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Abstract- Uncertainty plays a major role in any project evaluation and management process. One of the 

trickiest parts of any production project work is its cost and time forecasting. Since in the initial phases of 

production projects uncertainty is at its highest level, a reliable method of project scheduling and cash flow 

generation is vital to help the managers reach successful implementation of the project. In the recent years, 

some scholars have tried to address uncertainty of projects in time and cost by using basic uncertainty 

modeling tools such as fuzzy sets theory. In this paper, a new approach is introduced to model project cash 

flow under uncertain environments using Atanassov fuzzy sets or intuitionistic fuzzy sets (IFSs). The IFSs are 

presented to calculate project scheduling and cash flow generation. This modern approach enhances the 

ability of managers to use their intuition and lack of knowledge in their decision-makings. Moreover, unlike 

the recent studies in this area, this model uses a more sophisticated tool of uncertain modeling which is 

highly practical in real production project environments. Furthermore, a new effective IFS-ranking method is 

introduced. The methodology is exemplified by estimating the working capital requirements in an activity 

network. The proposed model could be useful for both project proposal evaluation during feasibility studies 

and for performing earned value analysis for project monitoring and control. 

 

Keywords: Production projects, Atanassov fuzzy sets, Intuitionistic fuzzy project scheduling, Intuitionistic 

fuzzy cost flow. 

 

 

I. INTRODUCTION 

 

Project managers rely on accurate prediction of cash flow time series over the life cycle of the project to be in a 

position to predict potential problems and to create appropriate strategies to minimize the negative impacts of such on 

successful project implementation (Hwee & Tong, 2002). Accurately forecasting production and estimating its required 

reserves have been more urgent and important than ever before (Duong, 2011). Moreover, in production projects the 

products’ characteristics create production constraints in different aspects like scheduling and cash flows. Future 

position of production firms highly depends on research and development (R&D) activities. Their survival is imperiled 

by ever-growing complexity of technologies. The importance of R&D in highly industrialized economies is undeniable 

(Santamaría et al., 2010). To put differently, innovation is considered by many firms as a central requirement to their 

survival programs. New product development (NPD) is a highly effective way to provide production firms with a 

leading edge over rivals and provide new opportunities (Lawson et al., 2006). To consider R&D projects, production 

organizations have to identify new projects to make their costs lower, bring new products to their markets, and make 

their quality higher. Properly addressing risk and uncertainty in R&D environment is essential since knowledge of the 

proposed projects are often vague and uncertain. This uncertainty puts firm’s plans and strategies in danger. Future 

events and opportunities have undeniable impact on R&D decisions. Consequently, most of the information used in 

project decision-makings is at the best uncertain and at the worst condition very unreliable (Bhattacharyya, 2015). On 

the other hand, the job-shops or smaller firms simply cannot match the dominance or resources that the larger firms 
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enjoy, allowing them to be inflexible along their supply chains (Chen et al., 2014). Therefore, they cannot afford to be 

stuck in unexpected situations. 

Project cash flow consists of complete record of all cash related events like expenses, insufficiency, loans and 

borrowings. Cash flow fluctuations increase the level of expected external financing costs and as a result, project faces 

high monetary costs. Cash flow forecasting is almost the main objective of project cash flow related researches. Project 

cash flow forecasting should be based on a method that is both effective and reliable. Consequently, an effective and 

reliable approach for forecasting cash flow is necessary (Jiang et al., 2011). 

 In the conventional project management approach, the stability of the project plan is regarded as a critical success 

factor. However, the ever-increasing level of complexity and uncertainty in today’s business environment has made it 

almost impossible to ignore the great need to a high level of adaptability to expected and unexpected changes (Caron & 

Comandulli, 2014). One of the main sources of complexity in any project related analysis and planning process is 

uncertainty. Uncertainty can be caused by different sources like information that due to nature of the project is 

unquantifiable, incomplete or even non-obtainable (Mousavi et al., 2013).  

The main purpose of this paper is to propose a model of project cost and time planning that addresses project 

uncertainty by using an uncertainty-modeling tool that is capable of expressing knowledge as well as lack of 

knowledge. In other words, this paper proposes a model of project scheduling and a model of cost forecasting that is 

based on Atanassov fuzzy sets or intuitionistic fuzzy sets (IFSs). This approach enables the decision maker (DM) to 

express membership, non-membership and hesitation degrees when expressing data that is based on judgment and due 

to lack of enough historical data cannot be expressed by statistical tools. 

Furthermore, the main characteristics of this IFS based project cost and time planning that distinguish it from 

existing studies in the literature are as follows: (1) introducing a new approach in modeling project time and cost 

uncertainty based on the IFS, (2) proposing a new project scheduling method based on the concept of uncertain critical 

path method (CPM) and Atanassov fuzzy sets, (3) modeling a novel approach of IFS ranking and ordering, and (4) 

proposing a new model of cash forecasting that uses IFS as an uncertainty modeling tool. 

This paper is organized as follows: Section II reviews the existing literature on the project cost and time analysis. 

Some preliminary introductions to IFSs are provided in section III. Section IV presents a novel ranking method for IFS 

and introduces IF-project scheduling. In section V, the project cost and cash flow analysis model is proposed. Section 

VI includes a practical example in construction projects and its corresponding results and finally, Section VII provides 

the conclusion remarks of this paper. 

 

II. LITERATURE REVIEW 

 

Using S-curves to predict project cash flow is very popular among project managers since it is the simplest way of 

projection (Touran et al., 2004). Project costs and durations are two primary quantities of total relevant quantity that 

form the S-curve (Cioffi, 2005). The term “S-Curve” is used due to the shape of cost-time curve that is quite like letter 

“S” (Cooke & Jepson, 1979). Accuracy of any S-curve based method is determined by the effectiveness of assumptions 

of conditions representing the real-world situation of the project (Boussabaine & Kaka, 1998). 

Projects involvement in uncertainties and complexities is notable and managers have to make decisions under 

uncertain environments (Mohagheghi et al., 2015). The complex nature of production project environment imposes a 

high degree of uncertainty in different aspects of project management including project cash flow analysis and project 

scheduling. In project environments, facing situations with few data, extreme values, emerging changes, uncertainties 

and uniqueness is very common. In fact, the aforementioned conditions are a part of project nature (San Cristóbal et al., 

2015). 

As a matter of fact, cash is the main bloodline of any organization. It is possible for a firm to survive without profit 

for some time, but without cash no firm can operate properly and all firms, no matter in which sector they are, risk 

facing bankruptcy after a while (Tangsucheeva & Prabhu, 2014). Several sources cause the financial risks, which 

highlights the need for a reliable cash flow assessing method that overcomes the existing difficulties by providing a 

comprehensive cash flow forecasting (Barbosa & Pimentel, 2001). Fuzzy sets theory has been widely applied as a tool 

to model uncertainty in different problems. Due to uncertain nature of projects and vague and unknown information of 
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projects, fuzzy sets theory has been applied as an appropriate tool to handle project uncertainty. (Kumar et al., 2000) 

introduced a model of working capital requirements prediction under fuzzy uncertainty. (Lam et al., 2001) proposed a 

fuzzy optimization model that finds the optimum cash flow using the minimum amount of resources. (Hsu, 2003) 

introduced statistical models based on S-curve to predict or evaluate construction project cash flow. (Blyth & Kaka, 

2006) proposed a multiple linear regression model to predict S-curves of individual projects. They focused on 

standardizing the activities, and predicting the duration, cost and end dates of the activities. (Gormley & Meade, 2007) 

employed time series to introduce a model to predict expectations of further cash flows. (Jarrah et al., 2007) introduced 

a model based on a fourth degree polynomial regression analysis approach in order to forecast and predict cash flows 

and trends. (Khosrowshahi & Kaka, 2007) introduced a model based on the concept of decision support systems to 

manage cash flows of construction projects. (Cheng & Roy, 2009) introduced an evolutionary fuzzy decision model that 

applied S-curves to foresee project cash flow.( Maravas & Pantouvakis, 2012) developed a cash flow assessment model 

under fuzzy environment. (Rostami et al., 2013) introduced a fuzzy statistical expert system for cash flow analysis, 

which was designed to handle the uncertain environment of projects. (Chen et al., 2013) introduced a multivariate 

model in order to evaluate how key variables in project initiation and planning phases. (Ungureanu & Vernic, 2014) 

introduced a fuzzy cash flow model with applications in risk mitigation. (Cheng et al., 2015) proposed a model of cash 

flow prediction that was based on a hybrid artificial intelligence model. Their model was solely depending on data 

gathered from a specific project. In other words, the model was unable to address different sort of projects. 

It is concluded from the above that several fuzzy techniques such as fuzzy averaging, fuzzy composition matrices, 

fuzzy reasoning, fuzzy optimization, fuzzy multi objective decision models, and neuro-fuzzy inference have been 

utilized to generate project cash flows. Despite this effort, all the mentioned studies were based on the concept of 

classical fuzzy sets theory, which has its own shortcomings. Although it is mainly accepted that uncertainty 

management is a vital requirement for effective project management, it can be discussed that it should get more 

sophisticated before obtaining practical results (Atkinson et al., 2006). One area of classical fuzzy sets theory 

inadequacies is where a DM is expected to give an exact opinion in a number in interval [0, 1]. As mentioned earlier in 

initial project phases the level of uncertainty is so high that using a crisp value to express the membership degree 

decreases the effectiveness of uncertainty modeling. Classical fuzzy sets are unable to express the expert’s degree of 

hesitation. Moreover, they only consider the membership degree and do not address non-membership degree. In other 

words, in today’s competitive business environment uncertainty needs to be fully addressed in any decision-making 

process. In production projects that often deal with new technological advancements and uncertain markets, uncertainty 

requires a sophisticated addressing tool. Since classical fuzzy sets lack the ability to fully express uncertain project 

elements, IFSs are applied in this paper. Using IFS gives the model the following advantages over the classical fuzzy 

based studies: 

 IFS presents membership degree, non-membership degree and hesitancy degree by using three grades of 

membership function, respectively. Whereas the triangular and the trapezoidal fuzzy numbers lack this ability and 

each only can denote one crisp grade of membership in the unit interval [0,1] (Szmidt et al., 2014). 

  Despite the similarities between IFS and interval-valued fuzzy set, a number of references in the literature on IFSs 

(around 1000 papers) suggest that many researchers find the advantages of IFSs over the equivalent interval-valued 

fuzzy sets (Atanassov, 2008) ; (Zhu & Liao, 2014). 

 IFS unlike all of triangular fuzzy numbers, trapezoidal fuzzy numbers and interval-valued fuzzy numbers can reflect 

the “disagreement” of the DM in addition to the fuzziness of “agreement” (Zhu & Liao, 2014). 

These sets despite their novelty have been successfully used in a wide range of real world problems. For instance, 

they were employed to select renewable energy technologies for electricity generation in Turkey (Boran et al., 2012). 

They were used in construction site layout planning (Ning et al., 2011). They were applied in supplier selection 

problems (Chai et al., 2012). They were employed to address software selection problems (Wang, 2012). Medical 

diagnosis were carried out by these sets (Szmidt & Kacprzyk, 2001) ; (Neog & Sut, 2011). Eventually, in project 

management one of its applications were presented by (Gerogiannis et al., 2011). They used IFSs in project evaluation 

and portfolio management. 
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III. PRELIMINARY KNOWLEDGE OF TRIANGULAR INTUITIONISTIC FUZZY SETS 

 

In the following, in order to illustrate the basic concepts of the introduced model some basic concepts related to 

intuitionistic fuzzy sets are introduced. 

(Zadeh, 1965) proposed fuzzy sets to illustrate imprecise or vague information. Through the years fuzzy sets theory 

has proven itself as a useful tool to handle uncertain situations by denoting a degree to which a certain object belongs to 

a set. In real situations, an object can belong to a set to a certain degree, but there can be hesitations. In other words, 

when there is hesitation or uncertainty about the membership degree, fuzzy set theory has no way to imply that 

hesitation in the membership degrees (Zimmermann, 2001). IFS introduced by A (tanassov, 1983) is a possible solution 

to overcome this problem. IFS uses a degree of truth membership function 𝑢𝐴(𝑥) and one of falsity membership 

function 𝜈𝐴(𝑋) to represent lower bound (𝑢𝐴(𝑥))and upper bound (1 − 𝜈𝐴(𝑋))such that 𝑢𝐴(𝑥) + 𝜈𝐴(𝑋) ≤ 1. By 

complementing the membership degree with a non-membership degree that expresses how the element is not in the IFS, 

the interval [𝑢𝐴(𝑥), 1 − 𝜈𝐴(𝑋)] can develop the fuzzy set of membership function. The hesitation or uncertainty of x can 

be measured for each x by the size of the interval 𝜋𝐴(𝑥) = 1 − 𝜈𝐴(𝑋) − 𝑢𝐴(𝑥). If the 𝜋𝐴(𝑥) is small, it represents more 

certainty about x. As 𝜋𝐴(𝑥)gets greater, it denotes more uncertainly about x. obviously, if 𝑢𝐴(𝑥) = 1 − 𝜈𝐴(𝑋) for all 

elements of the universe, the IFS becomes traditional fuzzy set (Shu et al., 2006). 

From definition of triangular intuitionistic fuzzy set, four arithmetic operations for triangle vague sets are defined as 

follows (Shu et al., 2006). A and B are two IFSs, as depicted in Fig. 1 (Lee, 1998).  If two intuitionistic fuzzy 

sets 𝑢𝐴(𝑥) ≠ 𝑢𝐵(𝑥), and𝜈𝐴(𝑥) ≠ 𝜈𝐵(𝑥), then the arithmetic operations are defined as: 

 

𝐴 = 〈[(𝑎1
′ , 𝑏1, 𝑐1

′ ); 𝑢𝐴], [(𝑎1, 𝑏1, 𝑐1); 𝜈𝐴]〉 (1) 

𝐵 = 〈[(𝑎2
′ , 𝑏2, 𝑐2

′ ); 𝑢𝐵], [(𝑎2, 𝑏2, 𝑐2); 𝜈𝐵]〉 (2) 

𝐴 + 𝐵 = 〈[(𝑎1
′ , 𝑏1, 𝑐1

′ ); 𝑢𝐴], [(𝑎1, 𝑏1, 𝑐1); 𝜈𝐴]〉 + 〈[(𝑎2
′ , 𝑏2, 𝑐2

′ ); 𝑢𝐵], [(𝑎2, 𝑏2, 𝑐2); 𝜈𝐵]〉

= 〈[(𝑎1
′ + 𝑎2

′ , 𝑏1 + 𝑏2, 𝑐1
′ + 𝑐2

′ ); min(𝜇𝐴, 𝜇𝐵)], [(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1

+ 𝑐2); min(𝜈𝐴 , 𝜈𝐵)]〉 

(3) 

𝐴 − 𝐵 = 〈[(𝑎1
′ , 𝑏1, 𝑐1

′ ); 𝜇𝐴], [(𝑎1, 𝑏1, 𝑐1); 𝜇𝐵]〉 − 〈[(𝑎2
′ , 𝑏2, 𝑐2

′ ); 𝜈𝐴], [(𝑎2, 𝑏2, 𝑐2); 𝜈𝐵]〉

= 〈[(𝑎1
′ + 𝑐2

′ , 𝑏1 + 𝑏2, 𝑐1
′ + 𝑎2

′ ); min(𝜇𝐴, 𝜇𝐵)], [(𝑎1 + 𝑐2, 𝑏1 + 𝑏2, 𝑐1

+ 𝑎2); min(𝜈𝐴 , 𝜈𝐵)]〉 

(4) 

𝐴 × 𝐵 = 〈[(𝑎1
′ , 𝑏1, 𝑐1

′ ); 𝜇𝐴], [(𝑎1, 𝑏1, 𝑐1); 𝜇𝐵]〉 × 〈[(𝑎2
′ , 𝑏2, 𝑐2

′ ); 𝜈𝐴], [(𝑎2, 𝑏2, 𝑐2); 𝜈𝐵]〉

= 〈[(𝑎1
′ 𝑎2

′ , 𝑏1𝑏2, 𝑐1
′ 𝑐2
′ ); min(𝜈𝐴, 𝜈𝐵)], [(𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2); min(𝜈𝐴, 𝜈𝐵)]〉 

(5) 

𝐴 ÷ 𝐵 = 〈[(𝑎1
′ , 𝑏1, 𝑐1

′ ); 𝜇𝐴], [(𝑎1, 𝑏1, 𝑐1); 𝜇𝐵]〉 ÷ 〈[(𝑎2
′ , 𝑏2, 𝑐2

′ ); 𝜈𝐴], [(𝑎2, 𝑏2, 𝑐2); 𝜈𝐵]〉

= 〈[(𝑎1
′ ÷ 𝑐2

′ , 𝑏1 ÷ 𝑏2, 𝑐1
′ ÷ 𝑎2

′ ); min(𝑢𝐴, 𝑢𝐵)], [(𝑎1 ÷ 𝑐2, 𝑏1 ÷ 𝑏2, 𝑐1

÷ 𝑎2); min(𝜈𝐴 , 𝜈𝐵)]〉 

(6) 

 

 

 
Fig. 1. Triangular IFS A and B 
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IV. THE INTRODUCED MODEL OF UNCERTAIN PRODUCTION PROJECT SCHEDULING 

 

A. Proposed ranking method 

 

In this paper, a distance-based similarity measure between two triangular intuitionistic fuzzy numbers is proposed, 

that is based on the concept of the model introduced by (Deng, 2014) for measuring the closeness between two IFNs. 

The step by step algorithm is introduced as follows: 

1. Determine the triangular intuitionistic fuzzy positive ideal solution as 

𝑥̃𝑚𝑎𝑥 = ([𝑥̃𝑚𝑎𝑥,1, 𝑥̃𝑚𝑎𝑥,2, 𝑥̃𝑚𝑎𝑥,3]; 𝑢𝑥̃𝑚𝑎𝑥
, 𝑣𝑥̃𝑚𝑎𝑥

) and the negative ideal solution 

as  𝑥̃𝑚𝑖𝑛 = ([𝑥̃𝑚𝑖𝑛,1, 𝑥̃𝑚𝑖𝑛,2, 𝑥̃𝑚𝑖𝑛,3]; 𝑢𝑥̃𝑚𝑖𝑛
, 𝑣𝑥̃𝑚𝑖𝑛

). 

 2. Determine the degree of similarity between each triangular intuitionistic fuzzy number 

𝐴̃𝑖 = ([𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3]; 𝑢𝑎𝑖
, 𝑣𝑎𝑖

) (𝑖 = 1,2, … , 𝑛)and the positive triangular intuitionistic fuzzy ideal solution (𝑥̃𝑚𝑎𝑥) by 

using the following (Liang et al., 2014): 

 

𝑑𝑖
+(𝐴̃𝑖  , 𝑥̃𝑚𝑎𝑥) =

1

6
(|(1 + 𝑢𝐴𝑖

− 𝑣𝐴𝑖
)𝑎1 − ((1 + 𝑢𝑥𝑚𝑎𝑥

− 𝑣𝑥𝑚𝑎𝑥
)𝑥̃𝑚𝑎𝑥,1)|

+ |(1 + 𝑢𝐴𝑖
− 𝑣𝐴𝑖

)𝑎2 − ((1 + 𝑢𝑥𝑚𝑎𝑥
− 𝑣𝑥𝑚𝑎𝑥

)𝑥̃𝑚𝑎𝑥,2)|

+ |(1 + 𝑢𝐴𝑖
− 𝑣𝐴𝑖

)𝑎3 − ((1 + 𝑢𝑥𝑚𝑎𝑥
− 𝑣𝑥𝑚𝑎𝑥

)𝑥̃𝑚𝑎𝑥,3)|) 

 

(7) 

3. Determine the degree of similarity between each triangular intuitionistic fuzzy number 

𝐴̃𝑖 = ([𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3]; 𝑢𝑎𝑖
, 𝑣𝑎𝑖

) (𝑖 = 1,2, … , 𝑛)and the negative triangular intuitionistic fuzzy ideal solution (𝑥̃𝑚𝑖𝑛) by 

using the following: 

 

𝑑𝑖
+(𝐴̃𝑖 , 𝑋̃𝑚𝑖𝑛) = 𝑑𝑖

+(𝐴̃𝑖 , 𝑥̃𝑚𝑖𝑛)

=
1

6
(|(1 + 𝑢𝐴̃𝑖

− 𝑣𝐴̃𝑖
)𝑎1 − ((1 + 𝑢𝑥̃𝑚𝑖𝑛

− 𝑣𝑥̃𝑚𝑖𝑛
)𝑥̃𝑚𝑖𝑛,1)|

+ |(1 + 𝑢𝐴̃𝑖
− 𝑣𝐴̃𝑖

)𝑎2 − ((1 + 𝑢𝑥̃𝑚𝑖𝑛
− 𝑣𝑥̃𝑚𝑖𝑛

)𝑥̃𝑚𝑖𝑛,2)|

+ |(1 + 𝑢𝐴̃𝑖
− 𝑣𝐴̃𝑖

)𝑎3 − ((1 + 𝑢𝑥̃𝑚𝑖𝑛
− 𝑣𝑥̃𝑚𝑖𝑛

)𝑥̃𝑚𝑖𝑛,3)|) 

 

(8) 

4. Calculate the overall performance index (𝑃𝑖) of each triangular intuitionistic fuzzy number 𝐴̃𝑖  (𝑖 = 1,2, … , 𝑛) by 

using the following: 

 

𝑃𝑖 =
𝑑𝑖

−

𝑑𝑖
+ + 𝑑𝑖

− , 𝑖 = 1,2, … , 𝑛 
(9) 

 

Step 5. Rank the triangular intuitionistic fuzzy number 𝐴̃𝑖  (𝑖 = 1,2, … , 𝑛) in descending order of 𝑃𝑖 . 

This method provides the DM with more control over the process. Selecting the triangular intuitionistic fuzzy 

positive ideal solution as 𝑥̃𝑚𝑎𝑥 and the negative ideal solution as 𝑥̃𝑚𝑖𝑛 is a step that can be done based on the nature of 

the project. To enhance the ability of model in ranking numbers with very different values a normalization step could 

also be added to the process. This approach, in addition to its simplicity, is effective which makes the process more 

practical for project environments. 

 

B. Proposed project scheduling model 

 

Applying project scheduling in modeling real-world projects requires a method that can model uncertainty and 

hesitations. Therefore, in this section an IF-project scheduling model is presented. IF-project scheduling can model 
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activities with uncertain durations by considering a degree of membership, non-membership and hesitation. By 

calculating early start and early finish time, forward pass can be obtained (Chanas & Kamburowski, 1981); (McCahon 

& Lee,1988); (Prade, 1979).  

 

𝐸̃𝑆𝑠𝑡𝑎𝑟𝑡 = (0) (10) 

𝐸̃𝑆 = 𝑚𝑎̃𝑥(𝐸̃𝐹𝑝)
𝑝∈𝑃

= 〈[(𝑒𝑓𝑝1

′ , 𝑒𝑓𝑝2
, 𝑒𝑓𝑝3

′ ) ; 𝑢𝑒𝑓] , [(𝑒𝑓𝑝1
, 𝑒𝑓𝑝2

, 𝑒𝑓𝑝3
) ; 𝜈𝑒𝑓]〉 (11) 

𝑑̃ = 〈[(𝑑1
′ , 𝑑2, 𝑑3

′ ); 𝑢𝐴], [(𝑑1, 𝑑2, 𝑑3); 𝜈𝑑]〉 (12) 

𝐸̃𝐹 = 𝐸̃𝑆 + 𝑑̃ = 〈[(𝑒𝑓𝑝1

′ , 𝑒𝑓𝑝2
, 𝑒𝑓𝑝3

′ ) ; 𝑢𝑒𝑓] , [(𝑒𝑓𝑝1
, 𝑒𝑓𝑝2

, 𝑒𝑓𝑝3
) ; 𝜈𝑒𝑓]〉

+ 〈[(𝑑1
′ , 𝑑2, 𝑑3

′ ); 𝑢𝐴], [(𝑑1, 𝑑2, 𝑑3); 𝜈𝑑]〉 = 

〈[(𝑒𝑓𝑝1

′ + 𝑑1
′ , 𝑒𝑓𝑝2

+ 𝑑2, 𝑒𝑓𝑝3

′ + 𝑑3
′ ) ; 𝑚𝑖𝑛(𝜇𝑒𝑓 , 𝜇𝑑)] , [(𝑒𝑓𝑝1

+ 𝑑1, 𝑒𝑓𝑝2
+ 𝑑2, 𝑒𝑓𝑝3

+

𝑑3) ; 𝑚𝑖𝑛(𝜈𝑒𝑓 , 𝜈𝑑)]〉. 

(13) 

 

where 𝐸̃𝑆 is the IF-early start time, 𝐸̃𝐹 is the IF-early finish time, P is the set of proceeding activities and 𝑑̃ is the IF-

activity duration. 

 

V. THE PROPOSED COST FORECAST MODEL 

 

Proposing IF-project scheduling will involve the impacts of activities durations vagueness in cost forecast and cash 

flow analysis. In order to get an insight of durations under optimistic and pessimistic situations, activities beginning in 

the earliest time and requiring the least duration (Min Dα) and activities beginning in the latest time and finishing at the 

longest duration (Max Dα) should be considered in cost forecasting calculations (Maravas & Pantouvakis, 2012). 

Duration calculation for activities with IF times and durations is presented. These durations for activities with early start 

ẼS = 〈[(𝑒𝑠1
′ , 𝑒𝑠2, 𝑒𝑠3

′ ); 𝑢𝑒𝑠], [(𝑒𝑠1 , 𝑒𝑠2, 𝑒𝑠3); 𝜈𝑒𝑠]〉 and early finish ẼF = 〈[(𝑒𝑓1
′ , 𝑒𝑓2, 𝑒𝑓3

′); 𝑢𝑒𝑓], [(𝑒𝑓1, 𝑒𝑓2, 𝑒𝑓3); 𝜈𝑒𝑓]〉 are 

presented as follows: 

 

Min 𝐷𝛼 = [(𝑚𝑖𝑛𝐷𝛼); 𝑢𝐷, (𝑚𝑖𝑛𝐷𝛼); (1 − 𝑣𝐷)] (14) 

𝑀𝑖𝑛 𝐷𝛼 ; 𝑢𝐷 = [(𝑖𝑛𝑓𝐸𝑆𝛼); 𝑢𝑒𝑠 , (𝑖𝑛𝑓𝐸𝑆𝛼 + 𝑖𝑛𝑓𝐷𝛼); min 𝑢𝑒𝑠, 𝑢𝐷]

= [
𝛼

𝑢𝑒𝑠

(𝑒𝑠2 − 𝑒𝑠1) + 𝑒𝑠1,
𝛼

𝑢𝑒𝑓

(𝑒𝑓2 − 𝑒𝑓1) + 𝑒𝑓1] 

(15) 

𝑀𝑖𝑛 𝐷𝛼 ; (1 − 𝑣𝐷) = [(𝑖𝑛𝑓𝐸𝑆𝛼); (1 − 𝑣𝑒𝑠), (𝑖𝑛𝑓𝐸𝑆𝛼 + 𝑖𝑛𝑓𝐷𝛼); min 𝑣𝑒𝑠 , 𝑣𝐷]

= [
𝛼

(1 − 𝑣𝑒𝑠)
(𝑒𝑠2 − 𝑒𝑠′1) + 𝑒𝑠′1,

𝛼

(1 − 𝑣𝑒𝑓)
(𝑒𝑓2 − 𝑒𝑓′

1
) + 𝑒𝑓′

1
] 

(16) 

Max 𝐷𝛼 = [(𝑚𝑎𝑥𝐷𝛼); 𝑢𝐷 , (𝑚𝑎𝑥𝐷𝛼); (1 − 𝑣𝐷)] (17) 

𝑀𝑎𝑥 𝐷𝛼 ; 𝑢𝐷 = [(sup 𝐸𝑆𝛼); 𝑢𝑒𝑠 , (sup 𝐸𝑆𝛼 + sup 𝐷𝛼); min 𝑢𝑒𝑠, 𝑢𝐷]

= [
𝛼

𝑢𝑒𝑠

(𝑒𝑠2 − 𝑒𝑠3) + 𝑒𝑠3,
𝛼

𝑢𝑒𝑓

(𝑒𝑓2 − 𝑒𝑓3) + 𝑒𝑓3] 

(18) 

𝑀𝑎𝑥 𝐷𝛼 ; (1 − 𝑣𝐷) = [(sup 𝐸𝑆𝛼); (1 − 𝑣𝑒𝑠), (sup 𝐸𝑆𝛼 + sup 𝐷𝛼); min 𝑣𝑒𝑠 , 𝑣𝐷]

= [
𝛼

(1 − 𝑣𝑒𝑠)
(𝑒𝑠2 − 𝑒𝑠′3) + 𝑒𝑠′3,

𝛼

(1 − 𝑣𝑒𝑓)
(𝑒𝑓2 − 𝑒𝑓′

3
) + 𝑒𝑓′

3
] 

(19) 

 

where 𝑀𝑖𝑛 𝐷𝛼 ; 𝑢𝐷 and  𝑀𝑖𝑛 𝐷𝛼 ; (1 − 𝑣𝐷) represent 𝛼-cut of upper and lower bounds of minimum duration in 

different levels of 𝛼, 𝑀𝑎𝑥 𝐷𝛼 ; 𝑢𝐷 and  𝑀𝑎𝑥 𝐷𝛼 ; (1 − 𝑣𝐷) denote 𝛼-cut of upper and lower bounds of maximum 

durations under different levels of 𝛼, respectively. 𝑆𝑢𝑝 denotes supremum and 𝑖𝑛𝑓 denotes infimum. It should be noted 

the trust degree of triangular intuitionistic fuzzy number is between [𝑢, 1 − 𝑣]. 

The resulting IF-CPM not only enables the managers to express membership degree, non-membership degree and 

hesitation in calculations but also provides a more thorough understanding of the activities durations under different 

levels of knowledge by using the concept of 𝛼-cuts. 

Project cost fluctuations are caused by uncertainty and vagueness of cost and duration. Correlation of lack of 
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knowledge and vagueness in time and cost can follow different patterns. In real production project environment, they 

are most of the times positively correlated. Therefore, the upper and lower bounds of the best and the worst conditions 

of cash distribution activity 𝑖 with 𝐶𝑜𝑠𝑡𝑖 = 〈[(𝑐𝑖1
′ , 𝑐𝑖2, 𝑐𝑖3

′ ); 𝑢𝑐𝑖], [(𝑐𝑖1, 𝑐𝑖2, 𝑐𝑖3); 𝜈𝑐𝑖]〉 and duration of 

𝑑𝑖 = 〈[(𝑑𝑖1
′ , 𝑑𝑖2, 𝑑𝑖3

′ ); 𝑢𝑑𝑖], [(𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3); 𝜈𝑑𝑖]〉 per unit of time 𝑡 at level α is introduced as the following. 

 

min 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖,𝑡𝛼
; 𝑢𝑐𝑑 =

inf 𝑐𝑜𝑠𝑡𝑖,𝛼 ; 𝑢𝑐𝑖

sup 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝛼  ; 𝑢𝑐𝑖

=

𝛼𝑐

𝑢𝑐
(𝑐𝑖2 − 𝑐𝑖1) + 𝑐𝑖1

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖2 − 𝑑𝑖3) + 𝑑𝑖3

 
(20) 

min 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖,𝑡𝛼
; (1 − 𝑣𝑐𝑑) =

inf 𝑐𝑜𝑠𝑡𝑖,𝛼 ; (1 − 𝑣𝑐𝑖)

sup 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝛼  ; (1 − 𝑣𝑐𝑖)
=

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖2 − 𝑐𝑖′1) + 𝑐𝑖′1

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖2 − 𝑑𝑖′3) + 𝑑𝑖′3

 

(21) 

max 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖,𝑡𝛼
; 𝑢𝑐𝑑 =

sup 𝑐𝑜𝑠𝑡𝑖,𝛼 ; 𝑢𝑐𝑖

inf 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝛼  ; 𝑢𝑐𝑖

=

𝛼𝑐

𝑢𝑐𝑖
(𝑐𝑖2 − 𝑐𝑖3) + 𝑐𝑖3

𝛼𝑑

𝑢𝑐𝑖
(𝑑𝑖2 − 𝑑𝑖1) + 𝑑𝑖1

 

(22) 

max 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖,𝑡𝛼
; (1 − 𝑣𝑐𝑑) =

sup 𝑐𝑜𝑠𝑡𝑖,𝛼 ; (1 − 𝑣𝑐𝑖)

inf 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝛼  ; (1 − 𝑣𝑐𝑖)
=

𝛼𝑐

(1−𝑣𝑐𝑖)
(𝑐𝑖2 − 𝑐𝑖′3) + 𝑐𝑖′3

𝛼𝑑

(1−𝑣𝑐𝑖)
(𝑑𝑖2 − 𝑑𝑖′1) + 𝑑𝑖′1

 

(23) 

 

In order to calculate the cost in the entire activity network, sum of direct cash distribution of all activities in each 

period can be obtained by the following. 

 

𝑀𝑖𝑛 𝑇𝐶𝛼; 𝑢𝑡𝑐 = ∑

𝛼𝑐

𝑢𝑐
(𝑐𝑖2 − 𝑐𝑖1) + 𝑐𝑖1

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖2 − 𝑑𝑖3) + 𝑑𝑖3

𝑛

𝑖=1

 
(24) 

𝑀𝑖𝑛 𝑇𝐶𝛼; (1 − 𝑣𝑡𝑐) = ∑

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖2 − 𝑐𝑖′1) + 𝑐𝑖′1

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖2 − 𝑑𝑖′3) + 𝑑𝑖′3

𝑛

𝑖=1

 

(25) 

𝑀𝑎𝑥 𝑇𝐶𝛼; 𝑢𝑡𝑐 = ∑

𝛼𝑐

𝑢𝑐𝑖
(𝑐𝑖2 − 𝑐𝑖3) + 𝑐𝑖3

𝛼𝑑

𝑢𝑐𝑖
(𝑑𝑖2 − 𝑑𝑖1) + 𝑑𝑖1

𝑛

𝑖=1

 

(26) 

𝑀𝑎𝑥 𝑇𝐶𝛼; (1 − 𝑣𝑡𝑐) = ∑

𝛼𝑐

(1−𝑣𝑐𝑖)
(𝑐𝑖2 − 𝑐𝑖′3) + 𝑐𝑖′3

𝛼𝑑

(1−𝑣𝑐𝑖)
(𝑑𝑖2 − 𝑑𝑖′1) + 𝑑𝑖′1

𝑛

𝑖=1

 

(27) 

 

where 𝑇𝐶 is the total direct cash distribution of activities (𝑖 = 0,1,2, … , 𝑛)being implemented in the 𝑡 time period. Total 

cash flow of project can be calculated by using the following: 

 

Min 𝐶𝐹𝑇𝛼 , 𝑢𝑐𝑓𝑡 = ∑ ∑

𝛼𝑐

𝑢𝑐
(𝑐𝑖𝑡2

− 𝑐𝑖𝑡1
) + 𝑐𝑖𝑡1

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖𝑡2

− 𝑑𝑖𝑡3
) + 𝑑𝑖𝑡 3

𝑛

𝑖=1

𝑇

𝑡=0

 
(28) 

Min 𝐶𝐹𝑇𝛼 , (1 − 𝑣𝑐𝑓𝑡) = ∑ ∑

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖𝑡 2

− 𝑐𝑖′𝑡1
) + 𝑐𝑖′𝑡1

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖𝑡2

− 𝑑𝑖′𝑡3
) + 𝑑𝑖′𝑡 3

𝑛

𝑖=1

𝑇

𝑡=0

 

(29) 

Max 𝐶𝐹𝑇𝛼 , 𝑢𝑐𝑓𝑡 = ∑ ∑

𝛼𝑐

𝑢𝑐
(𝑐𝑖𝑡 2

− 𝑐𝑖𝑡 3
) + 𝑐𝑖𝑡3

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖𝑡 2

− 𝑑𝑖𝑡1
) + 𝑑𝑖𝑡1

𝑛

𝑖=1

𝑇

𝑡=0

 
(30) 

Max 𝐶𝐹𝑇𝛼 , (1 − 𝑣𝑐𝑓𝑡) = ∑ ∑

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖𝑡2

− 𝑐𝑖′𝑡 3
) + 𝑐𝑖′𝑡3

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖𝑡2

− 𝑑𝑖′𝑡1
) + 𝑑𝑖′𝑡1

𝑛

𝑖=1

𝑇

𝑡=0

 

(31) 

 

The minimum and maximum values with their corresponding upper and lower bounds depict the limits of predicted 
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cost in the case of the best and the worst events. This method would enable the DM to have a thorough understanding of 

uncertain and vague data in different stages of the project life cycle and would help the manager take the proper 

decisions. Upper and lower bound of uncertainty in cash flow in different 𝛼 levels can be obtained by the following. 

𝐶𝐹𝑈𝛼 = [𝐶𝐹𝑈𝛼; 𝑢𝑐𝑓𝑢 , 𝐶𝐹𝑈𝛼; 1 − 𝑣𝑐𝑓𝑢] (32) 

 

𝐶𝐹𝑈𝛼; 𝑢𝑐𝑓𝑢 = Max 𝐶𝐹𝑇𝛼 , 𝑢𝑐𝑓𝑡 − Min 𝐶𝐹𝑇𝛼 , 𝑢𝑐𝑓𝑡

= ∑ ∑

𝛼𝑐

𝑢𝑐
(𝑐𝑖𝑡2

− 𝑐𝑖𝑡3
) + 𝑐𝑖𝑡3

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖𝑡2

− 𝑑𝑖𝑡1
) + 𝑑𝑖𝑡1

𝑛

𝑖=1

𝑇

𝑡=0

− ∑ ∑

𝛼𝑐

𝑢𝑐
(𝑐𝑖𝑡2

− 𝑐𝑖𝑡1
) + 𝑐𝑖𝑡1

𝛼𝑑𝑖

𝑢𝑑𝑖
(𝑑𝑖𝑡 2

− 𝑑𝑖𝑡 3
) + 𝑑𝑖𝑡 3

𝑛

𝑖=1

𝑇

𝑡=0

,  

  

(33) 

 

 

 

 

𝐶𝐹𝑈𝛼; (1 − 𝑣𝑐𝑓𝑢) = Max 𝐶𝐹𝑇𝛼 , (1 − 𝑣𝑐𝑓𝑡) − Min 𝐶𝐹𝑇𝛼 , (1 − 𝑣𝑐𝑓𝑡)

= ∑ ∑

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖𝑡 2

− 𝑐𝑖′𝑡 3
) + 𝑐𝑖′𝑡3

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖𝑡 2

− 𝑑𝑖′𝑡1
) + 𝑑𝑖′𝑡1

𝑛

𝑖=1

𝑇

𝑡=0

− ∑ ∑

𝛼𝑐𝑖

(1−𝑣𝑐𝑖)
(𝑐𝑖𝑡2

− 𝑐𝑖′𝑡1
) + 𝑐𝑖′𝑡1

𝛼𝑑𝑖

(1−𝑣𝑐𝑖)
(𝑑𝑖𝑡2

− 𝑑𝑖′𝑡3
) + 𝑑𝑖′𝑡 3

𝑛

𝑖=1

𝑇

𝑡=0

 

(34) 

 

VI. APPLICATION EXAMPLE 

 

In order to illustrate the proposed model, a network of main activities in a production project is presented and its 

cost and dates are analyzed by the proposed model. The activity network is displayed in Fig. 2, and the adopted 

information is reported in Table I regarding the vague and uncertain activities durations and costs. 

 

A

B

D

C

E

F

G

H

 
 

Fig. 2. Sample activity network 

 

TABLE I. Activity network data 

Activity Predecessors IF-Duration (days) IF-cost (k$) 

A - 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 〈[(7,10,13); 0.6], [(5,10,16); 0.3]〉 

B A 〈[(4,5,6); 0.6], [(2,5,8); 0.3]〉 〈[(11,15,18); 0.6], [(8,15,22); 0.3]〉 

C A 〈[(6,8,10); 0.6], [(2,8,14); 0.3]〉 〈[(30,35,40); 0.6], [(25,35,45); 0.3]〉 

D A 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 〈[(12,15,17); 0.6], [(10,8,21); 0.3]〉 

E B 〈[(9,12,15); 0.6], [(3,12,21); 0.3]〉 〈[(16,20,26); 0.6], [(14,20,36); 0.3]〉 

F C 〈[(15,20,25); 0.6], [(5,20,35); 0.3]〉 〈[(38,40,44); 0.6], [(32,40,50); 0.3]〉 

G D 〈[(5,7,9); 0.6], [(1,7,13); 0.3]〉 〈[(27,30,34); 0.6], [(22,30,38); 0.3]〉 

H E,F,G 〈[(8,11,14); 0.6], [(2,11,20); 0.3]〉 〈[(6,10,14); 0.6], [(4,10,18); 0.3]〉 

A. Computational results 

Early start time and early finish time under vague environment is calculated by applying IF-project scheduling. 

Table II displays the corresponding results. For the purpose of illustration, the calculation for activity C is displayed in 
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the following. 

𝐸𝐹̃𝐶 = 𝐸𝑆̃𝐶 + 𝑑̃𝐶 = 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 + 〈[(6,8,10); 0.6], [(2,8,14); 0.3]〉

= 〈[(9,12,15); 0.6], [(3,12,21); 0.3]〉 

                (35) 

Cash distributions of activities under different levels of uncertainty are calculated, and the results are displayed in 

Tables III. For the purpose of illustration, the calculations for activity A are presented in the following. 

 

min 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝑡0.3
; 0.6𝑐𝑑 =

 0.3

0.6
(10 − 7) + 7

0.3

0.6
(4 − 3) + 3

= 2.4    
(36) 

min 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝑡0.3
; (1 − 0.3) =

 0.3

0.7
(10 − 5) + 5

 0.3

0.7
(4 − 7) + 7

= 0.86 
(37) 

max 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝑡0.3
; 0.6 =

 0.3

0.6
(10 − 13) + 13

 0.3

0.6
(4 − 3) + 3

= 3.28    
(38) 

max 𝐶𝑎𝑠ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝑡0.3
; (1 − 0.3) =

0.3

0.7
(10 − 16) + 16

0.3

0.7
(4 − 1) + 1

= 5.7 
(39) 

 

TABLE II. IF-project scheduling (days) 

Activity Early start Early finish 

A 〈[(0,0,0); 0.6], [(0,0,0); 0.3]〉 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 

B 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 〈[(7,9,11); 0.6], [(3,9,15); 0.3]〉 

C 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 〈[(9,12,15); 0.6], [(3,12,21); 0.3]〉 

D 〈[(3,4,5); 0.6], [(1,4,7); 0.3]〉 〈[(6,8,10); 0.6], [(2,8,14); 0.3]〉 

E 〈[(7,9,11); 0.6], [(3,9,15); 0.3]〉 〈[(16,21,26); 0.6], [(6,21,36); 0.3]〉 

F 〈[(9,12,15); 0.6], [(3,12,21); 0.3]〉 〈[(24,32,40); 0.6], [(8,32,56); 0.3]〉 

G 〈[(6,8,10); 0.6], [(2,8,14); 0.3]〉 〈[(15,20,25); 0.6], [(13,21,28); 0.3]〉 

H 〈[(24,32,40); 0.6], [(8,32,56); 0.3]〉 〈[(32,43,54); 0.6], [(10,43,76); 0.3]〉 

 

 

TABLE III. Cash distribution (𝑘$
𝑑𝑎𝑦⁄ ) 

Activity 

Max cash distribution Min cash distribution 

(𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 

Maravas and 

Pantouvakis method 

(2012) 

(𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 

Maravas and 

Pantouvakis 

method (2012) 

0.5 0.4 0.4 0.5 0.4 0.4 

A 3.73 3 3.47 1.76 2.08 1.78 

B 4.1 3.43 3.8 2.22 2.56 2.25 

C 6.02 5 5.5 3.31 3.85 3.47 

D 3.73 4.27 4.76 1.76 3.23 2.86 

E 2.61 2 2.3 1.25 1.44 1.27 

F 2.73 2.25 2.49 1.55 1.82 1.68 

G 2.6 2.85 3.17 2.09 2.23 2.04 

H 1.46 1.13 1.34 0.61 0.72 0.59 

The results presented in Table III show the upper and lower bounds of cash distribution of each activity under 

different levels of uncertainty. In order to verify the proposed model, illustrative example was solved with the recent 

method proposed by (Maravas & Pantouvakis, 2012). Applying the existing model yielded close results to the proposed 

model while it lacked some advantages of the proposed model under uncertainty. The difference is that while applying 
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IFSs, the model provided a better understanding of the situation by showing results based on membership and non-

membership degrees. For instance, maximum cash distribution of activity A under classical fuzzy sets is 3.47 units 

whereas the IFS gives a result between 3 and 3.75. Furthermore, the ability of the IFS in expressing hesitation and non-

membership degree, and consequently better expressing uncertainty should be added to the advantages of the introduced 

model.  

Moreover, to give a better understanding of costs in different periods of the projects, shortest and longest activity 

durations should be calculated. Table IV displays maximum and minimum activity durations under different levels of 

uncertainty. For the purpose of illustration, the calculations for activity B are presented in the following. 

 

𝑀𝑖𝑛 𝐷0.3 ; 0.6 = [
0.3

0.6
(4 − 3) + 3,

0.3

0.6
(9 − 7) + 7] = [3.5,8] 

(40) 

𝑀𝑖𝑛 𝐷0.3 ; (1 − 0.3) = [
0.3

0.7
(4 − 1) + 1,

0.3

0.7
(9 − 3) + 3] = [2.3,5.6] 

(41) 

𝑀𝑎𝑥 𝐷0.3 ; 0.6 = [
0.3

0.6
(4 − 5) + 5,

0.3

0.6
(9 − 11) + 11] = [5.5,12] 

(42) 

𝑀𝑖𝑛 𝐷0.3 ; (1 − 0.3) = [
0.3

0.7
(4 − 7) + 7,

0.3

0.7
(9 − 15) + 15] = [8.3,17.6] 

(43) 

 

In order to verify the proposed model, the activity duration calculations were done with classical triangular fuzzy 

numbers. Similarly, the comparison has provided the close results. The proposed model that is based on IFSs, presented 

a better understanding of the condition by displaying results based on a better method of uncertainty modeling. For 

example, minimum activity duration of activity A under classical fuzzy set is [0, 3.5] days whereas IFS gives results 

between [0, 3.8] and [0, 2.7]. This means that the introduced model helps the managers avoid unpleasant surprises by 

providing a better image of the activity. 

 

B. Discussion of results 

 
 𝛼-cut limits the degree of fuzziness and measures robustness of predictions. A higher levels of 𝛼 denotes a higher 

confidence in the parameters (Li &Vincent, 1995). The risk level increases from “none” to “high” as the 𝛼-cut moves 

from 1 to 0. To demonstrate this risk analysis approach, calculations for 3 different 𝛼-levels of 0.1, 0.3 and 0.5 for 𝑢 

and 3 different 𝛼-levels of 0.2, 0.4 and 0.6 for 1 − 𝑣𝑐𝑓𝑢were made. Table V displays maximum and minimum cash 

distribution of each activity. The results show different amounts for different levels of knowledge and risk. 

Furthermore, the same approach is carried out for activity duration. Finally, Table VI displays maximum activity 

duration and Table VII shows minimum activity duration. 

 

TABLE IV. Maximum and minimum activity durations 

Activity 

Max activity duration Min activity duration 

(𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 

Maravas and 

Pantouvakis 

method (2012) 

(𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 

Maravas and 

Pantouvakis method 

(2012) 

0.4 0.5 0.5 0.4 0.5 0.5 

A [0,5.3] [0,4.2] [0,4.5] [0,2.7] [0,3.8] [0,3.5] 

B [5.3,11.6] [4.2,9.3] [4.5,10] [2.7,6.4] [3.8,8.7] [3.5,8] 

C [5.3,15.9] [4.2,12.5] [4.5,13.5] [2.7,8.1] [3.8,11.5] [3.5,10.5] 

D [5.3,10.6] [4.2,8.3] [4.5,9] [2.7,5.4] [3.8,7.7] [3.5,7] 

E [11.6,27.4] [9.3,21.8] [10,23.5] [6.4,14.6] [8.7,20.2] [8,18.5] 

F [15.9,42.3] [12.5,33.3] [13.5,36] [8.1,21.7] [11.5,30.7] [10.5,28] 

G [10.6,24] [8.3,20.8] [9,22.5] [5.4,17.6] [7.7,19.2] [7,17.5] 

H [42.3,57.1] [33.3,44.8] [36,48.5] [21.7,28.9] [30.7,41.2] [28,37.5] 



Vol. 1, No. 2, PP. 57-70, July – Dec. 2015                                                                                                                67 

 

TABLE V. Cash distribution under different levels of risk 

Activity 

Max cash distribution Min cash distribution 

(𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 (𝟏 − 𝒗𝒄𝒇𝒖) 𝒖 

0.1 0.3 0.5 0.2 0.4 0.6 0.1 0.3 0.5 0.2 0.4 0.6 

A 10.6 5.88 3.73 3.6 3 2.5 0.87 1.25 1.76 1.71 2.08 2.5 

B 8.65 5.78 4.1 3.92 3.43 3 1.19 1.64 2.22 2.18 2.56 3 

C 15.25 8.91 6.02 5.75 5 4.38 2.01 2.56 3.31 3.39 3.85 4.38 

D 13.4 6.75 3.73 4.9 4.27 3.75 1.48 1.6 1.76 2.79 3.23 3.75 

E 7.87 4.25 2.61 2.4 2 1.67 0.75 0.97 1.25 1.24 1.44 1.67 

F 6.8 4 2.73 2.56 2.25 2 1.01 1.24 1.55 1.66 1.82 2 

G 3.27 2.92 2.6 3.27 2.85 2.5 1.67 1.87 2.09 2 2.23 2.5 

H 5.13 2.49 1.46 1.41 1.13 0.91 0.26 0.41 0.61 0.56 0.72 0.91 

 

 

TABLE VI. Maximum activity duration under different levels of risk 

Activity 
Max 𝒖 Max (𝟏 − 𝒗𝒄𝒇𝒖) 

0.1 0.3 0.5 0.2 0.4 0.6 

A [0,4.8] [0,4.5] [0,4.2] [0,6.1] [0,5.3] [0,4.4] 

B [4.8,10.7] [4.5,10] [4.2,9.3] [6.1,13.3] [5.3,11.6] [4.4,9.9] 

C [4.8,14.5] [4.5,13.5] [4.2,12.5] [6.1,18.4] [5.3,15.9] [4.4,13.3] 

D [4.8,9.7] [4.5,9] [4.2,8.3] [6.1,12.3] [5.3,10.6] [4.4,8.9] 

E [10.7,25.2] [10,23.5] [9.3,21.8] [13.3,31.7] [11.6,27.4] [9.9,23.1] 

F [14.5,38.7] [13.5,36] [12.5,33.3] [18.4,49.1] [15.9,42.3] [13.3,35.4] 

G [9.7,24.2] [9,22.5] [8.3,20.8] [12.3,26] [10.6,24] [8.9,22] 

H [38.7,52.2] [36,48.5] [33.3,44.8] [49.1,66.6] [42.3,57.1] [35.4,47.7] 

 

TABLE VII. Minimum activity duration under different levels of risk 

Activity 
Min 𝒖 Min (𝟏 − 𝒗𝒄𝒇𝒖) 

0.1 0.3 0.5 0.2 0.4 0.6 

A [0,3.2] [0,3.5] [0,3.8] [0,1.9] [0,2.7] [0,3.6] 

B [3.2,7.3] [3.5,8] [3.8,8.7] [1.9,4.7] [2.7,6.4] [3.6,8.1] 

C [3.2,9.5] [3.5,10.5] [3.8,11.5] [1.9,5.6] [2.7,8.1] [3.6,10.7] 

D [3.2,6.3] [3.5,7] [3.8,7.7] [1.9,3.7] [2.7,5.4] [3.6,7.1] 

E [7.3,16.8] [8,18.5] [8.7,20.2] [4.7,10.3] [6.4,14.6] [8.1,18.9] 

F [9.5,25.3] [10.5,28] [11.5,30.7] [5.6,14.9] [8.1,21.7] [10.7,28.6] 

G [6.3,15.8] [7,17.5] [7.7,19.2] [3.7,15.3] [5.4,17.6] [7.1,19.9] 

H [25.3,33.8] [28,37.5] [30.7,41.2] [14.9,19.4] [21.7,28.9] [28.6,38.3] 

 

 

VII. CONCLUSION 

 

In this paper, a new approach in production project cash flow generation for activities with uncertain and vague 

duration and cost is proposed. This novel cost-forecasting model is based on IF-CPM that is proposed in this paper. This 

model gives DMs a comprehensive and thorough insight of project cost in different stages of project life cycle. This 

comprehensive insight improves the DM’s knowledge of vagueness and lack of knowledge and as a result, upper and 

lower bounds of the required resources in different stages of project implementation are identified. Consequently, this 
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model helps avoid unpleasant surprises in the worst-case scenarios. Applying IFSs enables the method to model 

uncertainty, vagueness and hesitation with more flexibility in addition to adding all the advantages of IFSs over other 

fuzzy sets. Using IFSs makes the model more suitable for projects like new product development (NPD) and research 

and development (R&D), in which the information is vague, unclear and with hesitation. Since the introduced model 

applies a sophisticated uncertainty modeling technique, it could be beneficial in feasibility study in addition to project 

implementation stage. To put differently, the results could provide reliable inputs in project evaluation methods such as 

net present value. For the purpose of illustration, the proposed model is applied in a practical example. In the example, 

uncertain early start times and early finish times are calculated under vague environment. Cash distribution of activities 

under different levels of uncertainty is also provided to demonstrate different cost conditions under different risk levels. 

Applying this method as an evaluation tool in earned value analysis could be a promising research direction. 
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