

Manuscript Received:17- August -2021 & Revised: 3- Nov -2021 & Accepted: 5- December -2021

ISSN: 2423-3781

DOI: 10.22070/JQEPO.2016.348

A new algorithm for solving the parallel machine scheduling problem to

maximize benefit and the number of jobs processed

Mohammad Taghi Rezvan *1 , Hadi Gholami 2 , Reza Zakerian 3

1
Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

2
Department of Computer Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

3
Department of Computer Engineering, Faculty of Mahmoudabad, Technical and Vocational University,

Mazandaran, Iran

* Corresponding Author: Mohammad Taghi Rezvan (Email: rezvan@kashanu.ac.ir)

Abstract – This paper provides a mathematical model and a bi-phase heuristic algorithm for the uniform

parallel machines scheduling problem to maximize benefits and the number of jobs processed before their

due dates as the weighted objective function. In the first phase of this heuristic, named “the neighborhood

combined dispatching rules algorithm” (NCDRA), an initial sequence by the segmentation of the dispatching

rules (DRs) is generated. Then, the output sequence is segmented, and required efforts are made to derive a

sequence combined with these rules to improve the objective. The second phase involves a local search in

which operators such as swapping, insertion, and reversion are concurrently implemented there on. The

proposed algorithm is examined on four classes of problems with 50, 100, and 1000 jobs on 5, 10, and 50

machines, respectively. Results obtained by NCDRA and a Simulated Annealing (SA) algorithm developed on

problem instances indicate that the NCDRA provides high-quality results on objective function for solving

problems in different scales.

Keywords– Uniform Parallel machines, Benefit, Number of jobs processed, Heuristics.

I. INTRODUCTION

Manufacturing resources are limited in capacity. In the modern competitive world, effective scheduling is of prime

importance for achieving desirable production capacities because a proper production schedule will ensure rapid

response to customer demands, timely supply of plant raw material and spare part requirements, reduced machine idle

times, and decreased waste, all of which ultimately lead to improved plant productivity (Phanden et al. 2013).

The general parallel machine scheduling problem is essential because each workstation in this problem might

involve several identical machines. It involves a set of independent jobs on parallel machines or processors that operate

toward a certain objective of job completion time. The set of jobs are independent of each other, and each is to be

processed on one of the machines available. Furthermore, each machine is capable of performing one job at a time, and

each job can be processed only on one machine. Most research on parallel machine scheduling is concentrated on the

optimization of a single criterion such as total/mean completion time, total weighted completion time, makespan and

total tardiness penalties, the total number of tardy jobs, the number of jobs completed, and total revenue obtained from

http://jqepo.shahed.ac.ir/

116 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

completed jobs (Pinedo, 2012). To reflect the needs of the competitive environment, need to be considered more than

one criterion since they are generally contradictory.

The problem addressed in this paper involves a set of uniform parallel machines to process a set of jobs. The

attributes of each job are the release time, due date, and value/revenue called benefit in this paper. The processing time

of the job is the time interval between its release time and due date. The processing of each job on a machine can be

started at its release time and completed until its due date. In this case, the benefit of a job is obtained.

The motivation of this paper is to provide a practical foundation in permutation-based problems for researchers to

improve the upper bound of the problems in a simple way. In cloud computing, the number of completed jobs is the

desire of the client and affects the service provider's brand at long-term objective while the benefit is fairly a short-term

objective of a service provider. Since increasing benefits is not necessarily in line with enhancing the number of jobs

completed, service providers must balance between two objectives to survive in a competitive environment (Huang et

al. 2020). The berth allocation and quay cranes scheduling problems in container terminals are the most important

issues that should be considered by port managers (Hoseini et al., 2018). Optimizing the allocation of berths and quay

cranes to incoming ships, in addition to the satisfaction of shipping liners, will also lead to more revenue for container

terminals.

Previous studies on the parallel machine scheduling problem with objectives of revenue and the number of jobs

processed as separate and simultaneous are limited to several below researches. Rojanasoonthon et al. (2003) proposed

a heuristic based on dynamic programming (DP) and a greedy randomized adaptive search (GRAS) procedure for the

uniform parallel machines scheduling and the objective of maximizing the weighted number of jobs processed with

strict priority enforcement. Bard and Rojanasoonthon (2006) developed a branch-and-price algorithm for the uniform

parallel machines scheduling problem with multiple time windows and job priorities to maximize the weighted number

of jobs completed. Islam et al. (2008) proposed a heuristic algorithm based on urgency and processing times of jobs for

the parallel jobs scheduling problem in a multi supercomputer centers system to maximize revenue gained by the

resource provider. Juraszek et al. (2009) modeled the problem of scheduling identical parallel machines to maximize

revenues and solved it using a simulated annealing (SA) algorithm. They also compared their results with those

obtained from the branch & bound algorithm and the list scheduling approach. Chung et al. (2009) proposed

mathematical programming and two network algorithms for the identical parallel machines scheduling problem with

sequence dependence setup time, product-type-dependent processing time, machine capacity, and multiple product

profit to maximize the total profit in the thin film transistor liquid crystal display manufacturing industry. Gholami et al.

(2019) solved the problem of scheduling uniform parallel machines to maximize revenues and the number of jobs

processed using such metaheuristics as genetic algorithm (GA), Tabu Search, SA. They tested their algorithms on large-

size problems with up to 50 machines and 500 jobs. Croce et al. (2021) analyzed Parallel machine scheduling with the

minimum number of tardy jobs and solved it by exponential-time approximation algorithms and fixed-parameter

tractable exact algorithms.

Some algorithms proposed for parallel machine scheduling problems use dispatching rules (DRs). To schedule jobs

on identical parallel machines to minimize the makespan, Chen and Vestjens (1997) proposed the longest process time

(LPT) rule, and Laha and Gupta (2018) applied the LPT rule long with the job-interchange mechanism to generate the

initial population of an improved cuckoo search algorithm (ICSA). Yang-Kuei and Chi-Wei (2013) employed DRs for

unrelated parallel machine problems with release times to obtain rapid optimum solutions. These rules had suitable

performance for problem instances of all sizes. Joo and Kim (2015) used three DRs in hybrid GAs for the unrelated

parallel machine scheduling problem with sequence-and machine-dependent setup time to minimize the total

completion time. Lee (2018) developed a DR and an iterative greedy meta-heuristic for scheduling identical parallel

machines to minimize total weighted completion time. Due to the proper performance of DRs, this paper considers a set

of well-known DRs and puts together different DRs based on their efficiency at each segment solution.

For parallel machine scheduling problems, local search (LS) techniques are sometimes used combined with other

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 117

algorithms to improve their effectiveness. Fanjul-Peyro and Ruiz (2010) proposed two consecutive simple LS named

insertion and interchange to enhance the objective function. Mensendiek et al. (2015) introduced a new mechanism for

LS by combining shift and swap moves and a one-point crossover operator. Their algorithm examines the neighborhood

of a solution until no further improvement is achieved. Bitar et al. (2016) developed the mutation operator and the

selection of jobs randomly based on uniform law. Kowalczyk and Leus (2017) presented a scheme based on the swap

procedure. This scheme keeps the jobs processed on each machine in separate lists. It then puts the job of each list in

another list until the objective function is improved. Nattaf et al. (2019) proposed a neighborhood structure based on

two different ways of intra-change insertion and inter-change insertion that selection and insertion of jobs are random.

Thus, the use of random-based methods for selecting and moving jobs and machines is presented in the literature. The

use of three co-operative operators that randomly create neighbors is a scheme used in this paper to avoid a local

optimum. The literature reviewed in this study is summarized in Table I concerning the type of objective functions

parallel machines, scheduling constraints, the solution method, and the scale of the solved problem.

Based on the first section of Table I, the research on parallel machines scheduling problem with the objectives of

maximizing benefits and the number of jobs processed is still rare, and also their performance on different problems

show the proposed algorithms are not effective on large scale problems. Thus, the development of algorithm

outperformed needs to be further studied. Based on the second section of Table I, DRs and LS are widely used in

researches. This paper presents an innovative algorithm by combining DRs and exploiting LS as well as considering

subtleties such as filling in the gaps between jobs. This algorithm is a heuristic algorithm which, unlike meta-heuristic

algorithm such as SA, yield more accurate solutions and also it generates one specific solution in each run.

This paper proposes a mathematical model and a heuristic bi-phase algorithm to maximize the benefits and the

number of jobs processed simultaneously that exhibits an acceptable efficiency despite its simplicity. The algorithm in

its first phase employs well-known DRs, adopts a particular method for segmentation each DR, selects the segment of

the highest quality from each rule that suits the objective function, and sequences the segments in order to derive a

strategy that leads to solutions superior to those obtained from the DRs. The second phase involves the concurrent

implementation of three cooperate operators and their contribution to improving the solution. To assign the jobs to the

machines, it also applies policies to improve the objective function.

The main contribution is to propose a heuristic algorithm that differs significantly from the literature methods by not

repeating the phases, and each of them is executed only once. In this way, in addition to providing competitive results, it

can also save run-time. This work presents an idea to check the sequences of schedules and separate the best sub-

sequences at different time intervals as an optimal local solution and combine them as a new schedule. Furthermore, a

procedure is developed for online filling of the gap between jobs in order to improve criteria in multi-objective

problems.

Table I. Comparisons among the related literature and this paper

 Publications
(year)

Type
Objective(s)

Parallel
Machine

types
Constraints Algorithms

Performance on
Problem Scale

Problem

viewpoint

Rojanasoonthon

et al.(2003)

Max

Weighted number

of jobs processed

Uniform
Strict priority

enforcement

DP & Greedy

Randomized

Adaptive Search

Up to 6

machines and

418 jobs

Bard and

Rojanasoonthon

(2006)

Max

Weighted number

of jobs processed

Uniform
Multiple time windows

and job priorities
Branch & Price

Up to 6

machines and

100 jobs

Islam et al.

(2008)

Max

Revenue
Identical

Dynamic arrival time of

jobs
Heuristic

Up to 10000

jobs

Juraszek et al.

(2009)

Max

Revenue
Identical

Release time and due

date of jobs
MIP and SA

Up to 20

machines and

300 jobs

118 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Continue Table I. Comparisons among the related literature and this paper

 Publications
(year)

Type
Objective(s)

Parallel
Machine

types
Constraints Algorithms

Performance on
Problem Scale

Problem

viewpoint

Chung et al.

(2009)

Max

Profit
Identical

Sequence dependence

setup time, product-type-
dependent processing

time, machine capacity,

and multiple product
profit

MIP and two
network

algorithms

Up to 120 jobs

Gholami et al.

(2019)

Max
Revenues &

The number of
jobs processed

Uniform
Release time and due date

of jobs
GA, TS, & SA

Up to 50

machines and
500 jobs

Croce et al.
(2021)

Min
Number of tardy

jobs

Identical
Due date of jobs and non-

preemptively

Approximation
and exponential

algorithms

-

Solution

methodology

viewpoint

Chen and
Vestjens (1997)

Min
Makespan

Identical Release times Online LPT rule

The number of

machines and
jobs is

unknown

Fanjul-Peyro,

Ruiz (2010)
Min Makespan Unrelated Dynamic arrival time Iterated greedy LS

Up to 50
machines and

1000 jobs

Yang-Kuei and
Chi-Wei (2013)

Min

Makespan & Total
weighted tardiness

Unrelated Release times DRs
Instances of all

sizes

Joo and Kim
(2015)

Min
Total completion

time

Unrelated
Sequence-and machine-

dependent setup time
3 DRs in hybrid

GAs

Up to 10
machines and

100 jobs

Mensendiek et

al. (2015)

Min

Total tardiness
Identical Fixed delivery dates

Hybrid GA and

TS

Up to 5

machines and
50 jobs

Bitar et al.

(2016)

Min

The weighted flow
time & Max the

number of jobs
processed

Unrelated Auxiliary resources
LS in Memetic

algorithm

Up to 8
machines and

200 jobs

Kowalczyk &
Leus (2017)

Min
Makespan

Identical Conflicting jobs Exact algorithm
Up to 20

machines and

100 jobs

Laha and Gupta

(2018)

Min

Makespan
Identical Setup times of jobs

Improved cuckoo

search

Up to 10

machines and
100 jobs

Lee
(2018)

Min

Total weighted
completion time

Identical

Setup adjustment on each

machine and due date of
jobs

DR and an
iterative greedy

Up to 15

machines and
300 jobs

Nattaf et al.
(2019)

Min
 completion times

& The number of
machine

disqualifications

non-
identical

Time constraints on
machine qualifications

MIP and two

improved
heuristics

Up to 5

machines and
70 jobs

Our Paper

Max

Revenues &
The number of

jobs processed

Identical &
Uniform

Release time and due date
of jobs

Heuristic based on

DR, segmentation,
and LS

Up to 50

machines and
1000 jobs

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 119

The rest of the paper is organized as follows. Section 2 presents the problem formulation with a mixed integer

programming (MIP) model. Section 3 develops the algorithm for solving the problem and presents its specifications to

be supplemented with small illustrative examples that provide a better understanding of the proposed algorithm. Section

4 describes the specifications of the problem instances, tunes the algorithm‟s control parameters, and examines the

performance of the components of the algorithm on problem instances. Moreover, the computational results obtained

from the algorithm developed in this study are compared with those obtained from SA. Finally, conclusions will be

provided in Section 5.

II. PROBLEM FORMULATION

Scheduling problems are designated by the standard three-part naming system as in , in which the initial α

refers to the type of scheduling problem, β denotes the scheduling constraints and details, and γ represents the objective

function (Graham et al. 1979). The problem investigated in this paper is denoted by ∑ ⁄⁄ | |

where and are release time and due date, respectively. ∑ denotes the total benefit for processing jobs and is

its weight. | | denotes the number of jobs, processed within their intervals in schedule and also

 is its weight. In fact, this problem involves a set of parallel uniform machines that differ

in their speeds so that the speed of is denoted by . Let us assume that there is a set of independent jobs,

 , and that each job has a processing time of . If is processed on , it takes ⁄ actual

time units to complete the process. In fact, is the actual processing time of job if it is assigned to machine . Each

job also requires a single operation with a release time of and a strict due date of . If job is

processed within the closed interval , then a benefit is earned. Since no preemption is allowed in the processing

of a job, the completion time, , of job on machine may be calculated as follows: ; where,

represents the start time of job on machine .In this paper, jobs cannot be interrupted during their processing and

denotes the makespan of schedule

Assume that and and denote the set of all jobs processed on and , based on

their completion times, respectively. If and , then the critical

sequence of schedule can be shown as follows: , where

 , and all the jobs are processed within their intervals in schedule . In , given that

 , it is said that is in the first position and is in the second position. According to this, and

represent the completion time of job and that of the one on the th position of machine , respectively. | | indicates

the number of jobs performed in schedule .

In the following, a mixed-integer programing (MIP) model is presented for solving small-sized instances of the

problem. In this model, binary variables , represent the fact of assigning job to machine on th position. ́ and

 are the starting times and the processing time of th position on machine , respectively. Binary variables show

the tardy jobs which are not run on any machine. Besides, is the number of jobs assigned to machine and is a

large number.

 ∑

 (1)

 ∑

 (2)

120 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

∑∑

(3)

∑

 (4)

∑

 ́ (5)

 ́ ∑ ()

 (6)

 ∑

 (7)

 ́ ́ (8)

∑∑

 (9)

 ́ (10)

 (11)

 ́

(12)

The objective functions (1) and (2) maximize the total benefit for processing jobs (∑) and the number of

jobs processed (| |), respectively. Constraints (3) guarantee each job is not assigned to more than one position on

each machine. Constraints (4) ensure that each position can be occupied on each machine by at most one job.

Constraints (5) and (6) define the processing times for each job is started after its release time and finished before its

deadline. Constraints (7) describe the processing time of each position on each machine. Constraints (8) ensure that two

consecutive jobs do not overlap. Constraint (9) determines the job is tardy that it does not have a position on one

machine. The completion time of each job is computed by constraints (10). Constraints (11) specify if each job is a

tardy job or not. Finally, constraints (12) establish the binary restrictions and and also determine the non-

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 121

negativity of ́ , and .

Maximizing total revenue at identical parallel machine scheduling problem is NP-hard (Juraszek et al. 2009); thus,

the investigated problem is also NP-hard. Using this formulation, it could be solved using CPLEX of GAMS software

for very small-sized instances.

III.THE PROPOSED ALGORITHM

In this section, an algorithm called the neighborhood combined dispatching rules algorithm (NCDRA) with the

general structure shown in Figure 1 is proposed for solving the problem ∑ | |⁄⁄ .

Figure 1. The general structure of NCDRA

NCDRA consists of two phases. The first focuses on determining an initial sequence of jobs, hereafter called “the

sequence search (SS) phase”, which itself comprises two stages. The first stage involves segmentation of jobs; in each

segment, the DRs are used to generate an initial scheduling sequence for each DR. In the second stage, a new sequence

is generated by selection and aggregation of the best segments by applying the best segment selector (BSS) procedure

on sequences obtained in the first stage.

The sequence of jobs resulting by Phase I probably corresponds to a local optimum. In the second phase, it is

supposed to find a better sequence in the neighborhood of this optimum. This way, the algorithm tries to achieve a

global solution in the second phase. Hence, phase II is called the “local search (LS) phase” whose general goal is to

drive the local optimum obtained in Phase I toward a global optimum. The limitation of the proposed algorithm is that it

requires information that is not available in dynamic schedulers. In fact, the proposed algorithm is a static scheduler.

A. Sequence search phase

The initial sequence plays a vital role in accelerating the convergence of the algorithms used in solving scheduling

problems because it saves the time spent in searching problem spaces that do not ultimately lead to improved solutions

(Nattaf et al., 2019). From their entry, jobs may be classified according to such specifications as release time, due date,

benefit, and process time. Once the non-identical DRs are combined, a proper sequence may appear at a point in the

problem space different from previously detected ones. It follows then that phase I reduces the search space for the

optimal solution and considerably improves the algorithm's effectiveness by finding the upper bound.

1. Dispatching Rules

 Dispatching Rules (DRs) are highly desirable in the field of scheduling for allocating unscheduled jobs to machines.

The different types of these rules are based on processing time (PT), due date (DD), neither DD nor PT, and

combinations thereof. There exist 11 DRs, alternatively called „schedulers‟, as listed below, out of which Nos. 9

through 11 are dynamic schedulers (Raghu and Rajendran, 1993) and the rest are static schedulers (Kaban et al., 2012):

Phase I:

Apply the dispatching rules as described in Section 3.1.1

Apply the best segment selector procedure as described in Section 3.1.3

Phase II:

While termination condition has not been satisfied Do

Apply the neighborhood search as described in Section 3.2

End-While

122 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

1. Earliest Start Time (EST), according to which jobs are sorted in ascending order of their release times, .

2. Earliest Finish Time (EFT), according to which jobs are sorted in ascending order of their processing times, .

3. Longest Benefit First (LBF), according to which jobs are sorted in descending order of their benefits, .

4. Longest Processing Time First (LPF), according to which jobs are sorted in descending order of their processing

times, .

5. Earliest Due Date First (EDF), according to which jobs are sorted in ascending order of their due dates, .

6. Ascending order of Due Date Minus Release Time (ADMR), according to which jobs are sorted in ascending order

of the result of their due dates minus their release times, .

7. Descending order of Due date Minus Release time (DDMR), according to which jobs are sorted in descending order

of the result of their due dates minus their release times, .

8. Maximum Benefit and Minimum of Release time minus Processing time (MBMRP), according to which jobs are

sorted in descending order of { } .

9. Largest Benefit Minus Processing time (LBMP), according to which jobs are sorted in descending order of the

results of their benefits minus their processing times .

10.Min Slack, according to which jobs are sorted in ascending order of
 .

11.Max Slack, according to which jobs are sorted in descending order of
 .

These rules are executed to select jobs for processing. In case a rule assigns the same priority to two jobs, then

selection between the two competing jobs will be based on either minimum due date or maximum benefit. The

segmentation method (SM) was used to improve most of the DRs in terms of their performance toward the maximized

benefit and the number of jobs processed. In fact, SM inspired by the divide-and-conquer method shows its

effectiveness. However, the advantages of segmentation in DRs can be exploited in cases with not too few jobs. Since

the number of jobs and their specifications are given in advance of the scheduling process, SM places jobs in segments

according to their release times, and the segments are submitted to machines according to the current DR. The number

of jobs in each segment is designated by njb.

As an illustrative example, let us assume that our proposed algorithm is to schedule 50 jobs in a system. If further

SM is to place them in 10 segments (njb =10), there will then exist five segments. It might, however, be the case that

each segment length fails to accommodate exactly 10 jobs since batching jobs are based on their release times so that if

two jobs have the same release times, then they cannot be placed in two distinct segments.

2. Machine Selection

Once jobs have been sequenced, they are allocated according to their sequence to a machine from among those

available. Clearly, machine speed will affect processing time due to differences in machine speeds; hence, machine

selection will have other significant impacts on increases in both criteria of the objectives function (Cao et al., 2005). It

is, therefore, evident that these criteria can be improved if priorities are considered that will lead to the selection of the

machine most appropriate for processing the job in question. For this purpose, three policies are used as machine

selection policies (MSPs):

Policy A: According to this policy, machines are selected according to the ascending order of their processing speed.

For a given job Jj, the processing time is computed for the machine with the least speed; i.e., . If

 , the job will be processed on ; otherwise, the same computations will be performed for . This

procedure will be continued for all machines up to .

Policy B: The processing times for a selected job Jj on all the machines in the set are computed to be added to

 and di is subtracted from the sum obtained ‒ that is,

 . Then, the machine with

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 123

the least value of
 is selected for processing the job. It must, however, be noted that the result

of the subtraction should be a non-negative value; otherwise, the job will expire.

Policy C: The machine with the shortest processing time will be selected based on the sum of
 and job

Jj processing time computed for all the machines in the set .

Example 1 below may be used for a better illustration of the SM described in Section (3.1.1.) and the machine

selection policies outlined above.

Example 1: The specifications for 24 jobs to be processed on two uniform parallel machines

 operating at speeds and are reported in Table II. For instance, job j8 enters the system

when the time unit is 5 () and requires a machine for four units of time if it is to be processed on

). If, further, the processing is completed by the time unit 21 (), then the benefit earned will be equal to 15

().

Let us now assume that LBF is adopted as the scheduler and policy B as MSP while segment length accommodates

four jobs (i.e.,), then the jobs are grouped into the classes of A, as the class of very small problem that includes

 , and B, as a small class that includes . Class A is expected to have three segments,

but this will be the maximum number of segments. Job processing in Class A shows that segmentation of jobs yields

three segments, including the set in Segment 1, in Segment 2, and in

Segment 3. Evidently, there is a change in segment lengths since segment length must be 4. A job batching is based on

their release time. So, segment lengths change if jobs at the boundary between consecutive segments have equal release

times. It is obvious that in Segment 1 is located at a boundary position while . Thus, is located in

Segment 1, as is . Changes in the length of the last segment due to the inadequate number of jobs relative to segment

length is quite obvious. If jobs were to have equal processing times, then the number of segments

would reduce to two, and the change in segment length would occur in this case, too, so that Segment 1 would have a

length of 5 and Segment 2 a length of 7.

Table II. Specifications of the jobs in Examples 1

1 6 0 10 19 13 5 11 19 4

2 9 0 20 7 14 7 14 23 10

3 9 1 29 16 15 3 18 33 1

4 3 2 10 18 16 4 19 33 13

5 6 2 18 9 17 4 20 32 14

6 7 4 27 2 18 9 21 30 3

7 6 4 20 15 19 5 21 31 9

8 4 5 21 15 20 4 22 36 16

9 8 7 23 14 21 5 25 36 15

10 7 10 25 14 22 9 25 42 9

11 6 10 32 4 23 6 30 37 15

12 10 11 34 5 24 2 31 49 19

124 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

If the segments are submitted to machines one after the other, then ∑ , | | , and

 . This is while failure to employ SM would yield ∑ ,

| | , and .

Using the other MSPs in the absence of SM would lead to the same results as obtained under policy B; employing

SM, however, would lead to a number of jobs completed equal to 9 under either policy but with a benefit equal to 95.

The Gantt charts represent this situation in Figure 2.

In Figure (2a), , , , and and in Figure (2b), , , , and

 .

Let us assume that and when processing job in Class B. Employing SM leads to sustained benefit

and, thereby, to an increased number of jobs completed; in other words, ∑ and | | .

Numerical results showed that the SM exhibited a satisfactory performance when employed for problems with very

small numbers of jobs (say, 12) but that it was not cost-effective with a small problem size (say, 24).

It is clear that by segmentation of jobs into several segments before implementing a DR on each, the SM assumes

that the whole problem is the segment for which it is trying to sequence jobs.

Figure 2. Gantt charts for Example 1; a): LBF with segmentation, and b): LBF without segmentation

3. Best Segment Selector procedure

Each DR implemented in a segment seems to have a desirable performance only in a specific time period in terms of

improving the objective function. It follows then that if policies are adopted that could segment together good quality

segments of sequences of jobs that have been allocated to machines by each DR, the outcome would guarantee a

desirably optimized objective function. This idea is realized by the BSS procedure that selects the best segments in each

schedule and recombines them into a unified schedule to be fed into the system. This will lead to a desirable search

divergence so that the search procedure is relaxed from the local space to detect other possible solutions in the

neighborhood as well. Indeed, the BSS initiates from different points to explore possible solutions to the problem and

scan enough of the problem search space. Moreover, this procedure creates an upper bound for the problem that

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 125

prepares the grounds for the second phase of the NCDRA to get closer to the lower bound. The BSS procedure is

accomplished through the following steps:

Step 1: The jobs scheduled by each DR are sorted in an ascending order of their start times to process by the set of

machines and placed in .

Step 2: The sum of process end times under all the DRs is calculated, and the average end time is obtained to be divided

by the number of segments, rounded to the next higher unit, and used as the timespan for each segment. The

boundary between two consecutive segments in each rule is obtained based on the start time to process jobs in

 ; the number of segments is designated by .

Step 3: The timespans obtained from Step 2 are overlaid on the sequence obtained from Step 1. The corresponding

segments (i.e., timespans) in each scheduler are compared to select the best segment in a sequence that suits

improving the objective function and then designated as BSSseq.

For illustration, if np = 3 in Step 3, the first segments from all the schedulers are compared to find the one that leads

to the best value of the objective function; this is then transferred to BSSseq. It will then go on to compare the second

segments from the schedulers in search of the best to be transferred to BSSseq. Prior to the comparisons, a function

named edt() is initially implemented for all the second segments from all the schedulers in order to remove repeated

jobs in each scheduler (that is, the second segment) already transferred to BSSseq (that is, the first segment). The same

procedure is performed on the third segments, the best of which is ultimately transferred to BSSseq. Clearly, the

function edt() avoids repeated occurrences of jobs in the BSSseq. The jobs not assigned to the BSSseq after Step 3 will

be transferred to a sequence called UnAssSeq; in other words, .

Step 4: The jobs in BSSseq are assigned to machines according to one of the MSPs.

Step 5: If gaps appear on machines, jobs are selected from the UnAssSeq to fill the gap. A gap on Mi may be defined as

an idle time between the end process time of one job and the start time of the next on Mi. Job Ji from UnAssSeq

is transferred to the gap on Mi if and , where GST and GET represent the gap start

time and end time, respectively.

Example 2: Based on the data of Example 1, assume , , , , , and

 . When following the step-by-step procedure of BSS, the five DRs of LBF, EST, MBMRP, and Min Slack are

used.

In Step 1, the jobs scheduled by each DR on are sorted in an ascending order of their start process times to

produce the sorting . In the case of jobs with identical start times, the one job is prioritized that is to be processed

on a machine with a smaller subscript. In other words, if and , then has priority over . Thus, the

five rules above schedule jobs as follows:

 , ∑ , | |

 , ∑ , | |

 , ∑ , | |

 , ∑ , | |

 , ∑ , | |

It is clear that MBMRP yields the highest benefit, but the number of jobs completed will be equal to those scheduled

by EST and LBF.

126 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

In Step 2, is broken up into five segments, and each is compared with its corresponding one based on the

benefits earned and the number of jobs completed. In order to determine the appropriate timespan for each segment, the

end times obtained for the five DRs (schedulers) are averaged, and the average value thus obtained is divided by np.

Given that

 must be used to compute the end time obtained from each rule when two

competing machines are available; we will have:

 , , , , and

Thus, the sum of the end times of all rules will be equal to 197; dividing this quantity by the number of DRs (5 in

this example) yields 39.4. Subsequently, the length of each segment on is equal to 8 (⌈ ⌉). The

timespans for segments will be as follows: [0-8], (8-16], (16-24], (24-32], and (32-]. According to Step 3, the jobs

scheduled by each rule are allocated to determining timespans. In Figure 3, the corresponding segments under the

different rules are shown with the same color. For LBMP, for instance, are placed in the first segment, in

the second, in the third, and in the fourth. Clearly, the fifth segments of both LBMP and Min Slack

rules are void, indicating that no job processing is initiated in their fifth timespans.

Figure 3. Segmentation of the DRs and the BSSseq in Example 2.

After segmentation, the corresponding segments must be compared to find the best segments to be transferred to

BSSseq. Comparison of the first segments from all the DRs shows the MBMRP rule is the one with the highest benefit

of 61 and the greatest number of jobs processed (i.e., 4) while its jobs are also placed in the first segment of BSSseq. To

examine the second segment, the function edt() is first implemented for it to find and remove not only identical jobs in

these segments of the DRs but also those in the BSSseq. The jobs compared with each other from the second segments

of the EST, LBF, MBMRP, LBMP, and Min Slack rules are , , , , and . The highest

benefit of 45 and the greatest number 3 of jobs processed in the second segment of the BSSseq were recorded for the

LBF rule. This is while the Min Slack and LBMP rules both had the best third segment in the BSSseq. Compared to the

other rules, the MBMRP rule recorded the best results, and its jobs were placed in the fourth segment of the BSSseq.

Finally, from the EST and LBF rules are the ones selected for the fifth segment. Thus, the BSSseq comprises

15 jobs arranged in this sequence: . When the BSSseq is

submitted to the machines in Step 4, then ∑ , | | , and

 is obtained. This is while was part of the BSSseq but

failed to be allocated to a machine within the timespan . It follows then that it is possible for jobs in the BSSseq

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 127

to fail to find themselves a machine at the right time due to coincidence with other jobs within their process time. Thus,

if is a job in the BSSseq, and if it fails to be submitted to a machine within the timespan , then it will be

removed from the BSSseq and transferred to UnAssSeq.

In Step 5, the jobs on machines are controlled for any gaps so that the gaps are filled with jobs from the UnAssSeq.

Examination of the sequence on in Figure 4 reveals that and and that the first gap is found in

the void between these two jobs: and . It is also observed that and .

Thus, the start and end times of the gap on will be as follows: and . It is now time to fill the

gaps with jobs from the UnAssSeq. For Gap 1, its length is initially computed: .

The intervals and for the two jobs and are such that the jobs can be placed in the timespan

 ; however, since , they can be transferred into the first gap. Examination of the jobs

 also shows that they do not have the requirements for being transferred into the second gap.

Hence, Step 5 in this example failed to improve the results obtained in Step 4.

Based on the results obtained from implementing the BSS, it may be claimed that both the efficiency criteria in the

objective function were improved. It should also be noted in Figure 4 that and whereby

 { } .

It is, of course, possible that the BSS fails to improve the objective function by providing results superior to those

yielded by the DRs. Specifically, this might happen if every one of the jobs in the BSSseq fails to get on a machine by

the end of their allocated process times, in which case the jobs will be deleted; or, if Step 5 fails to add jobs to the set of

processed jobs in case a gap appears. In this situation, the benefits and the number of jobs completed under the BSS will

be lower than those under any of the DRs.

Figure 4. Gantt chart for BSSseq in Step 4 of the BSS.

B. Local search phase

A neighborhood search structure for the LS phase of NCDRA is equipped with swapping, insertion, and reversion

operators that serve as exploration operators. To enhance the algorithm's efficiency, three operators are used

concurrently and interconnected through a shared memory both to avoid trapping in a local optimum and to increase the

algorithm‟s speed in obtaining improved solutions. Moreover, these operators can be exploited during the updating

process to create perturbation in order to enhance diversity in the sequences generated. This way, operators attempt to

explore and exploit in addition to cooperation in order to achieve the global optimal solution.

Due to limitations on and , each exploration operator is customized for each job. For this purpose, a frequency

table of is created for each instance of the problem in which jobs are sorted in ascending order of . Once the range is

128 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

computed (), class distances () are determined using ⌈ ⁄ ⌉, in which NF represents the

number of classes. It is after this stage that the exploration operator is able to create, quite randomly, a neighborhood for

the jobs in each class of each scheduler. For instance, in a scheduler with , if a random number is observed, then

the neighborhood is created for the second class.

Exploration in the solution space will be accomplished in the following three steps:

Step 1: The four features of ∑ , | |, exUnAss, and exAss in the shared memory are assigned the

initial values of ∑ , | |, UnAssSeq, and BSSseq as the output values of Phase I of the

proposed algorithm.

Step 2: Each of the operators starts the search operation in accordance with their nature in the neighborhood of the best

sequence thus far found (exAss) and stored in the shared memory.

Step 3: Once an operator succeeds in improving each of the objective function criteria (i.e., ∑ and | |), the four

features in the shared memory are updated and replaced with the new values.

Steps 2 and 3 are repeated until the termination condition is met. Exploration operators continue unless the user

terminates them at a specific point. For the purposes of this study, the number of iterations (nitr) is used as the

termination condition. However, the proposed algorithm stops if | | becomes equal to the number of problem jobs

before the given number of iterations is reached.

Figure 5. Online gap filler procedure.

1. For each Exploration Operator Do

2. Apply the selected Exploration Operator on the best Critical Sequence to find a neighbor sequence

3. For each job in the neighbor sequence Do

4. Allocate the job to a processor based on the MSP

5. If there is a Gap Then

6. Create a ready job list; select jobs from exUnAss where 𝑟𝑗<= GST && 𝑑𝑗>= GET

7. Find a job with maximum benefit from ready job list and name it sJob
8. Sort the ready job list in an ascending order of processing time

9. Calculate maximum number of jobs to fill in the Gap and name it maxJobInSlot

10. Make collections of 1 to maxJobInSlot and name it mJobList

11. Calculate the benefit of each member in mJobList

12. Sort the mJobList in an ascending order of item length

13. For each member in the mJobList Do

14. If (the member‟s benefit 𝛼) >= s Job‟s benefit Then

15. Allocate the member to the Gap

16. End-If

17. End-For

18. End-If

19. End-For

20. Calculate the objective function of the neighbor sequence

21. If the neighbor sequence‟s objective function is better than that of the Critical Sequence Then

22. Update the Critical Sequence and its elements based on the neighbor sequence

23. Update the Critical Sequence in other Exploration Operators based on the new Critical Sequence

24. End-If;

25. End-For

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 129

In the second step, it is possible to occur a gap by assigning to the selected machine. In this case, job or jobs that

meet the requirements for filling the gap is/are selected from exUnAss and assigned to the machine before assigning the

job . The condition necessary for filling a gap with a job or jobs from the exUnAss is that the replacement must not

lead to the expiry of . It is evident that filling a gap in this step of Phase II of the heuristic algorithm is at the time that

jobs from exAss are allocated to machines, which is slightly different from what happens in Step 5 of the BSS

procedure. Moreover, filling a gap in this step might lead to the expiry of a job or jobs from the exAss that come after .

Allocation of exAss to machines and estimation of the associated benefits and number of jobs completed is

accomplished using the online gap filler procedure shown in Figure 5.

To illustrate this procedure, let us assume that , , , ,
 , and

 . If with the specifications , and is nominated for processing, then it will occupy ; hence,

 because

 and {

} . In this situation, no gap is created when is

added on since
 . If , instead of , with the specifications , , and

occupies the machine, given that

 , the release time of will be subtracted from the idle time of

the machines so that the machine with the lowest remaining value of the subtraction process will be nominated for

processing ; in other words,

 . If is allocated to , a gap of the one-time unit will be

created between the timespans 4 and 5 because
 and . In this situation, given the specifications of

 , lines 5 to 18 of the algorithm will try to select a job or jobs from the exUnAss to fill the gap in order to improve the

objective function. Finally, should not expire during the gap-filling process (i.e., selecting jobs from the exUnAss and

allocating them to the machine in question).

In this procedure via job selection from the exUnAss, maximum care must be taken to strike a balance between the

number of jobs selected and the benefit earned. This is reflected in a coefficient α that expresses the weight of each of

the objective function criteria () to ensure a minimum score has been earned when a job is selected to fill a gap.

It is noteworthy that in computational results, a value of 0.5 was assigned to the coefficient α. Assume three jobs with

benefits and processing times of , , , , and , respectively, and a gap of 2-

time units. Under these conditions, the selection of will yield a benefit of 20; however, then jobs other than will be

selected if they can be processed simultaneously and if they earn at the same time 95% of the benefit earned by . In

other words, and will be selected for α=0.95. Clearly, the sum of benefits earned from both and is lower than

that of the selected job (), but these two jobs are selected instead of to fill the gap because they yield a total benefit

equal to α% that of the selected job.

Example 2 continued: The output from SS phase in Example 2 is updated using the output from the LS phase of the

proposed algorithm. The exploration operators can improve both the number of processed jobs and the benefit earned

via swapping the jobs and reducing the gaps. Implementation of LS phase yields {

}

 . This yields ∑ , | | . It may be noted that the scheduler in LS phase is denoted by

exOp. Figure 6 depicts the job scheduling on two processors in which .

Figure 6. Gantt chart after the implementation of the LS phase in Example 2

130 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

IV. COMPUTATIONAL RESULTS

This section uses extensive experiments to investigate the performance of NCDRA. Initially, a description is

provided of the specifications of the problems studied. This is followed by a detailed explanation of parameter tuning in

NCDRA to improve its performance. Finally, NCDRA and SA are compared in terms of their performance in dealing

with the problem instances.

The proposed algorithms are implemented in Java 9, and the experiments are conducted on the computer with the

following specifications: Processor, Intel(R) CoreTM i5-3330; CPU, 3.00 GHz; RAM, 4 GB; and System type, 64-bit

Windows 10 operating system.

A. Specifications of the problems studied

The test data are generated in such a way that the effectiveness of the algorithm is reflected in the different

parameters in terms of test instance size and characteristics. The three main groups of problem instances studied are i)

Small size ones including 20 instances designated by numbers 1 through 20, 50 jobs need to be processed on five

uniform parallel machines, machine speeds are randomly selected from . ii) Medium size

problem instances including eight problems designated by numbers from 21 through 28, there are 100 jobs to be

processed on ten uniform parallel machines, and the machine speeds are to be randomly selected from among

 . iii) Large size problem instances, including eight problems designated by

numbers from 29 through 36, 1000 jobs are planned to run on 50 uniform parallel machines, and machine speeds are

randomly selected from the range of [0.4-1.5] at steps of 0.01 or 0.02. Three small, moderate, and large size problem

instances are grouped into four classes of problems according to the characters representing their processing times,

release times, and due dates. Table III reports the specifications of four classes. Processing time and release time are

randomly generated within a specified range. Finally, the due date is obtained as the sum of release time, processing

time, and a random number from the specified range; for instance, .

Table III. Specifications of the input data for the four classes of small, moderate, and large size problems

Problem class

1 [1-10] [0-40] [1-10] [1-20]

2 [1-10] [0-70] [1-10] [1-20]

3 [1-10] [0-40] [1-20] [1-20]

4 [1-10] [0-70] [1-20] [1-20]

The illustrative examples below are meant to provide a better understanding of the four problem classes. Class 1

problems (i.e., problem instances 1 through 5, and also 21 and 22 as well as 29 and 30) include those with tight release

times and due dates. This means that job availabilities are concentrated at the beginning of the schedule-timeline and

that their time windows between release time and due date are as short as possible. Class 2 problems (i.e., problem

instances 6 through 10, and also 23 and 24 as well as 31 and 32) are those with loose release times but tight due dates.

This means that job availabilities are scattered throughout the schedule-timeline and that the time window between

release time and due date is as short as possible. Class 3 problems (i.e., problem instance 11 through 15, and also 25,

and 26 as well as 33 and 34) are those with tight release times but lose due dates. This means that jobs are available at

the beginning of the schedule-timeline and that the time window between their release times and due dates is broad such

that processing jobs begin a long time after their release times. Class 4 problems (i.e., problem instances 16 to 20, and

also 27 and 28 as well as 35 and 36) are those with loose release times and due dates. This means that job availabilities

are scattered throughout the schedule and that the time window between their release times and due dates are broader

such that processing jobs will become possible long after their release times.

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 131

B. Parametric tuning of NCDRA

It is essential to tune the parameters of NCDRA, including , , , and MSP. These parameters are tuned

through preliminary computational experiments so that NCDRA will have the best performance.

1. Number of jobs completed in each segment ()

Tuning in the proposed algorithm for the small size problem instances was performed by assigning even

numbers of 4 to 50 at steps of 2, and the effects were investigated on ∑ and | | .

Implementation of the DRs on the problem instances showed that in the range [4‒14] led to better results. Figure 7

shows the results obtained from effecting average values of the components ∑ and | | by implementing 11 DRs

on in the range [4‒30] in the problem instance No. 14. The values for the two components (i.e., ∑ and | |) of

the objective function for in the range of [4‒14] will be equal to 446.4 to 459.9 and 37.4 to 38.2, respectively. The

best values of 439.5 and 36.4 for ∑ and | |, respectively, were obtained for >14. Investigation of moderate

and large size instances revealed that in the range of [20‒56] and [50-350] assigned at steps of 4 and 50 generated

desirable values for the objective function, respectively.

Figure 7. Comparison of the effects of the parameter on both criteria of the objective function

2. The parameter

The BSS procedure not only produces good results in SS phase of the NCDRA but also plays an important role in

generating results of good quality in LS phase. The parameter affecting the performance of BSS is , whose value had

to be determined and for which values from 3 to 10 were tested. The BSS in small, moderate, and large size problem

instances revealed that values of 3, 4, and 5 produced the best results, indicating that increasing values of have no

effects on BSS quality.

3. The parameter

One factor involved in the best-constructed scheduler is the maximum of the allowed exploration operator

iterations. The computations were started with a number of 700 and the variation in the performance of the

objective function was measured after each iteration. The different iterations of the algorithm on a moderate size

problem instance revealed only slight changes in each of the objective function criteria after around 200 iterations,

132 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

thereby only wasting CPU time. Experiments were also performed with large size instances to tune the value for

and the best value was found to be 500. The trend in the objective function improvement is depicted in Figure 8 for

problem instance No. 14. Its left and right-hand chart display the trend of benefit and the number of jobs processed,

respectively. Clearly, increased benefit in some iterations did not lead to an increased number of jobs processed, neither

did the reverse. It may thus be concluded that although the number of jobs processed might have remained unchanged

in certain iterations, swapping led to the replacement of a job with a higher benefit for one with a lower benefit.

Figure 8. Quality of extrapolation of the NCRDA results after each iteration for problem instance No. 14.

4. Machine selection policy

The quality of results as affected by MSP was also investigated. In this process, the DRs and the LS phase were

tested under different policies. Table IV reports the average values obtained from 10 iterations of the proposed

algorithm on instances 1 to 5. Comparison of the results obtained from effecting policies A, B, and C reveals the

relative efficacy of all the three policies in some of the instances solved using the DRs. In the LS phase of the

algorithm, policy B proved the best in four instances in terms of the number of jobs processed and in two instances with

regard to the benefit; hence, it was adopted as the policy for the LS phase. Policy A led to the greatest benefit earned in

two problem instances but only yielded the greatest number of jobs completed in one instance. Policy C led to the

greatest benefit in one instance.

Table IV. Comparison of machine selection policies in the LS phase

Problem

class
Instance

Machine Selection Policy

A B C

∑ | | ∑ | | ∑ | |

1

1 485.9 41.9 483.4 42.2 476.1 41.4

2 529.3 41.6 530.1 41.9 521.7 40.8

3 489.8 38.6 489.1 38.8 491.0 37.8

4 536.4 42.8 534.2 42.7 525.7 42.0

5 526.0 42.5 527.3 42.7 515.2 41.8

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 133

Investigation of the tuning MSPs also revealed that no specific policy led to the best results for either all or even

most of the DRs. For example, implementation of EFT in problem instances showed that policy B yielded satisfactory

results or that policy C yielded better results under the EDF rule. Therefore, all three policies were used in the

computational experiments to select the one policy that led to the best schedule.

C. Investigation of NCDRA components

This subsection investigates the different components of the proposed algorithm to show how the different stages of

the two phases of the algorithm improve its performance.

1. Investigation of the performance of DRs

The DRs were compared in terms of their performance to create an upper bound in the computational experiments.

The results are reported in Table V. It is seen that the MBMRP rule from among 11 others was able to produce the best

results while the rules EDF, LBF, and EST produced better results in 7, 4, and 4 instances, respectively. This table also

provides the proper value for that led to the improvement of the objective function by one DR. In problem instance

1, for example, all the possible values in the range [4‒14] were assigned to at steps of 2 under the ADMR rule. For

 = 8, the values obtained were | | and ∑ , which led to the best improvement in the objective

function. It may be noted that the same problem instance was terminated at a time unit of 50 under ADMR (i.e.,

). The most frequent value for with 8 iterations for 50 jobs was 12. This is while its least value was

 =4 with five iterations. An interesting point to note about EST is that it outperformed the other rules in four problem

instances of small size. This is while none of the values in the range [4‒124] assigned to exhibited any significantly

different effects on either | | or ∑ ; hence, the word „all‟ used in the column in all cases in which EST was the

rule selected.

2. Investigation of the BSS procedure

The next component investigated to evaluate the quality and performance of the NCDRA algorithm is the

improvement of the upper bound gained by the BSS procedure used by DRs. Table VI reports the computational results

obtained from the BSS procedure for the selected parameter (i.e., 3, 4, and 5) were considered for all problem

instances. Comparison of the results reveals that, from among the 72 values obtained for ∑ and | | in 36 problem

instances of the four classes, yielded better results, especially for instances in classes 3 and 4.

The performance made by DRs to the construction of the BSS segments was measured. In problem instance 1, for

example, the LBF was used twice, and MBMRP was used once for constructing BSSseq when . LBF with 35 and

30 segments in classes 3 and 4, respectively, had a great contribution to the BSSseq, while EFT and EST had the

greatest contribution to BSSseq in classes 1 and 2 with 27 and 26 segments, respectively.

The best results due to the BSS may also be compared with those due to DR. The comparison reveals that neither is

superior to the other with regards to the improvement they made in the objective function for class 1 as both yielded the

best results for this class in 9 cases. For classes 2, 3, and however, BSS procedure outperformed DR in 13, 12, and 14

cases while DR produced better results in only 5, 6, and 4 cases, respectively. Another criterion that can be exploited to

show the difference between BSS and DR as a good scheduler is . In the problem instance 20 from class 4, both

BSS and DR equally recorded benefit scores of 564 and jobs completed scores of 50 for the best-constructed scheduler,

but they differed in their values: and . These observations confirm the requirement

for using the BSS procedure as part of the NCDRA algorithm.

134 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Table V. Computational results of the DR used to determine the best DR and

Problem class Instance DR ∑ | |

1

1 ADMR 434 40 8 50

2 LBF 481 38 6 51

3 MBMRP 447 37 12 52.12

4 MBMRP 505 39 10 50.37

5 EDF 500 43 12 47.76

21 EDF 859 79 44 54

22 EDF 970 85 52, 56 52.33

29 EFD 7268 698 350 56

30 EFT 7203 688 150 55

2

6 MBMRP 538 47 14 78.33

7 EDF 473 46 14 85.25

8 EST 412 49 All 75.05

9 MBMRP 506 50 8 79

10 ADMR 547 49 10 76.71

23 MBMRP 971 91 28, 56 83

24 MBMRP 867 91 20 76

31 LBF 8852 767 300 81.55

32 LBF 8599 783 250 87

3

11 EST 470 41 All 55.67

12 LBF 500 39 10 61

13 EFT 424 41 12 51.25

14 EFT 531 44 6 56

15 LBF 396 38 12 60.63

25 LBF 838 77 24 54.65

26 MBMRP 805 72 40 54

33 EDF 7468 718 200 62.61

34 EDF 7280 709 300 64.93

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 135

Continue Table V. Computational results of the DR used to determine the best DR and

Problem class Instance DR ∑ | |

4

16 EDF 540 50 6 89.41

17 EST 515 50 All 80

18 DDMR 510 50 4 79

19 EDF 514 50 14 87.3

20 EST 564 50 All 94.5

27 MBMRP 974 96 56 82.65

28 EDF 1019 99 40 95

35 EFT 8926 916 300 92.3

36 LBF 9280 888 150 90.94

D. Results obtained from implementing NCDRA and SA on different problems

Table VI reports the best results obtained of the ten times run of the NCDRA on all problem instances. As expected,

the LS phase of the proposed algorithm improved the components of the objective function. In the LS phase, both DR

and BSS exhibited equal capacity in finding the best values for 14 of the 72 components of the objective (∑ and

| |). These components belonged to problem instance 9 of class 2 as well as instances 16 through 20 and 28 of class

4, in which all the jobs were submitted to machines and were completely processed. In the remaining instances, it was

the LS phase that improved the components of the objective when compared with either DR or BSS. This is confirmed

by a comparison of the two columns under NCDRA in Table VII.

The best scheduler derived from the BSS procedure serves as an input string for the LS phase. Now assume a case in

which the best scheduler is one of the DRs to be used as an input string for the LS phase. See the results reported under

the two columns under the heading NCDRA-without-BSS in Table VII. It is observed that, in this situation, NCDRA

and NCDRA-without-BSS both produced identical results for 14 parameters of the instances in class 4, and in the other

four parameters, NCDRA performed better. In class 3 instances, the NCDRA-without-BSS outperformed NCDRA in

only two problem instances, NCDRA outperformed NCDRA-without-BSS in 15 instances, and both performed equally

well in one problem instance. In class 2 instances, the NCDRA-without-BSS yielded only one superior result; indeed,

both produced similar results in three problem instances while NCDRA underperformed the NCDRA-without-BSS in

the other 14 instances. Finally, better results were recorded for NCDRA-without-BSS in class 1 instances when

compared with the other problem classes. Despite this, the NCDRA-without-BSS outperformed NCDRA in three

problem instances in this class while the reverse was true in 10 problem instances, and both performed equally well in

5. These observations provide further confirmation of the efficiency of the BSS procedure and, ultimately, that of

NCDRA. Further support for the efficiency of NCDRA is provided by comparing this algorithm with the SA developed

in Gholami et al. (2019). Comparison of results reveals an optimum value of | | in small instances and

| | in moderate instances recorded by both algorithms in 12 problem instances. NCDRA outperform SA in

17 instances with regards to improvements it made in the objective parameters of | | and ∑ while the reverse was

true in nine instances, it may thus be claimed that the NCDRA outperformed SA in this regard. Moreover, NCDRA

proved in most class 3 problems more efficient than its rival SA while both proved efficient in 14 class 4 problems.

136 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Table VI. Computational results obtained using the BSS procedure for

Problem

class
Instance

∑ | | ∑ | | ∑ | |

1

1 415 35 11-6-6 48 425 38 11-6-4-8 47 426 39 6-11-6-8-3 47.27

2 452 39 10-11-8 48.63 450 34 6-6-2-4 46 471 37 6-10-1-10-3 45.53

3 425 37 4-4-8 50 443 37 4-11-11-8 52.13 415 38 1-4-4-4-4 51.75

4 488 40 11-11-11 49 477 39 10-11-11-4 50.45 480 38 10-4-1-6-3 50.43

5 504 41 10-8-3 46.58 509 41 10-6-6-10 46.12 488 40 3-10-6-6-9 47

21 888 78 8-6-4 53.5 899 74 6-6-6-6 51.84 882 80 11-4-4-4-8 51.33

22 964 81 10-6-4 51 967 81 10-10-6-4 51 975 81 10-10-10-6-3 50.27

29 7168 676 5-4-4 55.47 7193 689 5-4-4-4 55.87 7156 688 5-4-4-10-10 49.94

30 7274 678 5-10-10 50.58 7553 696 5-4-4-4 55 7108 666 5-5-10-10-10 50.25

2

6 536 47 11-11-3 77.33 537 45 3-11-8-1 75.25 547 46 8-6-6-4-1 75.25

7 468 45 10-10-6 83 473 45 3-4-6-1 77 474 43 3-2-11-11-1 74.92

8 390 48 3-10-6 75.68 389 47 3-3-6-3 73.22 397 47 3-11-3-6-3 73.53

9 506 50 3-3-8 77.07 506 50 3-3-11-6 78.09 506 50 3-3-3-8-4 78.08

10 533 48 3-10-8 76.33 544 49 10-10-10-4 74.53 536 47 1-3-3-3-8 73

23 970 93 11-10-10 82.75 967 90 10-6-6-3 81.69 974 91 10-6-11-11-2 80.7

24 864 93 11-11-10 75.51 862 93 11-11-11-4 76.26 863 92 11-11-11-11-7 80.26

31 8662 845 4-4-10 74.62 8715 817 6-4-11-3 84 8950 810 6-6-6-11-3 74.83

32 8087 808 11-11-4 74 8699 801 6-6-6-6 87 8655 810 6-6-6-11-3 74.62

3

11 477 39 1-6-6 53 488 39 1-6-6-3 53 452 37 1-6-1-11-3 50.12

12 501 41 11-6-44 55.71 514 40 10-6-6-3 58 506 40 11-2-10-6-6 54.62

13 445 41 11-11-8 51.96 420 37 6-2-10-3 48.59 437 41 3-4-10-6-6 50.45

14 531 45 3-10-8 57.42 528 42 10-10-10-6 53.79 526 42 11-11-11-7-3 53

15 406 37 1-11-4 55 396 37 4-11-4-3 51.64 412 37 1-11-11-11-6 53.16

25 853 80 11-6-6 57 849 78 6-6-6-6 53.3 854 79 6-4-6-4-4 56.32

26 787 76 3-3-10 53.61 818 72 3-6-6-6 52.15 838 74 3-3-6-11-11 52.98

33 7415 709 5-4-4 57.69 7439 681 5-4-6-6 63 7088 651 5-5-6-6-6 63

34 7136 649 5-6-10 65 6788 643 5-5-8-8 65 6496 629 5-5-5-6-6 56.19

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 137

Continue Table VI. Computational results obtained using the BSS procedure for

Problem

class
Instance

∑ | | ∑ | | ∑ | |

4

16 540 50 10-9-11 85.25 540 50 4-4-4-11 84.08 540 50 4-4-4-10-11 85.66

17 515 50 9-9-4 74.72 515 50 3-6-7-3 75 512 49 11-11-11-6-6 76

18 510 50 3-3-8 75.92 510 50 11-11-11-8 75.92 501 49 11-11-11-9-4 75.92

19 512 49 10-11-10 82.99 512 49 3-3-3-3 79.25 512 49 2-3-3-3-3 77.67

20 564 50 3-9-4 82.9 564 50 3-11-11-11 81.91 561 49 3-4-9-6-6 81.74

27 950 96 3-3-6 85 962 97 3-3-11-4 90 972 98 3-3-11-11-4 88.58

28 1022 100 8-3-10 94 1022 100 3-11-6-6 92 1021 99 11-3-6-10-4 94

35 8921 914 4-4-4 92.93 9029 890 6-6-6-6 78.31 9022 889 6-6-6-6-6 78.13

36 9485 902 6-6-6 78.31 9387 896 6-6-6-6 90.98 9401 898 6-6-6-6-6 90.89

* BSSseq column numbers: 1: Slack Min, 2: Slack Max, 3: EST, 4: EFT, 5: LBMP, 6: LBF, 7: LPF, 8: ADMR, 9:

DDMR, 10: EDF, 11: MBMRP.

Table VII. Results obtained from the algorithms NCDRA, NCDRA-without-BSS, and SA

Problem class Instance
NCDRA NCDRA-without-BSS SA

∑ | | ∑ | | ∑ | |

1

1 492 43 483 42 492 43

2 534 42 534 42 534 42

3 500 39 507 40 507 40

4 543 43 537 43 543 43

5 541 43 541 43 531 43

21 994 81 989 79 994 81

22 1032 86 1023 85 1033 84

29 7721 688 7252 709 7256 709

30 8135 738 7483 712 7364 706

2

6 560 50 558 48 560 50

7 502 46 495 45 502 46

8 413 50 412 49 413 50

9 506 50 506 50 506 50

138 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Continue Table VII. Results obtained from the algorithms NCDRA, NCDRA-without-BSS, and SA

Problem class Instance
NCDRA NCDRA-without-BSS SA

∑ | | ∑ | | ∑ | |

2

10 552 50 551 49 552 50

23 998 95 997 95 998 95

24 890 100 888 98 890 100

31 8827 826 8609 836 8614 841

32 8631 848 8253 845 8310 850

3

11 523 45 518 43 523 45

12 567 44 561 43 564 44

13 497 44 490 42 497 44

14 566 48 558 46 565 48

15 482 44 472 42 481 43

25 965 87 959 85 965 87

26 947 82 952 82 952 82

33 7937 723 7423 724 7425 730

34 7810 754 7223 710 7276 720

4

16 540 50 540 50 540 50

17 515 50 515 50 515 50

18 510 50 510 50 510 50

19 514 50 514 50 514 50

20 564 50 564 50 564 50

27 986 100 986 100 986 100

28 1022 100 1022 100 1022 100

35 9129 888 9041 883 8879 915

36 9461 932 9331 854 9261 919

E. Results of executing NCDRA on identical parallel machines

In this section, the problem ∑ ⁄⁄ | | is investigated. NCDRA that was implemented on

the problem instances is as same as the one used above, except that machine speed in all of them is equal to 1 ()

and then the results of which are reported in Table VIII. In this situation, average machine speed has been increased to

1, thereby increasing both benefits and the number of jobs processed. For instance, the average machine speed in

problem instances 1 through 5 was equal to 0.96, for which 210 jobs out of the 250 available were completed. In

contrast, 277 jobs were processed under the new conditions, indicating that an increase of 0.04 in machine speed led to

an increase of 6.8% in the number of jobs processed.

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 139

Table VIII. Computational results of NCDRA for ∑ ⁄⁄ | |

Problem class Instance ∑ | |

1

1 505 46

2 542 44

3 535 44

4 559 46

5 567 47

21 1024 87

22 1070 90

29 7703 739

30 8369 702

2

6 560 50

7 513 50

8 413 50

9 506 50

10 552 50

23 1008 99

24 890 100

31 8859 867

32 8881 821

3

11 531 46

12 588 47

13 504 46

14 570 50

15 500 45

25 984 92

26 976 87

33 8566 725

34 7825 755

4

16 540 50

17 515 50

18 510 50

19 514 50

20 564 50

140 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Continue Table VIII. Computational results of NCDRA for ∑ ⁄⁄ | |

Problem class Instance ∑ | |

4

27 986 100

28 1022 100

35 8946 918

36 9562 936

V. CONCLUSION

A mathematical model and a heuristic algorithm, named NCDRA, were developed for solving the problem

 ∑ ⁄⁄ | |. It consisted of two phases, the first of which involved applying a method called

segmentation to DRs. The BSS procedure was also used to enhance these rules' effectiveness and improve the upper

bound. Phase II involved customizing the three exploration operators of swapping, insertion, and inversion as well as

their concurrent implementation on the schedule obtained from the BSS to search the neighborhood.

The algorithm developed in this paper was then implemented on problem instances, and the results were recorded.

Furthermore, the different parameters of segment length, number of segments, and machine selection policies affecting

the performance of the algorithm were investigated. The results obtained from this algorithm and SA were compared

with respect to the objective criteria, including the number of jobs processed and benefits. NCDRA was observed to

yield better results compared to SA.

Future studies are suggested to consider practical conditions as machine eligibility constraints and machine

breakdowns. Moreover, one can investigate the addressed problem considering stochastic or fuzzy processing times and

evaluate the robustness of the solutions. As future other lines of research, it would improve the performance of the

proposed algorithm by employing predictive methods and techniques in the LS phase. Concurrent employment of

strengthened learning and job clustering in the LS phase is expected to lead to greater effects of exploration operators

on the solutions found.

REFERENCES

Bard, J. F., & Rojanasoonthon, S. (2006). A branch and price algorithm for parallel machine scheduling with time windows and job

priorities. Naval Research Logistics, 53(1), 24-44.

Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R. (2016). A memetic algorithm to solve an unrelated parallel machine

scheduling problem with auxiliary resources in semiconductor manufacturing. Journal of Scheduling, 19(4), 367-376.

Cao, D., Chen, M., & Wan, G. (2005). Parallel machine selection and job scheduling to minimize machine cost and job tardiness .

Computers & Operations Research, 32(8), 1995-2012.

Croce, D. F., T‟kindt V. & Ploton, O. (2021). Parallel machine scheduling with minimum number of tardy jobs: Approximation and

exponential algorithms. Applied Mathematics and Computation, 397, 125888.

Chen, B., & Vestjens, A.P.A. (1997). Scheduling on identical machines: how good is LPT in an on-line setting?. Operational

Research Letters, 21, 165-169.

Journal of Quality Engineering and Production Optimization / Vol. 6, No. 2, Summer & Autumn 2021, PP. 115-142 141

Chung, S.H., Pearn, W.L. & Tai, Y.T. (2009). Fast and effective algorithms for the liquid crystal display module (LCM) scheduling

problem with sequence-dependent setup time. Journal of the Operational Research Society, 60, 921–933.

Fanjul-Peyro, L., & Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel machine scheduling. European

Journal of Operational Research, 207(1), 55-69.

Gholami, O., Sotskov, Y. N., Werner, F., & Zatsiupo, A. S. (2019). Heuristic algorithms to maximize revenue and the number of jobs

processed on parallel machines. Automation and Remote Control, 80(2), 297-316.

Hoseini, S.F., Omran, M.M., Márquez, A.C. & Makui, A. (2018). Simultaneous optimisation of seaside operations in container

terminals: a case study of the Iranian Rajaee port. International Journal of Shipping and Transport Logistics, 10(5-6), 587-617.

Huang, J., Li, S., & Chen, Y. (2020). Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge

computing. Networking and Applications, 13, 1776–1787.

Kaban, A. K., Othman, Z., & Rohmah, D. S. (2012). Comparison of dispatching rules in job-shop scheduling problem using

simulation: a case study. International Journal of Simulation Modelling, 11(3), 129-140.

Kowalczyk, D., & Leus, R. (2017). An exact algorithm for parallel machine scheduling with conflicts. Journal of Scheduling, 20(4),

355-372.

Islam, M., Khanna, G., & Sadayappan, P. (2008). Revenue Maximization in Market-Based Parallel Job Schedulers. Ohio State

University Library.

Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with

setup time and production availability. Computers & Industrial Engineering, 85, 102-109.

Juraszek, J., Sterna, M., & Pesch, E., (2009). Revenue maximization on parallel machines. Institute of Computing Science, Poznan

University of Technology, 960-965.

Laha, D., & Gupta, J. N. (2018). An improved cuckoo search algorithm for scheduling jobs on identical parallel machines”.

Computers & Industrial Engineering, 126, 348-360.

Lee, C. H., (2018). A dispatching rule and a random iterated greedy metaheuristic for identical parallel machine scheduling t o

minimize total tardiness. International Journal of Production Research, 56(6), 2292-2308.

Mensendiek, A., Gupta, J. N., & Herrmann, J. (2015). Scheduling identical parallel machines with fixed delivery dates to mini mize

total tardiness. European Journal of Operational Research, 243(2), 514-522.

Nattaf, M., Dauzère-Pérès, S., Yugma, C., & Wu, C. H. (2019). Parallel machine scheduling with time constraints on machine

qualifications. Computers & Operations Research, 107, 61-76.

Pinedo, M. (2012). Scheduling (Vol. 29). New York: Springer.

Phanden, R. K., Jain, A., & Verma, R. (2013). An approach for integration of process planning and scheduling. International Journal

of Computer Integrated Manufacturing, 26(4), 284-302. doi:10.1080/0951192X.2012.684721.

Rojanasoonthon, S., Bard, J. F., & Reddy, S. D. (2003). Algorithms for parallel machine scheduling: a case study of the tracking and

data relay satellite system. Journal of the Operational Research Society, 54(8), 806-821.

https://doi.org/10.1080/0951192X.2012.684721

142 Rezvan, M.T. et. al. / A new algorithm for solving the parallel machine scheduling problem to ...

Raghu, T. S., & Rajendran, C. (1993). An efficient dynamic dispatching rule for scheduling in a job shop. International Journal of

Production Economics, 32(3), 301-313.

Yang-Kuei, L., & Chi-Wei, L. (2013). Dispatching rules for unrelated parallel machine scheduling with release dates. The

International Journal of Advanced Manufacturing Technology, 67(1-4), 269-279. doi:10.1007/s00170-013-4773-8.

