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Abstract— Robust adaptive estimation of unknown parameter has 

been an important issue in recent years for reliable operation in the 
distributed networks. The conventional adaptive estimation algorithms 
that rely on mean square error (MSE) criterion exhibit good 
performance in the presence of Gaussian noise, but their performance 
drastically decreases under impulsive noise. In this paper, we propose a 
robust adaptive estimation algorithm for networks with cyclic 
cooperation. We model the impulsive noise as the realization of alpha-
stable distribution. Here, we move beyond MSE criterion and define the 
estimation problem in terms of a modified cost function which exploits 
higher order moments of the error. To derive a distributed and adaptive 
solution, we first recast the problem as an equivalent form amenable to 
distributed implementation. Then, we resort to the steepest-descent and 
statistical approximation to obtain the proposed algorithm. We present 
some simulations results which reveal the superior performance of the 
proposed algorithm than the incremental least mean square (ILMS) 
algorithm in impulsive noise environments.  

  

Index Terms— adaptive networks; distributed estimation; impulsive noise.  

 

I. INTRODUCTION 

    In recent years, great attention has been devoted to distributed estimation problem where the 

objective is to estimate an unknown parameter using data collected by the nodes [1]. In general, 

distributed estimation problem can be typically solved by either a centralized approach or a 

decentralized approach (see [2] and references therein). In many applications, however, sensors need 

to perform estimation task in a environment without any  statistical information about the underlying 

processes of interest. This issue motivated the development of distributed adaptive estimation 

algorithms which are also known as adaptive networks [3,4]. So far, different distributed adaptive  

  

A Robust Distributed Estimation Algorithm 
under Alpha-Stable Noise Condition 

 Azam Khalili1, Amir Rastegarnia2, and Md Kafiul Islam3 
1 Department of Electrical Engineering, Malayer University, a.khalili@ieee.org 
2 Department of Electrical Engineering, Malayer University, a_rastegar@ieee.org  

3 Department of Electrical and Computer Engineering, National University of Singapore, kafiul_islam@nus.edu.sg 
Corresponding author: Azam Khalili 



77  Robust Distributed Estimation Algorithm Algorithm 
  

 
Fig. 1. Different cooperation modes for adaptive networks: Incremental (left) and diffusion (right). 

 

estimation algorithms have been introduced in the literature. These algorithms can be categorized, in 

general, based on the mode of cooperation between nodes as incremental networks [4-10] and 

diffusion networks [11-15]. The incremental LMS (ILMS) algorithm [4,26], distributed recursive least 

square (DRLS) algorithm [5] and distributed affine projection algorithm [6] are examples of 

distributed adaptive estimation algorithms that use incremental cooperation between nodes.  

    These schemes inherently require a Hamiltonian cycle through which signal estimates are 

sequentially circulated from sensor to sensor (See Fig. 1). On the other hand, in diffusion based 

schemes, each node updates its estimate using all available estimates from its neighbors, as well as 

data and its own past estimate [11-15]. 

    The conventional gradient-based distributed adaptive estimation algorithms exhibit good 

performance in the presence of Gaussian noise but their performance drastically decreases in 

impulsive noise environments [16]. Robust LMS algorithm have been reported in [17,18] which rely 

on Wilcoxon norm. This class of algorithms are difficult to analyze, and therefore it is common to 

resort to different methods and assumptions [16]. In [19], it has been shown that the error saturation 

nonlinearity-based LMS algorithm provides good performance in the presence of impulsive noise. 

However, the robust adaptive algorithms discussed so far are not inherently distributed in nature.  

In this paper we consider the problem of distributed estimation with incremental LMS adaptive 

network in the presence of impulsive noise. Our aim is to develop an incremental algorithm which is 

robust to measurements that are corrupted  by impulsive noise. We model the impulsive noise as the 

realizations of alpha-stable distribution [20,21]. Unlike the ILMS algorithm which relies on the MSE 

cost function, in the proposed algorithm  we use  a modified cost function which exploits higher order 

moments of the error. To derive a distributed and adaptive solution, we recast the problem as an 

equivalent form amenable to distributed implementation. Then, we resort to the steepest-descent and 

statistical approximations to finally obtain a fully distributed adaptive estimation algorithm. We 

compare the performance of the proposed algorithm with some available algorithms. Numerical 

examples shows that the proposed algorithms outperform existing ILMS algorithm.  
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Fig. 2. The structure of incremental LMS algorithm. 

 

Notation Throughout the paper, We adopt small boldface letters for vectors and bold capital letters 

for matices.  The symbol * denotes conjugation for scalars and Hermitian transpose for matrices. We 

also use (·)T to denote the transpose of a vector or a matrix and E{·} for the statistical expectation. 

 

II. DISTRIBUTED ESTIMATION 

    Consider a network with N  nodes that collaborate to estimate an unknown vector 1o MR ×∈w ,  

from streaming data. At time instant i each node k  has access to measurement data as , ,{ , }k i k id u  

where each ,k id  is a scalar measurement and each ,k iu  is a 1 M×  row regression vector that satisfies 

the following linear model: 

 , , ,
o

k i k i k id v= +u w   (1) 

where ,k iv  denotes the observation (measurement) noise. The linear regression model in (1) appears in 

many practical applications such as spectrum sensing, target tracking, and source localization [3]. 

Now we can rewrite the estimation on unknown parameter as the following optimization problem: 

 2
, ,

1
arg min ( ), where ( ) {|| || }

N
o

k i k i
k

J J E
=

= = −∑
w

w w w d u w   (2) 

The optimal solution ow  of the unconstrained optimization problem (2) satisfies the following 

normal equation [22]: 

 o
du u=r R w   (3) 

where 
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1 1

{ }, { }
N N

T T
u k i k i du k i k i

k k
E E d

= =
==∑ ∑R u u r u   (4) 

Starting with gradient-descent implementation and applying instantaneous approximations  

, , ,
T

u k k i k i≈R u u  and , , ,
T

du k k i k id≈r u , the ILMS algorithm with a cyclic estimation structure can be 

derived as [4] 

 , 1, , , , 1,[ ]T
k i k i k k i k i k i k idµ− −= −+ u uψ ψ ψ   (5) 

where ,k iψ  represents the local estimate at the node k  and time i . A schematic for the ILMS 

algorithm is shown in Fig. 2.  

The ILMS algorithm works as follows: At time i , node k  utilizes the local data , ,{ , }k i k id u  and 

1,k i−ψ  received from the node 1k −  to calculate its local estimate, i.e. ,k iψ . Note that at the beginning 

of every iteration i , due to cyclic cooperation, node k uses , 1N i−ψ to update its local estimate 1,iψ .  

Although adaptive networks that rely on second order statistics (like MSE) exhibit good performance 

in the presence of Gaussian noise, however, their performance drastically decreases for non-Gaussian 

data such as impulsive noise environments [23, 24]. To model the impulsive noise environments, in 

this paper we assume that the measurement noise term in (1) follows the alpha-stable distribution.  

The characteristic function of alpha-stable process [20] is described as: 

 [ ]( ) exp{ | | 1 sgn( ) ( , ) }t j t t j t f tαφ δ γ β α= − +   (6) 

where sgn  denotes the sign function, and 

 
tan 1

2( , )
2 log 1

f t
t

απ α
α

α
π

   ≠   = 
 =

  (7) 

Moreover, in (7) (0,2]α ∈  is the characteristic exponent and describes the tail of the distribution. In 

addition, δ−∞ < < ∞  is the location parameter of the distribution, and [ 1,1]β ∈ −  is the symmetry 

parameter.  0γ >  is the dispersion, which plays a role similar to the variance of the Gaussian 

distribution. The distribution is symmetric around its location parameter δ  when 0β = . Throughout 

this paper, we assume that the alpha stable noise is symmetric 0β =  and the location parameter 

0δ = . Fig.  3 show the symmetric and skewed alpha-stable densities for different values of 

parameters. In the next section we present our proposed algorithm which is robust to impulsive noise. 
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Fig. 3. Symmetric alpha-stable densities, for 0β = , 1γ = , 0δ =  (top), and skewed alpha-stable densities,  

for 0.5β = , 1γ = , 0δ =  (bottom). 
 

III. PROPOSED ALGORITHM 

Let us consider a network with N  nodes where at any time i  , node k  measures data , ,{ , }k i k id u  

that satisfy linear model of the (1). To move beyond mean squared error and exploit higher order 

moments of the error, we define the following modified cost function as 

 
1

( ) { }
N

p
k k

k
J E d

=
= −∑w u w   (8) 

where 0p > . To derive the proposed algorithm, which is a distributed, adaptive solution for the 

optimization problem in (8) we firstly use iterative steepest-descent method to find  ow  as 

 

 [ ]1 1( ) T
i i w iJµ− −= − ∇w w w   (9) 

where 0µ >  is a step-size parameter and iw  is an estimate for ow  at iteration i , and J∇w  

denotes the gradient of ( )J w  with respect to w  which can be obtained as 
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2

, , ,
1

( ) { }
N p

k i k i k i
k

J E ζ ζ
−

=
∇ = −∑w w u   (10) 

where the error signal ,k iζ  is defined as 

 , , , 1k i k i k i idζ −= −u w   (11) 

Substituting (10) into (9) leads to 

 
2

1 , , ,
1

{ }
N p T

i i k i k i k i
k

Eµ ζ ζ
−

−
=

= + ∑w w u   (12) 

Note that each iteration step in (12) involves sum of N  terms. Equivalently, we can obtain the 

same result by splitting the update into N  separate steps whereby each step adds one term at 
2

, , ,{ }
p T

k i k i k iE ζ ζ
−

u  to get an intermediate value ,k iψ . Thus, we can rewrite (12) as the following form 

                                                   

0, 1
2

, 1, , , ,

,

{ }

i i
p T

k i k i k i k i k i

i N i

Eµ ζ ζ

−
−

−

←
 = +
 ←

w

u

w

ψ

ψ ψ

ψ

                         (13) 

This implementation is not a distributed solution as it requires every node to access to the global 

information 1i−w .  A distribute solution can be obtained by replacing the 1i−w  at each node by a local 

estimate ,k iψ  where the global error signal is replaced in it with local error signal  ek,i  where 

 , , 1, ,
T

k i k i k i k ie d −= − uψ   (14) 

Using local error signal and local estimates a distributed (incremental) solution for (10) can be 

obtained as follows 

 
0, 1

2
, 1, , , ,

,

{ }

i i
p T

k i k i k i k i k i

i N i

E e eµ

−
−

−

←
 = +
 ←

w

u

w

ψ

ψ ψ

ψ

  (15) 

Now note that the incremental algorithm (15) requires knowledge of the statistical 

moment
2

, , ,{ }
p T

k i k i k iE e e
−

u .  An adaptive implementation of (15) can be obtained by replacing the 

required moment by its instantaneous approximations 

 
2 2

, , , , , ,{ }
p pT

k i k i k i k i k i k iE e e e e
− −

≈u u   (16) 

Using the above approximation  leads to the following update equation for the proposed algorithm 
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Table I.  Pseudo code for the proposed algorithm 

 Initialization: 1,1 0=ψ  

For 1,2,i =    

       For 1,2, ,k N=   

                 Receive from 1,k i−ψ previous node. 

                 Update ,k iψ as 
2

, 1, , , ,{ }
p T

k i k i k i k i k ie eµ
−

−= + uψ ψ  

                 Send ,k iψ to the next node 

       end 

end 

 

 

                                                     
0, 1

2
, 1, , , ,

,

{ }
i i

p T
k i k i k i k i k i

i N i

e eµ

−

−

−

←
 = +
 ←

w

u

w

ψ

ψ ψ

ψ

                         (17) 

 

    Pseudo code for the proposed algorithm is shown in Table I. 

Remark 1. Note that as it is discussed in [25] the LMP algorithm has similar degrees of complexity as 

LMS algorithm. Thus, in terms of complexity per iteration per node, it needs 2M+2 multiplications 

and 2M  summations. 

    In the next section we attempt to show the performance of our algorithm. 

 

IV. SIMULATION RESULTS 

In this section we present the simulation results to evaluate the performance of the proposed 

algorithm. To this end, we consider a distributed network with 20N =  nodes and assume 6M = .   

We assume that ,k iu 's are Gaussian regressors with ,Tr[ ] 1u kR = . We also select 0.002µ =  for 

both ILMS and proposed algorithm. The observation noise are be drawn from alpha-stable 

distribution with 1.2α = , 0β = , 0γ =  and 1δ = . Each curve is obtained by averaging over 100 

independent experiments. We examine the network performance by the global average mean-square 

deviation (MSD) and excess mean square error (MESE) which are defined respectively as 
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Fig. 4. The global average MSD and global average EMSE for different algorithms in the presence of impulsive noise. 

 

 
Fig. 5.  Performance of the proposed algorithm for different values of noise parameters in comparison 

with the ILMS algorithm. 
 

 { }2
1,

1

1MSD
N

o
k i

k
E w

N
ψ −

=
= −∑   (18) 

 { }2
, 1,

1

1EMSE ( )
N

o
k i k i

k
E

N −
=

= −∑ u w ψ   (19) 

 

Fig. 4 shows the global average MSD and global average EMSE for different algorithms including 

the ILMS algorithm, error saturation nonlinearity ILMS [23], incremental algorithm based on the 

Maximum Correntropy Criterion (MCC). As it is clear from Fig. 4, the performance of ILMS 

algorithm is strongly affected by the impulsive noise. Nevertheless, the proposed algorithm is able to 

overcome this problem. Specially, the steady-state error is clearly improved by means of our proposed 

method. Note that the error saturation nonlinearity ILMS and incremental MCC algorithm can also 

provide similar performance. The main drawback of error saturation nonlinearity ILMS is that it 
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requires more operation than the proposed algorithm, while the MCC-based algorithm needs careful 

tuning of kernel parameter (See [24]). Fig. 5 shows the performance of the proposed algorithm for 

different values of noise parameters in comparison with the ILMS algorithm. We observe that, the 

proposed algorithm provides better performance than ILMS algorithm for different values of noise 

parameters. Note that as p  increases, the performance of the proposed algorithm decrease and the 

proposed algorithm changes to the conventional ILMS algorithm for 2p = . 

 

V. CONCLUSIONS 

In this paper we proposed an incremental-based adaptive network for distributed estimation in 

alpha-stable noise environments. To alleviate the effect of impulsive noise, in the proposed algorithm 

we used modified cost function which considers higher order moments of the error. Numerical 

examples showed that the proposed algorithm outperforms existing online estimation scheme such as 

ILMS algorithm. 
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