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Abstract- Fountain codes are erasure codes that are characterized by 

their rateless property and their global acknowledgment. The larger the 

network size, the more efficient the fountain codes are degraded because 

of multi-hops causing an overflow. The optimization of wireless 

communication is also a focus of study exciting and an important issue 

always to maximize performance, the lifetime of the sensor nodes, and to 

reduce the consumption of energy. Estimation becomes one of the 

attractive topics in wireless sensor networks nowadays. In this paper, I 

consider a distributed estimation scheme composing of a sensor member 

and a fusion center, which is the cluster head. To minimize the number 

of transmissions as well as the impact of overflow, I determine the 

optimal minimal number of encoded packets needed for successful 

decoding. Sensor observations are encoded using fountain codes, and 

then messages are collected at the cluster head where a final estimation 

is provided with a classification based on Bayes rule. The main goal of 

this paper is to estimate the total number of received packets using the 

Bayes rule so that it is possible to minimize the overflow and extend the 

network lifetime. 
  

Index Terms- Wireless Sensor Networks, Fountain codes, Estimation, Bayes rule, 

Naive Bayes.  

I. INTRODUCTION 

Wireless Sensor Network (WSN) consists of a large number of geographically distributed sensor 

nodes. Research in this field is very attractive, and scientists, as well as researchers, must be 

ingenious, inventive, and anticipatory to propose new techniques to reduce energy consumption [1]-

[3]. It performs activities in several dimensions, for instance, identifying the neighborhood, presence 

of targets, or monitoring environmental factors (motion, temperature, humidity, sound, and other 

physical variables) [4,5]. However, owing to limited battery power, sensor networks need resolution 

with energy savings to increase sensor network performance. Prolonging battery life is a principal 

objective in the design of wireless sensor networks due to the difficulty and high cost associated with 

replacing or recharging exhausted batteries in a deployed network. There is, therefore, a problem of 
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energy preservation. At the same time, a node in this network can be a transceiver. Given the limited 

communication range of sensor nodes, sending data from a node to the sink typically results in sets of 

hops through the network. 

   On the other hand, transmissions using radio channel can generate a low level of communication 

reliability. Indeed, the transmitted information can be subject to errors caused by the radio channel 

itself, fading, or because of the coexistence of multiple transmissions. To protect data against channel 

failures, two solutions can be envisaged. Either acknowledgment mechanisms or retransmission 

techniques can be used. However, the major disadvantage of these techniques is still the high energy 

cost. 

   Recently, appeared erasure codes known as fountain codes. Fountain codes are the object of a 

renewed interest aroused by numerous research projects due to their potential capacity to make the 

transmission more reliable while limiting the use of the feedback channel. The greater the network 

size, the more fountain codes efficiency degrades because of the multi-hops generating useless data 

known by overflow. Decoding and re-encoding information raised a significant degradation problem 

of the network efficiency by increasing latency and energy consumption. Besides, the re-encoding by 

intermediate nodes modifies the degree distribution of the information at the receiver side. Generally, 

one of the most efficient ways to deploy WSN is to organize sensor networks into clustered 

architectures. Clustering is one of the basic approaches for designing energy-efficient, robust and 

highly scalable distributed sensor networks. Using clusters reduces the communication overhead, 

thereby decreasing the energy consumption and interference among the sensor nodes. To exploit 

correlation and eliminate redundancy that often exists among sensors, clustering is required in many 

applications. Through data aggregation at the cluster centers, called cluster heads(CHs), the total 

amount of data sent to the sink can be significantly reduced, saving energy and bandwidth resources.   

   Data collection is considered an essential process for preserving sensor energy. Indeed, data are 

collected from the sensor and sent to the CH and then to sink for analysis [6]. Each elected CH must 

anticipate the amount of encoded packets collected. This anticipation aims at acknowledging the 

source and stop generating encoded data whenever their reception is enough. In this paper, using sets 

of information provided by each sensor, I realize a distributed estimation of needed data. Many 

distributed estimation algorithms [7]-[10] have been proposed. In these schemes, each sensor 

transmits its measurements using few bits to the CH directly. One way to reduce energy consumption 

is to process the data locally, such as encoding data at local sensors. Sensors perform local data 

encoding and send resulting messages to CH that combines received messages to produce a final 

estimation of the desired parameter. In [11] the authors discussed and compared their proposed 

distributed estimation scheme with some machine learning-based methods for data classification. This 

study shows two main objectives:(i) that deep learning models offer the potential for fountain codes in 

terms of data classification. (ii) a comparative analysis of the most principal machine learning 
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classification algorithm in WSN. Their proposed model looks advantageous over other methods due 

to its performance to accurately classify data with error rate notably low. Various studies and 

algorithms have been proposed for distributed estimation in wireless sensor networks [12]-[15]. 

   In [16-17], a new routing algorithm based on a hierarchical clustering is proposed for wireless 

sensor networks. In each level of this hierarchical clustering, the appropriate nodes are selected as 

cluster heads and then formed the clusters. The proposed algorithm is distributed and selects cluster 

heads and forms the clusters with the smallest number of the control messages. 

The main contributions of this paper are the introduction of: 

 The use of fountain codes is even more effective if they are associated with other techniques, like 

the self-organization structure. The primary purpose of the self-organization is to minimize the 

transfer in the network and improve the performance of the sensors. Clustering is a self-

organizing strategy based on the division of the network into small areas called clusters. 

 Designing an efficient distributed estimation scheme to collect fountain codes data packets. 

 Estimate and determine the minimum encoded packets needed to recover information based on 

Bayes rules. 

 I propose and adopt a new distributed estimation scheme composing a sensor member and a CH 

based on Bayesian rules. Each CH anticipates and acknowledges the source to stop the 

generation of data, whenever there is a sufficient number of collected encoded packets. 

   The remainder of this paper is organized as follows: in section 2, I present a preliminary study to 

describe the general context of my work. Section 3 presents the model and problem formulation. In 

section 4 the system model for estimating unknown target parameters is formulated. To evaluate and 

demonstrate the performance of the proposed model, an example of classification using Bayes rule 

was presented in section 5 with an analysis of different simulations and results. Section 6 gives finally 

concluding remarks. 

II. PRELIMINARY 

Fountain codes are an attractive and interesting class of erasure codes. The source first splits the 

message to K fragments or input symbols and then starts sending practically unique encoded packets 

[18]. When the receiver has acquired enough encoded packets to recuperate original data, it sends an 

acknowledgment (Ack) to stop the generation of encoded packets. LT code (Luby Transform code) 

was the first practical example of the erasure code fulfilling the fountain coding principle [17]. For 

simplicity of explanation, I suppose that the message M comprises K equally input symbols,   

              . The encoded packet is obtained by first choosing a random degree d from the degree 

distribution, which is the Robust Soliton Distribution RSD [19,20] and then XOR-ing the randomly 

chosen input symbols. Soliton distribution was a probability distribution used with erasure codes 
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presented by Michael Luby. Luby introduced in his paper [21] a detailed study of the two forms of  

 

 

Fig. 1. The model of a wireless sensor network 

 

distribution; Ideal Soliton Distribution (ISD) [22] and Robust Soliton Distribution (RSD).  RSD is 

     defined as follows. Let: 
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is the average number of degree 1. Some suitable constant c > 0 and δ is the success decoding 

probability. Let δ be the allowable failure probability of the decoder to recover the data for a given 

number K of encoded symbols. The idea here is to design the distribution so that the expected ripple 

size is about    
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and ρ(i) is the Ideal Soliton Distribution defined by the expression (3) below: 
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where i indicates the symbol number being coded. 

Add the Ideal Soliton distribution      to      and normalize to obtain     : 

 

      
         

 
 (4) 

where   ∑             . 

More studies and analyzes of soliton distribution are detailed in divers research [21-25]. 
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III. MODEL AND PROBLEM FORMULATION 

I consider a WSN divided into clusters. Each cluster group is a set of N sensor member managed by 

a CH, as it is shown in Fig.1. I assume that sensors are distributed and there are no inter-sensor 

communications. For most wireless sensor networks, sensors suffer from limited battery power as 

well as communication capacity [26]. Therefore, encoding local data seems to be needed at each 

sensor to reduce the communication requirement between sensors and CH. Using fountain codes, each 

sensor has K input symbols in a vector              , encodes its selected blocks           

to pi using fountain code function and transmits its encoded packets to the CH. The encoded packet 

       
    is the XOR of the d input symbols transmitted and aggregated at the corresponding CH. 

Encoded packets that contain only one fragment (with degree 1) are released first to recuperate their 

single fragment. Released fragments are saved in buffers named ripple for later using one by one 

when decoding data until recovering all input symbols. 

The processing of each input symbol in the ripple is as follows: 

1. It is removed from the ripple. 

2. It is removed as a neighbor from all encoded symbols that have it as a neighbor. 

3. For each encoded symbol with exactly one remaining neighbor, its remaining neighbor is 

released; this operation is called a symbol release. For each encoded symbol with zero remaining 

neighbors, its neighbors have been released before; this operation is called a symbol recovery. 

4. Newly released input symbols previously unrecovered are added to the ripple. 

Ripple size is the main criterion of decoding success. Decoding crashes if the ripple is empty before 

all input symbols are released (there are no more fragments left for decoding). Consequently, for the 

convergence of the decoding, it is necessary to ensure an impressive size of the ripple to avoid 

blocking. On the other hand, this size must be kept low to avoid the redundancy of the encoded 

symbol. The evolution of ripple size is the criterion of decoding success. 

Decoding is successful when all input symbols have been recovered. If the ripple size is equal to 

zero before the end of decoding, decoding fails. This hints that the well-performing LT codes should 

ensure a large ripple size during the decoding process. However, when an encoded symbol is released, 

there is a risk that the encoded symbol is redundant. Hence, to minimize the risk of redundancy, the 

ripple size should be kept low. 

The decoding success is judged based on the size and the evolution of the ripple size.  

Release and Ripple Add Probability: is the probability that a symbol of original degree d is released 

and added to the ripple, when L out of the K input symbols remain unprocessed, given that the ripple 

size is R at the point of release. This probability is expressed as follows: 

            (5) 
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Redundancy Probability: is the probability that a symbol of original degree d is redundant in the 

ripple. Assuming a constant ripple size R, the redundant probability is defined by the expression 

below: 

         ∑         

     

   

 

                                                    

(6) 

IV. BAYESIAN METHOD AND DECISION 

The probabilistic model is a conditional model, based on Bayes rule, which takes the following 

form: the probability of realization of an event A given all the events         ; is given by the 

ratio between the probability of occurrence of events Bi given A and the probability that Bi has 

occurred [27]. This definition takes this form: 

         |        

          |              |      

           |       |                 |        

                    ∏    |  

 

   

 

(7) 

Using the network architecture proposed and presented in Fig. 1, each sensor member sends its 

observation to the corresponding CH. The fusion center, which is the CH in this case, collects 

received data packets and under constraints, it estimates if the received number of encoded packets is 

enough or not [28]. The Bayesian method which is a classifier, focuses on the update of the 

probability estimate using the probability of the data under a given hypothesis (likelihood). Then it 

deduces the probability of an event from other events already evaluated called prior [27]. Based on the 

expression (7), the problem can be modelized as follows: suppose I have two categories of packets Cpi 

defining released packet category and unreleased packet category. I determine the affiliation 

probability of encoded packet pi to a category using the Bayes rule presented [29] in the expression 

(8):  

     |    
    |           

     
 (8) 

In the expression (8): 

      |    is a posteriori affiliation probability of a packet pi to the category Cpi. 

     |     defines the probability that for a given category, the fragments of the packet pi 
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are added to Cpi 

        is the probability that associates the encoded packet pi with the category Cpi. 

        is the likelihood of observing the packet pi. 

Determining      |    returns to determine     |           . With encoding LT, each encoded 

packet pi is a combination of d fragments. So, determining     |     returns to determine the 

affiliation of fragments fi in each encoded packet pi to a category. I obtain the following expression: 

    |           ∏  (  |   )                  
 

   
 (9) 

Following the collection of the received encoded data and using the Bayesian model based on the 

conditional probability, each CH must anticipate the last encoded packet received to acknowledge the 

source and stop the generation process [30]. Let cj be the probability of the input symbols which are 

not discovered at the iteration j. It is expressed as follows: 

      ∑    |                     

 

   

 (10) 

The generation of the encoded packets stops when there are no undecoded input symbols. The main 

objective is to be able to estimate the minimum average number of encoded packets needed to decode 

the primary message. The optimal number m is the solution of the following optimization problem:  

      
 

∑ (   |  )      

 

   

  

                                  

(11) 

Considering the set of possible actions             defining the actions to perform. Typically, 

actions consist of assigning a packet to a specific category and, therefore, the number of actions is 

equal to the number of categories. In my case, since I have two categories, Cp1 and Cp2, the actions 

consist of either attribute the encoded packet pi to one of two categories or not (respectively action a1 

and a2). Bayes decision takes the following form: 

       {
                                        |       
                                                         

 (12) 

From the expression presented in (12), any packet with an assignment probability less than the 

predefined decision values, is placed into Cp2. 

The necessary number of encoded packets to recuperate initial information, with K input symbols 

used in LT encoding, is [21,31]: 

      √        (13) 

Thus, N can be rewritten as follows: 

    (14) 

Based on the expression (14), I suppose the initial value of the generated packets is ninit = K. 

Each CH checks whether the stop conditions are verified with this initial value; if so, it  
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Fig. 2. Estimation on the number of encoded packets 

 

Fig. 3. Categories formation 

acknowledges the source and the optimal number of packets is then mopt = ninit. 

This classifier works by calculating an assignment probability of a generated packet to one of two 

categories. Packet partially released (packets with degree greater than 1 after releasing some 

fragments) is supposed released and placed in the category Cp1 of the released packet category. The 

distribution of packets degrees is the Robust Soliton Distribution (RSD). 

The principle of the method of estimating the number of encoded packets needed for decoding is  

summarized in Algorithm (1) in Fig. 2. For each packet, I must collect data and update my knowledge 

to compute the posterior probability using the Bayes formula. By receiving ninit encoded packets, each 

CH checks the verification of stop conditions. If the CH does not receive the needed number of 

encoded packets, the source is still generating encoded packets. 

Let us take the example of a set of encoded packets generated in the following way: 
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Table I. Classification probabilities of Encoded packets.  

Encoded packets Probability (Cp1) Probability (Cp2) Cp1 or Cp2 

P1 1 0 Cp1 

P2 0.55 0.45 Cp1 

P3 0.44 0.56 Cp2 

P4 0.79 0.21 Cp1 

 

 

Fig. 4. distribution of nodes with the election of CH 

 

               

               

I have assumed in this section that a packet with degree 1 is automatically added to the first 

category Cp1. Fig. 3, illustrates the classification of different packets generated using the Bayesian 

method with their corresponding probabilities. The estimate of the posterior probability of an encoded 

packet pi is related to the fragments that construct it and all the packets already generated. 

As illustrated in Table I, the initial number of encoded packets is supposed to be equal to 3 input 

symbols (K = 3). The CH checks whether there are still undecoded input symbols (if cj = 0). In this 

example, c2 ≈ 0.2, hence more encoded packets are needed, and p4 is generated. At the 4th iteration, I 

have c4 = 0 and so the required number of encoded packets is mopt = 4. 

V. SIMULATION AND RESULTS 

In this section, I present different simulations and analyzes of results. For the simulation 

parameters, Table II lists their configuration details. By using the network topology with mobile 

nodes, I have different node’s position as it is shown in Fig. 4 with the number of nodes varying 

between 80 and 200. Nodes’ mobility is arbitrary, in all possible directions with waypoint mobility 

model [32,33] and different mobility levels. I performed simulations on the proposed approach using  
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Table II. Simulation parameters. 

Parameters Values 

E0 0.5 nJ/bit 

EAggr 5 nJ/bit/message 

Network area 100m × 100m 

Weighting factors a1 =0.3, a2 =0.4, a3 =0.3 

Number of nodes 80 - 200 

Data packet size 4000 bits 

 

 

Fig. 5. Stop condition vs the number of generated packets 

 

MATLAB R2018b. In a 100 * 100 m2 network area, I considered several nodes, N varying between 

80 and 200 nodes in the network, with a sink node and different elected CH as shown in Fig. 4. 

For my simulation, I have considered the architecture presented in Fig. 1 that nodes are directly 

connected to the elected CH based on the clustering algorithm. 

The adopted clustering algorithm developed in [34] contains two kinds of nodes: sink nodes (static 

node) and other nodes (with energy restriction and different speed mobility). The pause time is the  

duration when a node stays in the stationary state. For the weighting factors, they should be chosen 

depending on the importance of each parameter used to determine the weight of each node. It is 

possible to affect the biggest value to the most important metric, and it is possible to assign the same 

value for each parameter if all of them are considered to have the same importance. 

Fig. 5 shows the variation of the stop condition. Indeed, the verification of the states to stop the 

generation of encoded packets is started at ninit = K = 80. In this figure, the probability decreases until 

it equals 0 with a necessary number of packets around 100. This means that for maximum decoding, 

at least 100 encoded packets from the sender are required for decoding of 80 packets. According to 

the degree distribution presented in Fig. 6, where I have a high degree and low degree values to 

guarantee success decoding, I classify encoded packets into the defined categories Cp1 or Cp2. Fig. 6  



178                                                       Improving the Efficiency of Wireless Sensor Networks Using Fountain Codes 

 

 

 

Fig. 6. Degree distribution of different packets 

 

 

Fig. 7. Marginal distribution and classification of the encoded packet into Cp1 and Cp2 

 

shows how many packets have what degree of distribution. In Fig. 7, encoded packets are classified 

into Cp1 or Cp2 based on the Bayesian method. The highest probabilities are affected by the first 

category of released packets Cp1. 

Since the probability of successful decoding depends on K value and also this dependence on the 

overhead of the sent encoded packets is very high, so for this purpose, a comparison between the 

simulation results and the theory mentioned above has been performed for this parameter. 

Figs. 8 and 9 show the margin of difference between the values obtained according to theoretical 

study and simulations in two cases for K ≈ 80 and K ≈ 190. These two figures illustrate the efficiency 

of the estimates made to determine the number of packets necessary for the success of the decoding. 

Indeed, with a number of fragments around K = 190, it is essential to receive N ≈ 200 packets to 

recover initial information. Using the estimation so that it is possible to determine the needed number 

of encoded packets, a vital minimization of energy consumption was obtained. This means that as the 

number of encoded packets transmitted in each step of the data transmission increases, the probability 

of decoding the sent packets increases, as shown in Fig. 8. When about 10 more coded packets are  
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Fig. 8. (a) Comparison between simulations and theoretical number of encoded packets for K = 190, (b) Marginal 

distribution of the overhead for K = 190 
 

sent, the probability of decoding the transmitted packets will increase to about 100%. Part b also 

clearly shows the percentage of these packets sent for this example. Therefore, to increase the 

probability of successful decoding according to the length of the data packet, it is necessary to 

determine the exact amount of overhead. 

The generation of encoded packets is stopped based on the stopping condition presented in Fig. 5, 

with K = 80, it is possible to recover initial information with about N ≈ 100 encoded packets. In  

general, overhead refers to the extra cost in terms of time, memory, bandwidth, or any other resources  

used to execute instructions. More specifically, and in the case of LT codes, overhead refers to the 

overflow or the amount of additional encoded packets so that it is possible to decode successfully. 

Decoding is possible with the reception of N = K (1 + ε), ε represents the overhead. ε = 1 indicates that 

decoding is possible with a number of additional encoded packets equal to the input symbols. Plus, 

the value of the overhead is weak; the better the decoding is. Indeed, the efficiency of the technique 

used is related to the amount of overflow observed.  

The direct relationship between each fusion center (FC) or each CH and the member nodes allows  
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Fig. 9. (a) Comparison between simulations and theoretical number of encoded packets for K = 80, (b) Marginal 

distribution of the overhead for K = 80 
 

 

Fig. 10 Average residual energy 

to minimize this overflow due to multi-hops and to minimize the energy consumed. The overhead 

represents the difference between the theoretical approach proposed and the results obtained 

following the simulations. The lower this value, the more the two results are closer. As it is shown in 

Fig. 10, and compared with the multi-hop situation, the average residual energy with the proposed 
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approach is more important. The amount of residual energy due to multi-hop transmission is much 

greater than that of the two cases used. Also, Fig. 8 indicates the preserved energy following 

transmissions and reception does not exceed 28% compared to the case of the proposed estimation 

model where the energy reaches 32% and 40% for the two cases of simulations. I demonstrate that  

when fountain codes are provided with the assistance of the Bayesian method, their ability to 

determine the needed number of encoded packets significantly improves accurately. As a result, a 

significant amount of the energy consumed can be preserved, and the average residual energy after 

transmission and reception can be conserved. 

The total energy is assumed to be equal to 1J. The quantity of the residual energy after any 

communication makes it possible to judge the lifetime of the sensor node and the efficiency of the 

proposed algorithm. More residual energy means more efficiency. Based on the proposed algorithm, 

by ensuring the stability of the nodes and exploiting the Bayesian method to deduce the probability of 

decoding packet, an important amount of the energy consumed can be preserved. 

VI. CONCLUSION 

To minimize energy consumption as well as the impact of the overflow caused by the use of 

fountain codes, two objectives were focused on: (i) data collection at each elected CH and 

classification of the encoded packet and (ii) estimation of data in each cluster head. Indeed, each 

elected CH must anticipate the number of encoded packets collected. This anticipation aims at 

acknowledging the source and stopping the process of generating these data whenever their reception 

is enough. Naive Bayes classifier based on the probabilistic approach determines the number of 

encoded packets provided by nodes. It focuses on updating the probability estimate using the Bayes 

rule and deduces the probability of an event from other events already evaluated called prior. Each 

CH estimates the required data, sends it to the sink. By exploiting the adopted clustering architecture 

and estimation model to estimate the required number of encoded packets, I tied to check the needed 

packet and minimize the energy overconsumption caused by the useless data generated. Simulations 

show the efficiency of the proposed approach in terms of residual energy. As future work and to 

further characterize the benefits of the proposed method and explore its potential, I plan to compare 

this approach with a variety of algorithms. 
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