work in manufacturer m in scenario s and period t  

𝜑𝑚𝑠𝑡  The quantity of defective final products for manufacturer m in scenario s and period t 

𝑆𝑆𝑚𝑠𝑡  The safety stock of final products for manufacturer m in scenario s and period t 

𝑉𝑣𝑠𝑡 The required number of distributor’s vehicles type v for scenario s and period t  
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𝐼𝐵𝑚𝑠𝑡  The initial inventory of raw material for manufacturer m in scenarios s and period t  

𝐼𝑃𝑚𝑠𝑡  The remained inventory of raw material for manufacturer m in scenario s and period t  

𝜔𝑖𝑠𝑡  The amount of remained material in the warehouses of supplier 𝑖 in scenario s and period t 

𝛺𝑖𝑠𝑡  The quantity of material that supplier 𝑖 supplies in scenario s and period t 

Certain variables: 

𝑅𝑇𝑜′′𝑢′′𝑣𝑡 If node o′′  is passed after node u′′  by vehicle 𝒗 and period 𝒕 is equal to 1 otherwise is equal 0 

𝑝′𝑟𝑣   The variable for constraint of sub tour for retailer  r   and vehicle  v 

𝑝′′𝑚𝑣   The variable for constraint of sub tour  for manufacturer   m    and vehicle  v 

Uncertain parameters: 

𝜀𝑖𝑠𝑡 Maximum available quantity for supplier 𝑖 in scenario s and period t 

𝐷𝑀𝑟𝑠𝑡  The demand of final product for retailer r in scenario s and period t 

𝜓𝑠𝑡  Allowed lost sale percentage of the final product in scenario s and period t 

𝑃𝑅𝑠𝑡 Cost of supplying  in scenario s and period t 

𝑆𝐻𝑟𝑠𝑡  The lost sale penalty cost of the final product for retailer r in scenario s and period t 

𝜃𝑚𝑠𝑡 The safety stock factor of material in manufacturer m in scenario s and period t 

𝐹𝐶𝑚𝑠𝑡 Cost of firing in manufacturer m in scenario s and period t 

𝑅𝐶𝑚𝑠𝑡 Cost of hiring in manufacturer m in scenario s and period t 

𝑁𝐶𝑚𝑠𝑡 Cost of salary for workers in manufacturer m in scenario s and period t 

𝐶𝑀𝑠 Cost of raw material in scenario s  

𝜆𝑠 Removing the cost of defective final products in scenario s 

𝐹𝑚𝑠𝑡
𝑚𝑎𝑥  The maximum number of workers that are fired by manufacturer m in scenario s and period t 

𝐹𝑚𝑠𝑡
𝑚𝑖𝑛 The minimum number of workers fired by manufacturer m in scenario s and period t 

𝑅𝑚𝑠𝑡
𝑚𝑎𝑥 The maximum number of workers hired by manufacturer m in scenario s and period t 

𝑅𝑚𝑠𝑡
𝑚𝑖𝑛 The minimum number of workers that are hired by manufacturer m in scenario s and period t 

𝐶𝐻′𝑚𝑠𝑡 Cost of holding (final product(for manufacturer m in scenario s and period t  

𝐶𝐻′′𝑚𝑠𝑡  Cost of holding (raw material( for manufacturer m in scenario s and period t  

𝐶𝐻𝑖𝑠𝑡  Cost of holding (raw material) for supplier 𝑖 in scenario s and period t 



134 Mohammadi Jozani, S. et al.  / An Integrated Production-Distribution-Routing Problem under an Unforeseen …..  

 

𝜋𝑠 Percentage probability of scenario s 

Certain parameters: 

𝑐𝑎𝑝𝑣  The capacity of distributor’s vehicle v 

𝐶𝑃𝑚 The warehouse's capacity of manufacturer m for holding material 

𝐶𝑃𝑍𝑚 The capacity of manufacturer m for holding final product 

𝐶𝐹𝑚 fixed cost of production in manufacturer m 

𝑉𝐹𝑣 fixed cost of distributor’s vehicle v  

𝑉𝑉𝑣𝑡 The variable cost of distributor’s vehicle v in period t 

𝐶𝑉𝑚𝑡 The variable cost of production for manufacturer m in period t 

ξ The production factor for workers 

β The defective coefficient for manufacturers 

𝐶𝑇𝑢′′𝑜′′𝑣𝑡 Transportation cost of distributor’s vehicle v for the interval (u′′, o′′) and period t  

𝑀0 Big value  

In the next sub-section, a multi-objective mixed-integer programming model is developed to model the pre-described 

problem. 

B. MATHEMATICAL MODEL 

Min∑ ∑ ∑ 𝜋𝑠 × (𝐷𝑟𝑠𝑡 × 𝑆𝐻𝑟𝑠𝑡
𝑆
𝑠=1

𝑇
𝑡=1

𝑅
𝑟=1 )+∑ ∑ ∑ 𝜋𝑠 × (𝜑𝑚𝑠𝑡 × 𝜆𝑠)𝑇

𝑡=1
𝑆
𝑠=1

𝑀
𝑚=1      (4) 

(5) 

Min( ∑ ∑ ∑ 𝜋𝑠 × (𝑤𝑚𝑠𝑡 ×𝑇
𝑡=1

𝑆
𝑠=1

𝑀
𝑚=1  (𝐶𝐹𝑚 + 𝐶𝑉𝑚𝑠𝑡))) + (∑ ∑ ∑ 𝜋𝑠 × (𝛺𝑖𝑠𝑡 × 𝑃𝑅𝑠𝑡))𝑆

𝑠=1
𝑇
𝑡=1

𝐼
𝑖=1  + 

(∑ ∑ ∑ ∑ 𝐶𝑇𝑜′′𝑢′′𝑣 𝑡 × 𝑅𝑇𝑜′′𝑢′′𝑣𝑡
𝑇
𝑡=1

𝑂′′

𝑜′′=1
�́�′′

𝑢′′=1
𝑉
𝑣=1  )  + (∑ ∑ ∑ 𝜋𝑠 × (𝐹𝑚𝑠𝑡 × 𝐹𝐶𝑚𝑠𝑡)𝑇

𝑡=1
𝑆
𝑠=1 )𝑀

𝑚=1 +

(∑ ∑ ∑ 𝜋𝑠 × (𝑅𝑚𝑠𝑡 × 𝑅𝐶𝑚𝑠𝑡)) + (∑ ∑ ∑ 𝜋𝑠 × (𝑁𝑚𝑠𝑡 × 𝑁𝐶𝑚𝑠𝑡)𝑇
𝑡=1

𝑆
𝑠=1

𝑀
𝑚=1

𝑇
𝑡=1

𝑆
𝑠=1

𝑀
𝑚=1 ) +

(∑ ∑ ∑ ∑ ∑ 𝜋𝑠 × (𝐿𝑖𝑚𝑣𝑠𝑡 × 𝐶𝑀𝑠
𝑇
𝑡=1

𝑉
𝑣=1

𝑆
𝑠=1

𝑀
𝑚=1

𝐼
𝑖=1 )) + (∑ ∑ ∑ 𝜋𝑠 × (𝑍𝑃𝑚𝑠𝑡 × 𝐶𝐻′

𝑚𝑠𝑡
)𝑇

𝑡=1
𝑆
𝑠=1

𝑀
𝑚=1 ) +

(∑ ∑ ∑ 𝜋𝑠 × (𝜔𝑖𝑠𝑡 × 𝐶𝐻𝑖𝑠𝑡))𝑇
𝑡=1

𝑆
𝑠=1

𝐼
𝑖=1 + (∑ ∑ ∑ 𝜋𝑠 × (𝐼𝑃𝑚𝑠𝑡 × 𝐶𝐻′′

𝑚𝑠𝑡
𝑇
𝑡=1

𝑆
𝑠=1

𝑀
𝑚=1 )) +

(∑ ∑ ∑ 𝜋𝑠 × (𝑉𝑣𝑠𝑡 × 𝑉𝑉𝑣𝑡
𝑆
𝑠=1

𝑇
𝑡=1

𝑉
𝑣=1 )) + (∑ ∑ ∑ 𝜋𝑠 × (𝑉𝑣𝑠𝑡 × 𝑉𝐹𝑣𝑡=1

𝑆
𝑠=1

𝑉
𝑣=1 )  

∑ ∑ 𝑅𝑇𝑢′𝑟𝑣𝑡
𝑉
𝑣=1

𝑈′
𝑢′=1 ≥ 1    ∀  𝑟 ∊ 𝑅, 𝑡 ∊ 𝑇     (6) 

∑ ∑ 𝑅𝑇𝑟𝑢′𝑣𝑡
𝑉
𝑣=1

𝑈′
𝑢′=1 ≥ 1    ∀  𝑟 ∊ 𝑅, 𝑡 ∊ 𝑇     (7) 

∑ 𝑅𝑇𝑚𝑟𝑣𝑡
𝑅
𝑟=1 ≤ 1     ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀    (8) 

∑ 𝑅𝑇𝑟𝑚𝑣𝑡
𝑅
𝑟=1 ≤ 1     ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀    (9) 

𝑝′𝑟𝑣 − 𝑝′𝑟′𝑣+(|𝑅|) × 𝑅𝑇𝑟𝑟′𝑣𝑡 ≤ |𝑅| − 1   ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑟 ∊ 𝑅, 𝑟′ ∊ 𝑅               (10) 
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∑ 𝑅𝑇𝑜′𝑟𝑣𝑡
𝑂′
𝑜′=1 − ∑ 𝑅𝑇𝑟𝑢′𝑣𝑡

𝑈′

𝑢′=1 = 0   ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑟 ∊ 𝑅                (11) 

∑ ∑ 𝑅𝑇𝑢𝑚𝑣𝑡
𝑉
𝑣=1

𝑈
𝑢=1 = 1     ∀𝑚 ∊ 𝑀, 𝑡 ∊ 𝑇                 (12) 

∑ ∑ 𝑅𝑇𝑚𝑢𝑣𝑡
𝑉
𝑣=1

𝑈
𝑢=1 = 1     ∀𝑚 ∊ 𝑀, 𝑡 ∊ 𝑇                 (13) 

∑ 𝑅𝑇𝑖𝑚𝑣𝑡
𝑀
𝑚=1 ≤ 1     ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑖 ∊ 𝐼                (14) 

∑ 𝑅𝑇𝑚𝑖𝑣𝑡
𝑀
𝑚=1 ≤ 1     ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑖 ∊ 𝐼                (15) 

𝑝′′𝑚𝑣 − 𝑝′′𝑚′𝑣+(|𝑀|) × 𝑅𝑇𝑚𝑚′𝑣𝑡 ≤ |𝑀| − 1  ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀, 𝑚′ ∊ 𝑀′               (16) 

∑ RTumvt
U
u=1 − ∑ RTmuuvt

U
uu=1 = 0   ∀v ∊ V, t ∊ T, m ∊ M                (17) 

𝐿𝑜′′𝑢′′𝑣𝑠𝑡 ≤ 𝑅𝑇𝑜′′𝑢′′𝑣𝑡 × 𝑀0    ∀𝑣 ∊ 𝑉, 𝑡 ∊ 𝑇, 𝑜′′ ∊ 𝑂′′, 𝑢′′ ∊ 𝑈′′               (18) 

𝐼𝐵𝑚𝑠𝑡 = ∑ ∑ 𝐿𝑖𝑚𝑣𝑠𝑡
𝐼
𝑖=1

𝑉
𝑣=1     ∀𝑚 ∊ 𝑀, 𝑡 = 1 , 𝑠 ∊ 𝑆                (19) 

𝐼𝐵𝑚𝑠𝑡 ≥ 𝑤𝑚𝑠𝑡       ∀𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (20) 

𝐼𝐵𝑚𝑠𝑡 − 𝑤𝑚𝑠𝑡 = 𝐼𝑃𝑚𝑠𝑡      ∀ 𝑚 ∊ 𝑀, 𝑡 ∊ 𝑇 , 𝑠 ∊ 𝑆                (21) 

𝐼𝐵𝑚𝑠𝑡 ≥ ∑ ∑ 𝐿𝑖𝑚𝑣𝑠𝑡
𝐼
𝑖=1 +𝐼𝑃𝑚𝑠𝑡−1

𝑉
𝑣=1    ∀ 𝑚 ∊ 𝑀, 𝑡 > 1 , 𝑠 ∊ 𝑆                (22) 

𝛺𝑖𝑠𝑡 − ∑ ∑ 𝐿𝑖𝑚𝑣𝑠𝑡
𝑉
𝑣=1

𝑀
𝑚=1 = 𝜔𝑖𝑠𝑡     ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑖 ∊ 𝐼                (23) 

𝛺𝑖𝑠𝑡 ≤ 𝜀𝑖𝑠𝑡       ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑖 ∊ 𝐼                (24) 

𝐼𝐵𝑚𝑠𝑡 ≤ 𝐶𝑃𝑚      ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (25) 

𝑍𝑚𝑠𝑡 ≤ 𝐶𝑃𝑍𝑚      ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (26) 

𝑍𝑃𝑚𝑠𝑡 = 𝑍𝑚𝑠𝑡 − ∑ 𝐿𝑚𝑟𝑣𝑠𝑡
𝑉
𝑣=1     ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (27) 

𝜑𝑚𝑠𝑡 ≤ 𝛽 × 𝑤𝑚𝑠𝑡      ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (28) 

𝑍𝑚𝑠𝑡 = 𝑤𝑚𝑠𝑡- 𝜑𝑚𝑠𝑡      ∀ 𝑠 ∊ 𝑆, 𝑡 = 1, 𝑚 ∊ 𝑀                             (29) 

𝑍𝑚𝑠𝑡 = 𝑍𝑃𝑚𝑠𝑡+𝑤𝑚𝑠𝑡-𝜑𝑚𝑠𝑡    ∀ 𝑠 ∊ 𝑆, 𝑡 > 1, 𝑚 ∊ 𝑀                                           (30) 

𝑍𝑚𝑠𝑡 ≥ ∑ ∑ 𝐿𝑚𝑟𝑣𝑠𝑡
𝑅
𝑟=1

𝑉
𝑣=1     ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                             (31) 

𝑆𝑆𝑚𝑠𝑡=𝜃𝑚𝑠𝑡 × ∑ ∑ 𝐷𝑀𝑟𝑠𝑡
𝑅
𝑟=1

𝑉
𝑣=1 *𝑅𝑇𝑚𝑟𝑣𝑡   ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (32) 

𝐼𝐵𝑚𝑠𝑡 ≥ 𝑆𝑆𝑚𝑠𝑡      ∀𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (33) 

𝑆𝐴𝑟𝑠𝑡 + 𝐷𝑟𝑠𝑡 = 𝐷𝑀𝑟𝑠𝑡      ∀  𝑟 𝜖𝑅, 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇                (34) 

𝑆𝐴𝑟𝑠𝑡 ≤ ∑ ∑ 𝐿𝑚𝑟𝑣𝑠𝑡
𝑀
𝑚=1

𝑉
𝑣=1     ∀  𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑟 ∊ 𝑅                             (35) 

𝐷𝑟𝑠𝑡 ≤ 𝐷𝑀𝑟𝑠𝑡 × 𝜓𝑠𝑡      ∀  𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇                 (36) 

𝑁𝑚𝑠𝑡 ≥ 1
𝜉⁄ × 𝑤𝑚𝑠𝑡      ∀  𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (37) 
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𝑁𝑚𝑠𝑡=𝑅𝑚𝑠𝑡 − 𝐹𝑚𝑠𝑡     ∀  𝑠 ∊ 𝑆, 𝑡 = 1, 𝑚 ∊ 𝑀                (38) 

𝑁𝑚𝑠𝑡=𝑁𝑚𝑠𝑡−1 + 𝑅𝑚𝑠𝑡 − 𝐹𝑚𝑠𝑡    ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ {2, … , 𝑇}, 𝑚 ∊ 𝑀               (39) 

𝐹𝑚𝑠𝑡
𝑚𝑖𝑛 ≤ 𝐹𝑚𝑠𝑡 ≤ 𝐹𝑚𝑠𝑡

𝑚𝑎𝑥      ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                             (40) 

𝑅𝑚𝑠𝑡
𝑚𝑖𝑛 ≤ 𝑅𝑚𝑠𝑡 ≤ 𝑅𝑚𝑠𝑡

𝑚𝑎𝑥      ∀ 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑚 ∊ 𝑀                (41) 

𝑉𝑣𝑠𝑡 = ∑ ∑ 𝐿′𝑚𝑟𝑣𝑠𝑡
𝑅
𝑟=1

𝑀
𝑚=1 + ∑ ∑ 𝐿𝑖𝑚𝑣𝑠𝑡

𝐼
𝑖=1

𝑀
𝑚=1 /𝑐𝑎𝑝𝑣 ∀  𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇, 𝑣 ∊ 𝑉                (42) 

𝐿𝑖𝑚𝑣𝑠𝑡, 𝑤𝑚𝑠𝑡 , 𝑍𝑚𝑠𝑡 , 𝑍𝑃𝑚𝑠𝑡 , 𝐿′𝑚𝑟𝑣𝑠𝑡 , 𝑆𝐴𝑟𝑠𝑡, 𝜑𝑚𝑠𝑡 , 𝑆𝑆𝑚𝑠𝑡, 𝐼𝑃𝑚𝑠𝑡 . 𝐼𝐵𝑚𝑠𝑡, 𝜔𝑖𝑠𝑡 , 𝛺𝑖𝑠𝑡  , 𝐷𝑟𝑠𝑡≥0 

𝑅𝑇𝑜′′𝑢′′𝑣𝑡∊ {0,1} 

𝐹𝑚𝑠𝑡 , 𝑅𝑚𝑠𝑡 , 𝑁𝑚𝑠𝑡, 𝑉𝑣𝑠𝑡 ≥ 0 𝑎𝑛𝑑 integer                                     

Equation (4) expresses the minimization of the lost sales and the level of defective products, and it could warranty to 

maximize the quality of the supply chain. Equation (5) presents the minimization of the total cost containing the 

production cost, transportation costs in the different levels, supplying cost, holding cost at different levels, and hiring and 

firing cost. 

Constraints (6) and (7) ensure that each retailer has to be served by at least one manufacturer and one vehicle in every 

period. This means that every retailer must be visited in each period. Constraints (8) and (9) guarantee that each vehicle 

can be used within at most one route in each period. It means that some of the existing vehicles may be left useless for 

some periods. We introduce constraint (10) to avoid sub-tours among the retailers and the manufacturers. If vehicle 𝑣 

enters an arc, it must leave that arc. Also, this vehicle could leave the manufacturer as a depot at the first of its route and 

return to the depot at the end, at most one time. Constraint set (11) covers this constraint. 

Constraints (12)-(17) are the same as constraints (6)-(11), except that despite constraints (6)-(11), which relate to the 

routes between the manufacturers and the retailers, in these constraints, the constraints related to the routes between the 

suppliers and the manufacturers are addressed. 

Constraint (18) explains that the materials and the final products could be transferred only in the determined routes. 

Constraint (19) states that the initial inventory of raw material for every manufacturer in the first period is equal to the 

purchased quantity of the raw material in this period by this manufacturer. Constraint (20) shows that the quantity 

produced by each manufacture in each period and scenario could not exceed the initial inventory of raw materials in that 

period.  

Constraint (21) indicates the ending inventory of raw materials for every manufacturer at each period equals that 

portion of the initial inventories not used for production in that period.   

Constraint (22) represents the level of inventory for each manufacturer in the next periods, which is equal to the 

remained inventory level of the former period with the assignment of this period.  

Constraint (23) states that the quantity of the remained raw material in warehouses of each supplier in every period 

equals the quantity of the supplied materials not sold to the manufacturers in that period. Constraint (24) illustrates the 

maximum quantity of raw material that a supplier can supply couldn't exceed the available quantity in the market for 

him/her. Constraint (25) shows the initial inventory of raw material for every manufacturer in every scenario and each 

period is not allowed to exceed its warehouse's capacity.  

Constraint (26) warrants that the initial inventory of the final product for every manufacturer in every scenario and 

each period is not allowed to exceed its warehouse's capacity. Constraint (27) indicates the ending inventory of the final 
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product for every manufacturer at each period equals that portion of the initial inventories not sold to the retailers that 

period.   

Constraint (29) warrants that the number of defective final products in every period is not allowed to exceed a certain 

level. Constraints (29) and (30) depict the balance equation of the final products' inventory for the manufacturers in the 

first and the other periods, respectively. Constraint (31) expresses that the final products sold to the retailers equal to the 

level of inventory couldn’t exceed the initial inventory of the final product in every period. Constraints (32) and (33) 

relate to the level of safety stock for the manufacturers in every period.  

Constraint (34) expresses that the demand for the final product equals the sum of the sale and the lost sale amounts of 

the final product. Constraint (35) shows that the amount of final product sold by each retailer could not exceed the amount 

of final product received in every period.  

Constraint (36) represents the maximum level of the lost sale for the retailers in each period. Constraint (37) warrants 

that the minimum level of manpower in every period depends on the production level.  

Constraint (37) warrants that for producing a certain amount, a minimum level of manpower is required in every 

period. Constraints (38) and (39) are balanced equations of manpower that express the relation between the available 

manpower, the fired and hired manpower, for the first and the other periods, respectively. Constraints (40) and (41) 

represent the maximum and minimum levels of hiring and firing in every period, respectively. Constraint (42) reveals the 

required number of vehicles for the distributor.  

C. Stackelberg equilibrium 

In this study, the first and the second suppliers are considered as a leader and a follower, respectively that compare on 

their selling prices of the raw material for the manufacturers. The structure of the price could be defined as below: 

𝑃 The price of the raw material  

A The potential price when the sale is zero 

𝑣1 The sale for the first supplier 

𝑣2 The sale for the second supplier 

Α The intensity of the Stackelberg competition 

r′𝑖  The cost for supplier i 𝜖{1.2}  

µ𝑖 The profit of supplier i 𝜖{1.2} 

𝑃(𝑣1 + 𝑣2) = 𝐴 − 𝛼(𝑣1 + 𝑣2)                      (43) 

  𝑅𝑖(𝑣𝑖) = 𝑟𝑖 ′ × 𝑣𝑖      i 𝜖{1,2}                   (44) 

Equations (43) and (44) show the price and the cost of supplier i, respectively. Follower's profit is calculated from 

equation (45): 

µ2 = 𝑃(𝑣1 + 𝑣2) × 𝑣2 − 𝑅2(𝑣2) = (𝐴 − (𝛼(𝑣1 + 𝑣2)) × 𝑣2 − (𝑟′2 × 𝑣2)                (45) 

Given the above-mentioned equations for the follower’s profit, the differentiation is done and then set equal to zero 

to find the values of 𝑣2 that maximizing the suppliers' profit.  
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𝜕µ2

𝜕𝑣2
= 0 → 𝐴 − 𝛼𝑣1 − 2 𝛼𝑣2 − 𝑟′

2 = 0                     (46) 

𝑣2 =
𝐴−𝛼𝑣1−𝑟′2

2 𝛼
                       (47) 

By determining the best follower's strategy according to the leader's strategy, the leader also can determine its strategy 

in the most profitable way. 

µ1 = (𝐴 − (𝛼(𝑣1 + 𝑣2)) × 𝑣1 − (𝑟′1 × 𝑣1) = 𝐴𝑣1 − 𝛼𝑣1 (
𝐴−𝛼𝑣1−𝑟′2

2 𝛼
) − 𝛼𝑣1

2 − 𝑟′1𝑣1                (48) 

Equation (48) shows the profit function of the first supplier. We went through all steps to calculate the maximum 

profit of the follower with considering certain strategies for the follower to get the maximum profit of the leader by 

equation (49) and equation (50): 

𝜕µ1

𝜕𝑣1
= 0 →

𝐴−2𝛼𝑣1+𝑟′2−2𝑟′1

4
= 0                      (49) 

𝑣1 =
𝐴+𝑟′2−2𝑟′1

2𝛼
                       (50) 

𝑣1
∗ =

𝐴+𝑟′2−2𝑟′1

2𝛼
                       (51) 

𝑣2
∗ =

𝐴−𝛼𝑣1−𝑟′2

2 𝛼
                       (52) 

Equations (51) and (52) show 𝑣1
∗ (the equilibrium value of sale for the first supplier (leader)) and 𝑣2

∗ (the equilibrium 

value of sale for the second supplier (follower)), respectively. (Rafiei et al., 2018). 

In this model, we consider 𝑣2
∗, 𝑣1

∗ as above, and 𝑂𝑀𝑖𝑠𝑡 is defined as a competition variable, and the third objective 

function is added to the model via equation (54): 

Parameters of competition: 

𝑂𝑀1 ∗ Equilibrium value for the leader in Stackelberg competition 

OM2* Equilibrium value for followers in Stackelberg competition 

Variable of competition: 

𝑂𝑀𝒊𝒔𝒕 Variable of competition that is equal to the quantity of sold materials 

 for supplier i in scenario s and period t 

𝑂𝑀𝒊𝒔𝒕= ∑ ∑ 𝐿𝑖𝑚𝑣𝑠𝑡
𝑉
𝑣=1

𝑀
𝑚=1      ∀  𝑖 ∊ 𝐼  , 𝑠 ∊ 𝑆. 𝑡 ∊ 𝑇               (53) 

Equation (54) is the third objective function that tries to minimize the differences between equilibrium quantities of 

two suppliers in the Stackelberg competition. 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝜋𝑠 ∗ (|𝑂𝑀𝑖𝑠𝑡 − 𝑂𝑀1 ∗| + ∑ ∑ ∑ 𝜋𝑠 ∗ |𝑂𝑀𝑖𝑠𝑡 − 𝑂𝑀2 ∗|)𝑇
𝑡=1

𝑆
𝑠=1

2
𝑖=2

𝑇
𝑡=1

𝑆
𝑠=1

1
𝑖=1                 (54) 

D. Linearization 

According to the absolute of the objective function, the proposed competitive objective is MINLP; therefore, the below 

procedure is applied to overcome the nonlinearity of the model (Bisschop, 2006). 
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∑ ∑ ∑ |𝑥𝑖𝑠𝑡 − 𝑏|𝑡𝑠𝑖                        (55) 

An equation with an absolute value results in the nonlinearity of the model. Thus, binary variables are defined as 

follows: 

Equation (55) could be rewritten as follow: 

𝑦𝑖𝑠𝑡
+ = {

𝑥𝑖𝑠𝑡 − 𝑏         𝑖𝑓 𝑥𝑖𝑠𝑡 − 𝑏 > 0
 0                              𝑜𝑤

}  

𝑦𝑖𝑠𝑡
− = {

𝑏 − 𝑥𝑖𝑠𝑡          𝑖𝑓 𝑥𝑖𝑠𝑡 − 𝑏 < 0
 0                              𝑜𝑤

}  

And 𝑦𝑖𝑠𝑡
+  , 𝑦𝑖𝑠𝑡

− ≥ 0 

So, equation (55) is as follows: 

∑ ∑ ∑ 𝑦𝑖𝑠𝑡
+ +𝑡𝑖  𝑦𝑖𝑠𝑡

−
𝑠   

The constraint (56) was also added to the mathematical model: 

𝑥𝑖𝑠𝑡 − 𝑏 = 𝑦𝑖𝑠𝑡
+ − 𝑦𝑖𝑠𝑡

−                        (56) 

𝑦𝑖𝑠𝑡
+  , 𝑦𝑖𝑠𝑡

−  were defined in the model as below:  

𝑀𝑃𝑖𝑠𝑡 :  The variable of competition for linearization  

𝑀𝑁𝑖𝑠𝑡 : The variable of competition for linearization 

The third objective function could be rewritten as Equation (57): 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝜋𝑠 ∗ (𝑀𝑃𝑖𝑠𝑡 + 𝑀𝑁𝑖𝑠𝑡)𝑇
𝑡=1

𝑆
𝑠=1

𝐼
𝑖=1                                                (57) 

The constraints (58) and (59) are added to the model. Hence, the model is converted to a linear one by applying the 

below changes: 

𝑀𝑃𝑖𝑠𝑡 − 𝑀𝑁𝑖𝑠𝑡 = 𝑂𝑀𝑖𝑠𝑡 − 𝑂𝑀1 ∗   𝑖 = 1  , ∀  𝑠 ∊ 𝑆. 𝑡 ∊ 𝑇                (58) 

𝑀𝑃𝑖𝑠𝑡 − 𝑀𝑁𝑖𝑠𝑡 = 𝑂𝑀𝑖𝑠𝑡 − 𝑂𝑀2 ∗   𝑖 = 2  , ∀  𝑠 ∊ 𝑆. 𝑡 ∊ 𝑇                (59) 

IV. SOLUTION METHODOLOGY 

To solve the model, we consider some exact and meta-heuristic solution methods that will be described in this section. 

Initially, GAMS software is used to solve small-sized instances utilizing a computer with a Core i5- 6200U CPU and 

a 2.3 GHz 4GB RAM. The results are shown to describe the behavior of the model. A sensitivity analysis is carried out 

with GAMS software. This part indicates the impact of various input parameters on the objective functions and variables 

and aims at investigating the impacts of different scenarios in critical or non-critical cases. 

The previous studies have implied that routing is one of the complicated and well-known NP-hard problems (Farrokhi-

Asl et al.⸴ 2017). Their results showed the incapability of this software for large instances to solve the model in a 

reasonable and acceptable amount of time. As a result, meta-heuristic algorithms could be useful once the problem has 

several nodes. Therefore, three meta-heuristic algorithms (NSGA-II, MOPSO, and a combination algorithm) are 

developed for solving the model. The results obtained from these algorithms are compared with ones obtained from 
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GAMS software to validate the efficiency and effectiveness of the developed meta-heuristics.  

To this end, eight stochastically produced instances in various sizes are solved by the algorithms and the obtained 

results are analyzed and discussed in the next sections. 

A. The developed NSGA-II  

Genetic and PSO algorithms are successful algorithms regarding the optimization problem. NSGA-II and MOPSO 

algorithms are derivatives of the mentioned algorithms for solving the multi-objective models. NSGA-II algorithm 

generates high quantity solutions and MOPSO algorithm can reach logical solutions with less computational time 

(Farrokhi-Asl et al.⸴ 2017). NSGA-II was introduced by  Deb et al. (2002). It is based on the Pareto solution and 

comprises the steps below  (Deb et al.⸴ 2002 and Farrokhi-Asl et al.⸴ 2017): 

Step 1. The initial solutions are generated randomly. The chromosomes have two types. The first type shows the value 

of inventory, which is a continuous type. The second type is a discontinuous chromosome that is related to the routing 

problem of the model. Fig (2) depicts a discontinuous sample. 

Step 2. The initial solutions are evaluated by a non-dominated rating and crowding distance. To sort them, a non-

dominated rating is assigned due to the objective function quantities. The first-ranked solution is the best one. Rate two 

is more dominated. The same trend continues for the next levels.  

Step 3. Once the ranks between two members are similar, we calculate crowding distance with the average distance 

of two points on either side of the point along with each of the objectives. Crowding distance is used to estimate the 

density of members surrounding a particular member of the population.  The distribution of Pareto solutions is made 

uniformly by applying this operator. Between two members with the same rates, the priority goes to the member located 

in a less crowded region. 

Step 4. Some of the members are chosen. Subsequently, crossover and mutation are applied to them. Children are 

created and they merge with parents. There are different types of crossover and mutation operators that could be used to 

generate children. For example, we use swap mutation for routing chromosomes as Fig (3). 

In this type of mutation, two points are selected randomly and their places are changed to create a new child (Yang⸴ 

2020). To produce children from the inventory's chromosomes (continuous type) arithmetic crossover is employed. This 

crossover operator combines two parents linearly to produce a child according to the equations (60) (Jin et al.⸴ 2017). 

Child1 = a′ * Parent1 + (1- a′) * Parent2                                                                                                       (60) 

a′ is generated randomly between 0 and 1. 

 Children and parents are combined to make a new population. Afterward, non-dominated rating and crowding 

distance are determined for them. 

Step 5. Sorting the merged population is done based on these two factors.  

Step 6. The non-dominated members positioned at the top of the ranking are saved in the archive as Pareto solutions, 

and additional populations are eliminated.  

Step 7. These steps continue until meeting the stop condition. 
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Fig 2.The chromosome of routing 

 
Fig 3.The swap mutation 

B. The developed MOPSO 

MOPSO is an efficient algorithm developed by (Coello and Lechuga, 2002). The literature shows that this algorithm 

has been successful in solving several complex routing problems and makes the Pareto front closer to the desired Pareto 

fronts. In this algorithm, the structure of the chromosome of NSGA-II is used, yet this algorithm is for continuous 

problems. Therefore, the uniform random numbers between 0 and 1 are used (Farrokhi-Asl et al.⸴ 2017). The steps of 

this algorithm are as follows: 

Step 1. A population is generated randomly. Each member (particle) of this population has one velocity vector. For 

each particle, the velocity vector consists of a speed that indicates the direction in which the current position of the particle 

could be improved. Moreover, each particle is evaluated, and its position is stored by personal best (pbest), which shows 

the best position of particles. 

Step 2. Non-dominated solutions are determined and saved in a group called a repository. The members of a repository 

are the leaders which lead the other particles toward a better place. 

Step 3. The velocity and position of every solution are up to date as follows:  

𝑉𝐸𝑖=W× 𝑉𝐸𝑖+ c1r1×(𝑝𝑏𝑒𝑠𝑡𝑖  -𝑝𝑜𝑝𝑖) +c2r2×(𝑟𝑒𝑝 ⋅ 𝑝𝑜𝑝𝑖  -𝑝𝑜𝑝𝑖)                                          (61) 

𝑝𝑜𝑝𝑖=𝑝𝑜𝑝𝑖+  𝑉𝐸𝑖                        (62) 

In equation (61), 𝑊 is the inertia weight and can control the impact of velocity history. 𝑟1 and 𝑟2 are random numbers 

between (0,1). 𝑐1  and 𝑐2  represent social learning factors that are associated with the particle’s successes and its 

neighborhood success. 𝑝𝑏𝑒𝑠𝑡𝑖 shows the best place for ith particle. 𝑟𝑒𝑝 ⋅ 𝑝𝑜𝑝𝑖  is the value gained from the repository and 

𝑝𝑜𝑝𝑖  is the position of the particle.  Afterward, the new position is determined with equation (62). 

Step 4. In each iteration, new non-dominated solutions are saved in the repository, and the dominated ones are deleted. 

This process continues according to the determined criteria to end the algorithm.  
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C.A. hybrid algorithm of MOPSO and NSGA-II 

Additionally, in this study, a hybrid algorithm is developed. Fig (4) depicts the process of the presented algorithm. 

This process is a hybrid of MOPSO and NSGA-II algorithms. In this hybrid algorithm, the initial population with 

continuous and discontinuous chromosomes is generated. Then, the factors of NSGA-II are calculated, and members of 

the population are sorted by these factors. Parents are selected and the operators of NSGA-II are calculated to make a new 

population. In the next step, MOPSO is applied to the new population, and this process continues until the finishing factors 

of the algorithm. 

D. Discussion and experimental results 

In this section, we validate the efficiency and effectiveness of the proposed algorithm to solve the model. Moreover, 

there are no similar models in the literature; therefore, we cannot compare our developed algorithms with the results 

obtained from the other works. Thus, we generate several random numerical examples in which their parameters are 

generated in some predetermined intervals of uniform distributions. These intervals and the value of constant parameters 

are inspired by a real-life case medicine industry to show the applicability of the proposed model. This industry produces 

Vitamin tablets, and this product has two exclusive suppliers that compete. Without loss of generality, the model could 

be useful in other supply chains applications.  

This company has two suppliers, two manufacturers and two type of vehicles for transportation. Moreover, we study 

this case for three time periods and two retailers. When Covid-19 started, the demand for vitamins, to boost human 

immunity increased. So, this industry has chaotic years and face with some challenges. For example, the biggest challenge 

in this industry is market forecasting to grow customer service levels and be ahead in the competition. Furthermore, in 

this supply chain quality and cost of transportation is essential and choosing an appropriate strategic approach could 

optimize the network cost.  

Also, human resource management to make accurate estimates and prevent production shortages, which is one of the 

main goals of the company. As a result, the company needs integrated planning to increase coordination and meet 

uncertain demand to minimize shortages and reduce network costs. 

Table (II) represents the determined range of input parameters for the numerical example. This table is related to the 

first problem in this section solved with GAMS. Furthermore, we use a parameter 𝑀 as a large enough parameter to solve 

the LP model. This parameter is useful when it is large enough. Precise evaluation is complex. Meanwhile, a value bigger 

than needed may generate a loss of precision and numerical instabilities. The value of this parameter depends on the other 

parameters of the model (Song, 2015). So, we determine 𝑀𝑜 according to the parameters and size of each problem to 

avoid infeasibility.  

Since this model is multi-objective, to solve the model in GAMS software, each objective function is normalized by 

solving the model with each objective function, individually and obtaining their optimal values. Then the Weighted Sum 

method is used to turn the model into a single objective one. In this method, a weight coefficient is assigned for each 

objective function and the weighted sum of the objective functions are calculated as displayed in Equation (63): 

𝑍4 = 𝑤1 × 𝑍1 + 𝑤2 × 𝑍2 + 𝑊3 × 𝑍3                     (63) 

We employ MACBETH method to determine 𝑊1, 𝑊2, and 𝑊3. This method needs qualitative judgments for each 

objective function (Bana e Costa & Chagas⸴ 2002). We suppose that the lost sale penalty cost of defective final products 

is important and two other objective functions have the same importance.  

The obtained results in Fig (5) show that the demand points are served at least by one supplier in route 1 and one 

manufacturer in route 2. Moreover, no sub-tour is made, and each vehicle comes back to its source. Also, this Figure 

shows the supplied materials transferred through the specified routes due to the supply restrictions in situations both 

suppliers are active in each period and demonstrates the quantities of the products sent to the retailers based on their 
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demands through the specific routes. 

Table (III) shows the value of competitive variables. In this case, the suppliers prefer to remain in the competition and 

when these variables get a certain quantity, it means the suppliers could leave the competition. On several occasions, 

although the equilibrium value is more than the demand for the supply chain, the supplier prefers to remain. But 

sometimes, the cost or shortage in the available quantity makes the suppliers decide to leave the market.   

Table (IV) represents the production amount and level of the defective final products. As seen, the level of intact 

products is equal to the total amount of the final products produced, subtracting the number of defective final products in 

every period. On top of that, in this instance, the amount of the produced final product is equal to the procurement amount 

of the raw materials from the supplier.  

Table (V) shows some raw materials in the manufacturer’s warehouses as a safety stuck in every period, which is a 

function of demand. This table also shows the primary levels of the raw materials for every manufacturer, which are equal 

to the received materials from the suppliers.  

start

Production initial 

population

Determination non dominated 

rating and crowding distance 

and sorting

Data base

Max iteration

Random selection a parent

Mutation

Determination non-dominated 

rating and crowding distance

Random selection 

parents

Crossover

Determination non-dominated 

rating and crowding distance

combination

Sorting by rating and crowding 

distance

Removing additional population

Determination position and velocity

Determination repository

Updating position and velosity

Updating repository

Showing best solution

end

yes

No

 

 Fig 4.The process of the developed hybrid algorithm 
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Table II. The range of the parameters for the first sample in GAMS software 

parameter value Parameter Value parameter value parameter Value 

ξ 10 𝜀𝑖𝑠𝑡 (120,130) 𝐶𝐹𝑚 (10,12) 𝐶𝑇𝑣u′′o′′𝑡 (5,15) 

𝐷𝑀𝑟𝑠𝑡  (80,100) 𝜓𝑠𝑡  (0.1,0.2) 𝐶𝑉𝑚𝑡  (5,10) 𝑆𝐻r𝑠𝑡  (50,70) 

𝑃𝑅𝑖𝑠𝑡  (25,27) 𝐶𝑀𝑚𝑠 (30,38) 𝐹𝐶𝑚𝑠𝑡 (10,15) 𝐶𝐻m𝑠𝑡  (20,25) 

𝜃𝑚𝑠𝑡 (0.05,0.1) 𝑅𝐶𝑚𝑠𝑡 (15,17) 𝜆𝑠 (10,20) 𝑐𝑎𝑝𝑣  (50,120) 

𝐹𝑚𝑠𝑡
𝑚𝑎𝑥 (3,10) 𝑅𝑚𝑠𝑡

𝑚𝑎𝑥  (3,10) 𝐶𝑃𝑚 (110,130) 𝐶𝐻′𝑚𝑠𝑡  (10,15) 

𝐹𝑚𝑠𝑡
𝑚𝑖𝑛 (1,2) 𝑅𝑚𝑠𝑡

𝑚𝑖𝑛 (1,2) 𝐶𝑃𝑍𝑚 (110,120) 𝐶𝐻′′𝑚𝑠𝑡  (12,14) 

𝑂𝑀1 ∗ 120 𝑉𝐹𝑣 (5,10) 𝑉𝑉𝑣𝑡  (2,4) 𝑂𝑀2 ∗ 110 

𝑀𝑜 1. 2 ×102 α (0.1,1) 𝑊1 0.58 𝑊2 0.21 

𝑊2 0.21 𝑟′𝑖  (25,27) β 0.05   

Table (VI) indicates that the level of raw materials and the product's inventory are equal to zero at the end of the period 

for each manufacturer. Table (VII) illustrates the condition of the human resources of each supplier in every period 

expressing that some of the man powers are fired or hired and the number of human resources is at the optimal level due 

to the production. Table (VIII) expresses the level of sales for each retailer. These findings indicate that since the level of 

lost sales is zero, the sales are equal to the demands. Table (IX) shows the number of the supplied materials by each 

supplier. This table also demonstrates some of the remaining materials in the supplier's warehouses and the supplier 

prefers to retain this number of materials to remain in the competition. Table (X) depicts the number of required vehicles 

in every period. 

Table III. The competitive variables 

Variable 1 indexes value Variable 2 indexes value 

𝑀𝑁𝑖𝑠𝑡 

𝑖 = 1 𝑠 = 1 

𝑡 = 1 0 

𝑀𝑃𝑖𝑠𝑡 

𝑖 = 1 𝑠 = 1 

𝑡 = 1 0 
𝑡 = 2 0 𝑡 = 2 0 
𝑡 = 3 0 𝑡 = 3 0 

𝑖 = 2 𝑠 = 1 

𝑡 = 1 0 
𝑖 = 2 𝑠 = 1 

𝑡 = 1 0 
𝑡 = 2 0 𝑡 = 2 0 
𝑡 = 3 0 𝑡 = 3 0 
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Fig 5.The result of GAMS software 
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Table IV. Level of inventory, defective products, and production 

Variable1 Indexes value Variable2 indexes value Variable3 indexes value 

𝑤𝑚𝑠𝑡 𝑚 = 1 𝑠 = 1 
 

𝑡 = 1 82.463 φmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 
 

4.12 zmst 𝑚 = 1 𝑠 = 1 
 

𝑡 = 1 
 

78.340 

𝑡 = 2 68.112 𝑡 = 2 
 

3.4 𝑡 = 2 
 

64.706 

𝑡 = 3 75.872 𝑡 = 3 
 

3.7 𝑡 = 3 
 

72.078 

𝑚 = 2 𝑡 = 1 110 𝑚 = 2 𝑡 = 1 5.5 𝑚 = 2 𝑡 = 1 104 

𝑡 = 2 
 

120 𝑡 = 2 
 

6 𝑡 = 2 
 

114 

𝑡 = 3 120 𝑡 = 3 6 𝑡 = 3 114 

 

Table V. Level of safety stock and raw materials 

Variable 1 indexes value Variable 2 indexes value 

SSmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 4.73 IBmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 82.46 

𝑡 = 2 7.47 𝑡 = 2 68.11 

𝑡 = 3 7.93 𝑡 = 3 75.87 

𝑚 = 2 𝑠 = 1 𝑡 = 1 16.52 𝑚 = 2 𝑠 = 1 𝑡 = 1 110 

𝑡 = 2 14.40 𝑡 = 2 120 

𝑡 = 3 18.08 𝑡 = 3 120 

Table VI. Level of raw materials and inventory 

Variable 1 indexes value Variable 2 indexes value 

𝐼𝑃𝑚𝑠𝑡 𝑚 = 1 𝑠 = 1 𝑡 = 1 0 ZPmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 0 

𝑡 = 2 0 𝑡 = 2 0 

𝑡 = 3 0 𝑡 = 3 0 

𝑚 = 2 𝑠 = 1 𝑡 = 1 0 𝑚 = 2 𝑠 = 1 𝑡 = 1 0 

𝑡 = 2 0 𝑡 = 2 0 

𝑡 = 3 0 𝑡 = 3 0 

Table VII. Human resources conditions 

Variable
1 

indexes value Variable
2 

indexes value Variable
3 

indexes value 

Fmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 2 Rmst 𝑚 = 1 𝑠

= 1 

𝑡 = 1 10 Nmst 𝑚 = 1 𝑠 = 1 𝑡 = 1 8 

𝑡 = 2 4 𝑡 = 2 1 𝑡 = 2 8 

𝑡 = 3 2 𝑡 = 3 2 𝑡 = 3 8 

𝑚 = 2 𝑠 = 1 𝑡 = 1 2 𝑚 = 2 𝑠

= 1 

𝑡 = 1 13 𝑚 = 2 𝑠 = 1 𝑡 = 1 11 

𝑡 = 2 2 𝑡 = 2 3 𝑡 = 2 12 

𝑡 = 3 2 𝑡 = 3 2 𝑡 = 3 12 

Table VIII. Level of sale and lost sale 

Variable1 indexes value Variable2 indexes value 

SArst 𝑟

= 1 

𝑠 = 1 𝑡 = 1 89.90 Drst 𝑟 = 1 𝑠 = 1 𝑡 = 1 0 

𝑡 = 2 88.22 𝑡 = 2 0 

𝑡 = 3 93.48 𝑡 = 3 0 

𝑟

= 2 

𝑠 = 1 𝑡 = 1 92.881 𝑟 = 2 𝑠

= 1 

𝑡 = 1 0 

t=2 90.537 𝑡 = 2 0 

t=3 92.59 𝑡 = 3 0 
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Table IX. Remaining products in supplier's warehouses and the amount of supplied products 

Variable1 indexes value Variable2 indexes value 

Ωist i = 1 𝑠 = 1 𝑡 = 1 120 ωist i = 1 𝑠 = 1 𝑡 = 1 37.53 

 𝑡 = 2 120 𝑡 = 2 0 

𝑡 = 3 120 𝑡 = 3 0 

i = 2 𝑠 = 1 𝑡 = 1 110 i = 2 𝑠 = 1 𝑡 = 1 0 

𝑡 = 2 110 𝑡 = 2 41.88 

𝑡 = 3 110 𝑡 = 3 34.128 

Table X. Number of required vehicles 

 

 

 

 

E. Sensitivity Analysis 

For sensitivity analysis, the impact of critical situations (increasing cost or decreasing available material) on the model 

behavior is investigated in different scenarios with different costs. Once the cost of raw material rises due to a crisis, the 

cost of purchase from the supplier increases consequently. We investigate the impacts of the increase in these two 

parameters on the model behavior at first in Table (XI).  

Table XI. Variation of objective functions 

 Interval1 Interval 
2 

Interval3 Interval4 Interval5 Interval6 Interval7 Interval8 Interval9 

𝑃𝑅𝑠𝑡 (25,27) (25.5,27.5) (26,28) (26.5,28.5) (27,29) (27.5,29.5) (28,30) (28.5,30.5) (29,31) 

𝐶𝑀𝑚𝑠 (30,38) (30.5,38.5) (31,39) (31.5,39.5) (32,40) (32.5,40.5) (33,41) (33.5,41.5) (34,42) 

Z2 21940 22314 22706 22427 21874 21735 21653 21532 21491 

Z3 0 0 0 18 24 37 114 125 134 

According to Table (XI) and Figures (6) and (7), with an increase in the purchasing cost of raw material, the purchasing 

cost of material for the manufacturer increases. However, the model decided to stay in the competition and this trend 

continued up to one interval. Therefore, when this cost increases more than this interval, the suppliers prefer to supply 

less, and the cost function starts to decrease. 

variable indexes value 

Vvst 𝑣 = 1 𝑠 = 1 

 

𝑡 = 1 2 

𝑡 = 2 3 

𝑡 = 3 4 

𝑣 = 2 𝑡 = 1 4 

𝑡 = 2 4 

𝑡 = 3 3 
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Fig 6. Effect of increasing raw materials costs on the second objective function 

 

 

 

 

 

 

 

 

Fig 7. Effect of increasing 

procurement raw materials costs on the second function  

Figures (8) and (9) represent that the internal quantity of the supplied products increased from competitive values due 

to the increase in the prices. Accordingly, the third objective function increases. 

 

Fig 8. Effect of increasing raw materials costs on the third function 
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Fig 9. Effect of increasing procurement raw materials costs on competitive function 

According to Table (XII) and Figures (10-12), the accessibility to the raw materials may become low under a crisis; 

the lower this initial level is, the higher the amount of lost sale would be (first objective function); the cost reduces (the 

second objective function) and the provided raw materials get far from the equilibrium values. Therefore, there is no 

competition in the model.  

 

Fig 10. Effect of decreasing available inventory of raw materials on the first objective 

 

Fig 11. Effect of decreasing available inventory of raw materials on the second objective  
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Fig 12. Effect of decreasing available inventory of raw materials on the third objective 

Table XII. Effect of decreasing available inventory of raw materials 

𝜺𝒊𝒔𝒕 110 100 90 80 
Z1 214 214 958.3 2291 
Z2 21377 20192 18986 16920 
Z3 30 94.125 150 210 

In the following, we examine the parameters affecting human resources in the network. In Tables (XIII) to (XIX), 

these parameters and human resource variables are specified. It should be noted that the numbers in the tables are equal 

to the sum of the matrix numbers of the variable 

Table (XIII) shows by increasing the quantity of demand, the quantity of production increase simultaneously. So, the 

number of human resources and recruitments increases too, but the number of dismissals does not change much, because 

the network needs these human resources.  

Table XIII. Effect of demand on manpower 

𝑫𝑴𝒓𝒔𝒕           

  (30,40) (40,50) (50,60) (60,70) (70,80) 

𝑁𝑚𝑠𝑡  22 30 37 43 49 

𝐹𝑚𝑠𝑡 13 16 16 16 16 

𝑅𝑚𝑠𝑡 20 25 28 30 32 

Table XIV. Effect of penalty of lost sale on manpower 

𝑺𝑯𝒓𝒔𝒕           

  (40,50) (50,60) (70,80) (80,90) (90,100) 

𝑁𝑚𝑠𝑡  32 36 37 37 37 

𝐹𝑚𝑠𝑡 14 15 16 16 16 

𝑅𝑚𝑠𝑡 25 27 28 28 28 

Table (XIV) demonstrate increasing the quantity of lost sale penalty cost (for example in critical situation and the 

importance of commodities) grows the number of requirements, human resources and dismissals.   
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Table (XV) demonstrates by growth in the salary, the number of human resource and requirements decrease gradually. 

But the number of dismissals increases until its maximum level. 

Table XV. Effect of salary cost on manpower 

𝑵𝑪𝒎𝒔𝒕       

 (1,10) (10,20) (20,30) (30,40) (40,50) (50,60) 

𝑁𝑚𝑠𝑡  44 40 37 37 36 34 

𝐹𝑚𝑠𝑡 12 15 16 16 16 16 

𝑅𝑚𝑠𝑡 30 29 28 28 27 24 

Also, Table (XVI) shows, when the cost of dismissal enhances, the number of human resources increase, too. Because 

keeping human resources in this situation is more economical. Moreover, Table (VVII) reveals that the growing cost of 

requirements could decrease the number of requirements and fired persons. 

Table XVI. Effect of salary cost on manpower 

𝑭𝑪𝒎𝒔𝒕       

 (5,10) (10,15) (15,20) (20,25) (25,30) (30,35) 

𝑁𝑚𝑠𝑡  37 37 37 38 38 44 

𝐹𝑚𝑠𝑡  16 16 16 15 15 12 

𝑅𝑚𝑠𝑡  28 28 28 28 28 28 

Table XVII. Effect of requirement cost on manpower 

𝑹𝑪𝒎𝒔𝒕        

 (10,15) (15,20) (20,25) (25,30) (30,35) (35,40) (50,60) 

𝑁𝑚𝑠𝑡  38 38 38 38 38 38 38 

𝐹𝑚𝑠𝑡 15 15 15 15 15 15 12 

𝑅𝑚𝑠𝑡 28 28 28 28 28 28 25 

Moreover, Table (XVIII) shows that the efficiency of human resource is important and when production rate increase 

the number of required workers reduce and it can impact on cost function. 

Table XVIII. Effect of production rate on manpower 

ξ 5 10 15 20 25 

𝑁𝑚𝑠𝑡  NA 38 26 20 16 

𝐹𝑚𝑠𝑡 16 12 12 12 

𝑅𝑚𝑠𝑡 28 21 19 14 

Moreover, when the production rate is 5, the number of requirements is higher than the Maximum level and the 

problem is infeasible. 

Also, in this section, the impact of material cost in Table (XIX) is demonstrated. Results shows, the high level of 

commodities cost decreases the number of production and the number of required workers for production decrease too. 

So, we must control this cost to prevent lost sales and rising unemployment. 

In the end, the impact of penalty for lost sales on objective functions is investigated in Table (XX).  
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This investigation shows in this network penalty cost could reduce the lost sale quantity and increase production 

quantity. So, the second objective function enhances. Moreover, this penalty cost can bring the amount of supply closer 

to the equilibrium value. But this trend stops because the lost sales become zero after the seventh interval. 

F. Comparison among the results obtained from the exact and meta-heuristic algorithms 

In this section, to select the best method among the mentioned approaches to solve the large-sized instances, we 

compare the results of these algorithms with the obtained results from GAMS software. So, some samples are created and 

the answer to the  second objective function and CPU time for solving these problems are compared. For the investigation 

of the results, we use Equation (64) to calculate the proximity of the answer to the optimal answer. The results are shown 

in Table (XXI) 

GAP% =  
𝑚𝑒𝑡𝑎 𝑧2−𝑔𝑎𝑚𝑠 𝑧 2

𝑔𝑎𝑚𝑠 𝑧 2
∗ 100                            (64)               

Each sample is repeated four times. The obtained results reveal that the function of the hybrid algorithm has better 

performance in this sub-section. Moreover, CPU time for MOPSO is less than that of the other meta-heuristic algorithms, 

and CPU time for the hybrid algorithm is higher than others. Due to the quality of the solutions of the hybrid algorithm 

and the small-time difference of the solution compared to the other two algorithms, this difference can be ignored. 

Table XIX. Effect of cost of production rate on manpower 

𝑪𝑴𝒎𝒔𝒕       
(10,20) (20,30) (30,40) (40,50) (50,60) 

𝑁𝑚𝑠𝑡  38 38 38 38 34 

𝐹𝑚𝑠𝑡 15 15 15 15 14 

𝑅𝑚𝑠𝑡 28 28 28 28 26 

Table XX. Effect of penalty on objective function 

𝑺𝑯𝒓𝒔𝒕          

 (1,10) (10,20) (20,30) (30,40) (40,50) (50,60) (60,70) (70,80) (80,90) 

Z1 573.59 1103 1641 2193 1251 390 202.96 202.96 202.96 

Z2 21152 21152 21152 21152 23360 24881 25179 25179 25179 

Z3 96.34 96.34 96.34 96.42 42 42 38 38 38 

In the next step, a method (Moattar Husseini et al.⸴ 2015) is applied to evaluate the results of three different meta-

heuristics used in medium and large sizes. This method consists of some steps as follows:  

1. Keeping the non-dominated answers for three algorithms in an archive,  

2. Calculating rank, crowded distance, and the ratio of non-dominated solution  

The results are shown in Table (XXII). Also, the number of non-dominated solutions of each algorithm is shown in 

this table.  
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Table XXI. Comparison between GAMS software and meta-heuristic algorithms 

 

Quality of answers 
(%) Time (s) 

NSGA-
II 

Hybrid 
algorithm MOPSO  

Problem code Avenge 
-GAP 

Avenge -
GAP 

Avenge -
GAP GAMS NSGA_II Hybrid 

algorithm MOPSO 

1 
(𝑖 = 2; 𝑚 = 2; 𝑟 = 4; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

0.32 0.24 0.42 3.49 7.21 8.16 6.84 
0.41 0.29 0.49 3.49 7.23 8.23 6.85 
0.39 0.22 0.46 3.48 7.27 8.27 6.89 
0.37 0.26 0.48 3.47 7.18 8.29 6.87 

2 
(𝑖 = 2; 𝑚 = 3; 𝑟 = 5; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

0.54 0.42 0.61 66.12 15.18 16.24 15.15 
0.59 0.48 0.63 66.13 15.23 16.27 15.12 
0.57 0.44 0.58 66.12 15.19 16.26 15.14 
0.61 0.51 0.58 66.12 15.20 16.24 15.16 

3 
(𝑖 = 2; 𝑚 = 3; 𝑟 = 6; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

0.73 0.62 0.74 131.2 37.72 39.21 37.66 
0.78 0.67 0.79 131.0 37.71 39.18 37.66 
0.81 0.66 0.78 131.1 37.73 39.24 37.65 
0.76 0.59 0.86 131.1 37.69 39.19 37.67 

4 
(𝑖 = 2; 𝑚 = 4; 𝑟 = 5; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

0.92 0.78 0.99 429.2 95.57 97.71 95.18 
0.96 0.74 0.94 429.0 95.57 97.75 94.99 
0.94 0.74 0.99 429.1 95.61 97.71 94.98 
1.04 0.76 0.95 429.0 95.58 97.65 95.14 

5 
(𝑖 = 2; 𝑚 = 4; 𝑟 = 7; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

0.98 0.81 1.26 865.3 145.52 146.96 144.92 
1.15 0.79 1.22 865.3 145.50 146.98 145.12 
1.07 0.85 1.18 865.1 145.57 147.12 145.19 
1.05 0.85 1.27 865.1 145.54 147.14 145.14 

6 
(𝑖 = 2; 𝑚 = 4; 𝑟 = 8; 𝑣 = 2; 𝑡 = 3; 𝑠 = 1) 

2.14 1.71 2.21 881.5 151.47 153.17 151.32 
2.14 1.69 2.18 881.5 151.42 153.12 151.30 
2.11 1.69 2.19 881.5 151.46 153.14 151.32 
2.08 1.69 2.21 881.5 151.47 153.12 151.33 

7 
(𝑖 = 2; 𝑚 = 6; 𝑟 = 11; 𝑣 = 3; 𝑡 = 3; 𝑠 = 1) 

NA 

184.28 186.19 184.17 
184.24 186.08 184.15 
184.27 186.11 184.16 
184.25 186.14 184.17 

8 
(𝑖 = 2; 𝑚 = 10; 𝑟 = 20; 𝑣 = 3; 𝑡 = 3; 𝑠 = 3) 

NA 

247.59 248.78 247.23 
247.57 248.72 247.28 
247.56 248.75 247.31 
247.54 248.71 247.35 

9 
(𝑖 = 2; 𝑚 = 15; 𝑟 = 25; 𝑣 = 3; 𝑡 = 3; 𝑠 = 3) 

NA 

274.25 276.14 273.99 
274.19 276.15 273.98 
274.21 276.15 274.01 
274.23 276.13 273.99 

10 
(𝑖 = 2; 𝑚 = 20; 𝑟 = 30; 𝑣 = 3; 𝑡 = 3; 𝑠 = 3) 

NA 

300.41 300.66 298.97 
300.39 300.65 298.95 
300.38 300.66 298.94 
300.38 300.64 298.90 

11 
(𝑖 = 2; 𝑚 = 25; 𝑟 = 40; 𝑣 = 3; 𝑡 = 3; 𝑠 = 3) 

NA 

342.28 347.59 342.11 
342.24 347.54 342.27 
342.21 347.52 342.20 
342.30 347.50 342.19 

12 
(𝑖 = 2; 𝑚 = 30; 𝑟 = 50; 𝑣 = 3; 𝑡 = 3; 𝑠 = 3) 

NA 

379.14 380.07 379.11 
379.12 380.01 379.10 
379.10 380.04 379.07 
379.17 380.04 379.11 
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3. Calculating the ratio of non-dominated solution by Equation (65). 

𝑌𝑀𝑂𝑃𝑆𝑂 =  
|{𝑥∈𝐵𝑀𝑂𝑃𝑆𝑂}𝑥∈𝑈𝐵𝑁𝐷|

𝐵𝑀𝑂𝑃𝑆𝑂
   𝑈𝐵𝑁𝐷 = {𝐵(𝑀𝑂𝑃𝑆𝑂), 𝐵(𝑁𝑆𝐺𝐴_𝐼𝐼), 𝐵(𝐻𝑦𝑏𝑟𝑖𝑑)}               (65) 

𝐵(𝑀𝑂𝑃𝑆𝑂) : (The set of non-dominated answers of MOPSO) 

𝐵(𝑁𝑆𝐺𝐴_𝐼𝐼) : (The set of non-dominated answers of NSGA_II) 

𝐵(𝐻𝑦𝑏𝑟𝑖𝑑) : (The set of non-dominated answers of Hybrid)  

The results demonstrate that the solutions of the hybrid algorithm can dominate the solution of NSGA_II more. This 

shows the quality of answers and applicability of hybrid algorithm. 

Table XXII. Comparison between metaheuristic algorithms 

Problem  No. experiment Average ratio of non-dominated solution 

  MOPSO NSGA-II Hybrid algorithm 

8 

1 0.62 0.74 1 

2 0.49 0.66 0.99 

3 0.77 0.71 0.89 

9 

1 0.47 0.59 0.86 

2 0.23 0.48 1 

3 0.49 0.52 1 

10 

1 0.49 0.46 0.98 

2 0.48 0.72 0.79 

3 0.54 0.75 0.88 

11 1 0.77 0.92 0.81 

2 0.28 1 0.77 

3 0.69 0.77 0.95 

12 1 0.74 0.53 1 

2 0.55 0.47 0.94 

3 0.49 0.74 1 

G. The results of the developed hybrid algorithm 

Based on the findings in the previous sub-section, the hybrid algorithm has an appropriate and acceptable performance. 

Thus, we could apply it to solve the instances in different sizes. Table (XXIII) represents different sizes of the problem 

solved with MATLAB, whose results are shown in Table (XXIV). The number of iteration, population and probability of 

Mutation and Crossover are 100,50,0.5 and 0.5 respectively. 

Table XXIII. Size of solved problems in MATLAB 

number Size 
13 (𝑖 = 2; 𝑚 = 4; 𝑟 = 8; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

14 (𝑖 = 2; 𝑚 = 6; 𝑟 = 12; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

15 (𝑖 = 2; 𝑚 = 8; 𝑟 = 16; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

16 (𝑖 = 2; 𝑚 = 10; 𝑟 = 20; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

17 (𝑖 = 2; 𝑚 = 12; 𝑟 = 24; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

18 (𝑖 = 2; 𝑚 = 14; 𝑟 = 28; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

19 (𝑖 = 2; 𝑚 = 16; 𝑟 = 32; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 

20 (𝑖 = 2; 𝑚 = 18; 𝑟 = 36; 𝑣 = 2; 𝑡 = 3; 𝑠 = 3) 
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Given the results of the competition variables, the model uses the competitive value in some scenarios and does not 

use it in some other scenarios. In addition, 𝑀𝑃𝑖𝑠𝑡  equals zero indicate that the amount of the supplied materials is less than 

or equal to that of the competitive value.  

Furthermore, 𝐿𝑖𝑚𝑣𝑠𝑡  shows the amount of flow from the suppliers to the manufacturer ,and 𝑤𝑚𝑠𝑡  states that each 

supplier produces based on the capacity and input materials. 𝑍𝑚𝑠𝑡 is also equal to the amount of the products minus the 

defective final products. These results reveal that this interval is close to the produced goods. One of the objectives of this 

study decreases defective products. Hence, being close to this interval expresses that the waste is low in this network.  

Moreover, the results of the variables 𝐿′𝑚𝑟𝑣ℎ𝑠𝑡, 𝑆𝑆𝑚𝑠𝑡, and 𝐼𝐵𝑚𝑠𝑡  indicates that the manufacturers produce their entire 

raw materials. A part of the model decides on human resources levels and 𝐹𝑚𝑠𝑡 , 𝑅𝑚𝑠𝑡 . and 𝑁𝑚𝑠𝑡  implies that they are 

considered based on the production of the manufacturers.  

Additionally, our findings reveal that the variables 𝜑𝑚𝑠𝑡 , 𝑆𝐴𝑟𝑠𝑡, and 𝐷𝑟𝑠𝑡  have the permitted value in each instance. 

Furthermore, the results display that on several occasions, 𝛺𝑖𝑠𝑡  is equivalent to the competitive amount, and sometimes, 

it is lower than it. Also, 𝜔𝑖𝑠𝑡  shows that in some instances, the supplier preferred to buy more than the required amount 

to remain in the competition. 

Ultimately, 𝑉𝑣𝑠𝑡 demonstrates the number of vehicles and it takes the value according to the transported materials and 

products. Furthermore, in this problem, the second objective function (cost) has a conflict with the first objective function 

(minimizing lost sale) shown in the charts Fig (13). In this regard, we assume that the percentage of failure is equal to 

zero. On the other hand, according to Fig (14), the second objective function has a conflict with the third objective 

function. Based on our research, if the amount of the supplied materials is close to the competitive values, the amount of 

the third objective function decreases. On the contrary, the amount of the second objective function increases due to the 

increase in procurement and cost.  

 

Fig 13. Relation between 1st and 2nd objectives                         
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Fig 14.Relation between 3nd and 2nd objectives 

Table XXIV. Results of hybrid Algorithm for large instances 

 13 14 15 16 17 18 19 20 

𝑴𝑵𝒊𝒔𝒕 (0,7.14) (0,18.9) (0,27.2) (0,36.5) (0,41.58) (0,47.06) (0,56) (0,61) 

𝑴𝑷𝒊𝒔𝒕 0 0 0 0 0 0 0 0 

𝑳𝒊𝒎𝒗𝒔𝒕 (0,173.92) (0,281) (0,337) (0,428) (0,442) (0,458) (0,493) (0,536) 

𝒘𝒎𝒔𝒕 (184.5,234.23) (58,175) (54,240) (58,238) (110,342) (128,358) (145,373) (116,386) 

𝒁𝒎𝒔𝒕 (175.28,222.25) (55.2,166.25) (49.14,228) (55.1,226.1) (104.5,324.9) (121.6,340.1) (137.75,354.35) (110.2,366.7) 

𝑳′𝒎𝒓𝒗𝒔𝒕 (0,118.2) (0,59.08) (0,112.4) (0,59.57) (50,110.78) (52.3,59.9) (50,59.75) (52.3,114.67) 

𝑺𝑺𝒎𝒔𝒕 (16.34,17.01) (4.5,18.74) (4.3,21.23) (5.1,27.2) (8.4,33.2) (9.1,42.4) (10.08,49.5) (12.2,50.1) 

𝑰𝑩𝒎𝒔𝒕 (184.5,234.23) (58,175) (54,240) (58,238) (110,342) (128,358) (135,373) (116,386) 

𝑭𝒎𝒔𝒕 (2,3) (2,6) (2,7) (2,6) (2,7) (2,8) (2,8) (2,7) 

𝑹𝒎𝒔𝒕 (2,5) (6,13) (4,18) (3,17) (3,5) (4,7) (2,9) (5,8) 

𝑵𝒎𝒔𝒕 (19,24) (6,18) (5,25) (6,24) (11,35) (13,36) (14,36) (11,39) 

𝝋𝒎𝒔𝒕 (9.2,11.98) (2.68,16.22) (2.79,24.91) (3.14,23.3) (8.7,32.1) (9.12,36.58) (10.24,35.11) (11.3,38.6) 

𝑺𝑨𝒓𝒔𝒕 (45.24,59.48) (51.1,59.08) (48.30,59.68) (47.25,59.7) (50,59.78) (46.5,59.9) (48.68,59.75) (52.3,59.67) 

𝑫𝒓𝒔𝒕 (1.19,5.84) (0.87,5.24) (0.42,6.3) (0.12,7.8) (0,7.2) (0,0.53) (0,0.67) (0,0.81) 

𝜴𝒊𝒔𝒕 (167.23,173.92) (185,281) (208,337) (225,428) (152,342) (178.2,358) (147.2,373) (120,386) 

𝝎𝒊𝒔𝒕 )0,12.5) (0,15.8) (0,11.30) (0,17.5) (0,25.5) (0,22.4) (0,20.13) (0,27,2) 

𝑽𝒗𝒔𝒕 (1,7) (1,10) (0,13) (0,15) (1,19) (1,21) (0,23) (0,25) 

Z1 5.99*103 8.01*103 9.5*103 1.01*104 1.45*104 1.7*104 1.95*104 2.26*104 

Z2 6.8*104 7.05*104 8.9*104 1.2*105 1.34*105 1.48*105 1.56*105 1.78*105 

Z3 4.3*10 6.97*10 1.3*102 1.9*102 2.3*102 2.5*102 3.10*102 3.3*102 
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V. Conclusions And Future Research Directions 

Given the importance of supply chain management to companies, this study considered a multi-echelon supply chain 

with a competition between the suppliers and crisis, simultaneously. The results shed light on the fact that integrating 

production and distribution could help to reduce defective and additional products, increase the quantity level of servicing, 

and decrease the holding cost. Moreover, this integration could optimize the number of required vehicles and the amount 

of needed material and have several economic benefits for companies. Furthermore, tackling the vehicle routing problem 

decreases the cost of transportation for a distribution company. Moreover, critical cases in this problem were shown with 

an increasing cost or decreasing available amount of raw material. Our results revealed that the model remained in 

Stackelberg competition at a specific level. After this level of cost or the available amount of raw material, each supplier 

decided to supply the amount of raw material that was different from the competitive value. In addition, the model aimed 

at minimizing the costs, defective products, lost sales, and competitive differences. The findings herein exhibited that the 

lost sale and cost’s function has a conflict. This opposing relationship was also observed between the cost function and 

competitive function.  

To solve the model, it was primarily solved with GAMS software and the results showed that we could use this 

software for models with small instances in a reasonable time. However, due to the complexity of the NP-Hard model, 

we utilized meta-heuristic algorithms. The results of GAMS software were compared to those of MOPSO, NSGA-II, and 

the combination of them. This comparison revealed that the hybrid algorithm demonstrated a better solution. Thus, we 

employed a hybrid algorithm for solving eight large instances and the associated results showed the reasonable 

performance of this algorithm. Further research is recommended to focus on the following areas to overcome the 

limitations of this study. For example, considering different objective functions, a different method of competition, and 

different types of final products could be taken into account for ameliorating the model. Moreover, attending to the risk 

concept or other uncertainty approaches, such as robust or fuzzy optimization approaches, could help to develop the study.  
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