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Abstract- This paper presents a novel solution of two dimensional (2-D) 

method of moments (MoM) in Cartezian coordination to calculate the 

source-type electric field integral equations (EFIE) arising from 

electromagnetic inverse scattering problems in microwave imaging 

(MI). The main issue is to reduce the 2-D problem into 1-D case, using 

decomposition the electric-type Green’s function of inhomogeneous 

media. In this regard, recursive formulas in spatial frequency domain 

are derived for both TE and TM problems and the scattering field is 

rewritten into upward and downward components in a recursive form. 

It helps us to calculate a 2-D problem using 1-D stabilized biconjugate-

gradient fast Fourier transform (BCGSFFT) of the induced source and 

save lots of memory and time for inhomogeneous objects in MI 

performance. The paper provides 2-D TM and TE scattering examples 

for different scenarios and compares the proposed and conventional 

algorithms to demonstrate merits of the proposed formulas in terms of 

the accuracy and computational efficiency.  
  

Index Terms- BCGSFFT, computational efficiency, EFIE, microwave imaging and 

scattering Problem.  

 

I. INTRODUCTION 

The diagnostic applications use different approches. Microwave imaging is one of the most 

important techniques, which aimed at sensing a given scene by means of interrogating microwaves. 

This active technique has proved capable of providing excellent diagnostic capabilities in several 

areas, including geophysical prospecting, remote sensing, civil and industrial engineering, 

nondestructive testing and evaluation (NDT & E), and biomedical engineering [1]-[14]. In this regard 

several different approaches can be applied. One of the most popular is inverse scattering – based 

procedure, which addresses the data inversion in several different ways depending on the target itself 

or on the imaging configuration and operation conditions [15]. The numerical methods for 
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electromagnetic problems in the frequency domain involve the iterative solution of a source-type 

integral equation (IE) for known sources. Discretizing the problem geometry, the IE can be cast into 

matrix-vector product (MVP). By the virtue of convolutional nature of the IE, the FFT makes efficient 

implementation of the multiplication, requiring )log( 2 NNO  arithmetic operations (where N  is the 

number of unknowns) [16]-[17]. There are different approaches to deal with numerical scattering 

problems by decomposition involved functions (mostly green function) and derive novel formulas, 

decreasing time and computational complexity in MI performance [18]. 

The present paper introduces an efficient method to perform the MVP using 1-D FFT instead of 2-D 

version for 2-dimensional electromagnetic problems. The method is based on novel closed-form 

equations in k-space (spatial frequency domain), by which the scattered field can be calculated from 

the 1-D Fourier transform of the induced source. The resultant algorithm improves the computational 

efficiency for many cases, specially, when the background medium is lossy and/or the object has 

narrow width. Also, our algorithm presents good accuracy comparable to that of the conventional 

method (which employs 2-D FFT). The method is validated by comparisons with classical solutions 

for different scenarios and some 2-D TM and TE numerical examples are also given in order to show 

the applicability and the effectiveness.   

II. PROBLEM FORMULATION  

Consider the geometry of a 2-D electromagnetic problem shown in Fig. 1, where an inhomogeneous 

object with spatial support of D  is located in a background medium with the permittivity b , 

conductivity b  and permeability b . The object has the spatially variable permittivity )(r , 

conductivity )(r  and a constant permeability b   (i.e. the object and the background medium 

have the same permeability). For TM problems, the total electric field at any point yyxx ˆˆ r  

satisfies 

)()()()()( 2t
rrrrr zb

i

zz

i

zz AkEEEE   (1) 

and for TE case, the field yExE yx
ˆ)(ˆ)()( rrrE   is given by 

 )(.)()()()()( 2t
rArArErErErE  b

ii k  (2) 

Let )(t
rqE , )(ri

qE  and )(rqE  are, respectively, q  components of the total, incident and scattered 

fields ( q  can be x , y  or z ). The quantity )(rqA  is equal to 

)()()(,')'()',()( 2
rrrrrrrr

t
qqD qq EdgA     (3) 

in which )(rg  is the scalar Green’s function of the background medium and )(rq  denotes induced  
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source. With time dependence )exp( tj , 1)()( 22  bkk rr  where 
bbbbb jk   22

 

and )()()( 22
rrr  bb jk  . 

In order to solve Eq. (1) or (2), the iterative algorithms need the computation of (3) for known 

)(rq  at every iteration. Let the object domain D  be embedded in a rectangle   that is discretized 

to yx NM   square cells and obtain (3) by the method of moment (MOM). With proper selection of 

testing and expansion functions in MOM, Eq. (3) is converted to MVP that is evaluated using 2-D 

FFT [1]. In this way, the total number of complex multiplications required for (3) would be 

yxyxyx NMNMNMN 4)4(log8 22DFFT   (4) 

The dominant factor determining the cost of computation is the first term of (4) for both TM and TE 

incident. Regarding operator .)(  in (2), different treatments have been accounted for its evaluation 

[19]-[20]. In all cases, they introduce minor contribution toward the expense of the computation. 

 

III. NOVEL FORMULATION USING 1-D FOURIER TRANSFORM  

The Green function for 2-D problems can be written as [21] 

 








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yyj
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g b



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

'exp
)]'(exp[

4

)'(
4

)',( )2(

0 rrrr

 (5) 

in which 
)2(

0H  is zero-order Hankel function of the second kind and 
22   bk . Inserting (5) into 

(3), we have 

Fig. 1. The geometry of a 2-D electromagnetic problem. 
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Considering the line LL' in Fig. 1 is within region D , one can decompose ),( yxAq  on this line to the 

upward wave ),(up yxAq  and downward wave ),(dn yxAq . For yy ' , Eq. (6) gives ),(up yxAq  as 
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 (7) 

where  yyDyxD  '|)','(up
. Changing the integral order in (7) and taking 1-D Fourier 

transform with respect to x  variable, one can derive 

 2)],(
~

)exp([),(
~ upup  qq yjjyA  (8) 

where 
up~
qA  denotes 1-D Fourier transform of the upward wave and ),(

~ up q  denotes 2-D Fourier 

transform of the part of q  defined in upD (  and   are the spatial frequencies in x  and y  

directions, respectively). In the same manner, defining  yyDyxD  '|)','(dn , 1-D Fourier 

transform of the downward wave is obtained as 

 2)],(
~

)exp([),(
~ dndn

qq yjjyA   (9) 

The above two equations relate 1-D Fourier transform of ),(),(),( dnup yxAyxAyxA qqq   to 2-D 

Fourier transform of the induced source. It is possible to extract relations in terms of 1-D Fourier 

transfer of q  from (8) and (9). Consider embedding region   is defined as the 

rectangle  2121 ','|)','( yyyxxxyx  . One can write for ),(
~ up q  
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where  )2/1( 11 Ny  and  )2/1()2/1( NyN . If   is enough small, the induced 
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field does not vary, significantly, in interval   )2/1(,)2/1( nn  and we may use the 

approximation ),'()','(  nxyx qq   in this interval. Therefore, the evaluation of the inner 

integrals (inside [ ]) in (10) and the substitution of resultant ),(
~ up q  in (8) gives 
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in which ),(
~

nq   is 1-D Fourier transform of ),'( nxq  in x  direction. When 

 )2/1( 22 Ny  and  )2/1()2/1( NyN , the same procedure for the downward 

wave provides 
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(12) 

We use Equations (11) and (12) to derive recursive formulas for TM and TE incident.  

A. Recursive Formulation for TM Problem  

The substitution of  Ny  in (11) yields ),(
~

)(
~ upup  NANA zz   from which )1(

~ up NAz  may 

be found and then doing some manipulation, one can derive 

)(
~

)(
~

)1(
~

)(
~

)1(
~

),(
~

)(
~ upup NTNSNARNA zzzz    (13) 

where ),(
~

)(
~

 nn zz  and  

 1)2/exp(
2

1
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~
,)exp(),(
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2
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~
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 jjS  

(14) 

Equation (13), recursively, relates 1-D Fourier transform of the upward wave on the line N  (inside 

the object region) to those on and below this line. Similarly, we have 

)(
~

)(
~

)1(
~

)(
~

)1(
~

),(
~

)(
~ dndn NTNSNARNA zzzz    (15) 

According to (13) and (15), the computation of (1) for known z  involves taking 1-D Fourier 

transform of the induced source on horizontal lines in the rectangle   and, then, use (13) and (15) to 
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obtain the total field zE  on these lines. Equations (13) and (15) can be implemented discretely and 

one way is to sample ),(
~

R , )(
~
S  and )(

~
T  in k-space at the points imposed from FFT of the 

induced source. Nevertheless, this method may yield considerable error in spatial domain 

( x direction) because the sampling in k-space gives rise to aliasing in the spatial domain. Another way 

is to derive the discrete form of (13) and (15) in the spatial domain by dividing the x  axis to   

intervals. For instance, we consider the third multiplicative term in (13) and (15), which is converted 

to convolution in x  domain. Denoting 
1F  as the inverse Fourier transform, 

)](
~

)(
~

[),( 1 NTFNxA zT   is given by 
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m
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where we set  )2/1( 11 Mx  and  )2/1( 22 Mx  in embedding region  . Since   is 

sufficiently small, z  is essentially constant over each interval. Thus enforcing (16) at the center of 

interval M  (i.e.  Mx ) and denoting ),(),(  NMANMA TT , ),(),(  NmNm zz  , the 

following expression is obtained 
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in which 
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m

m
I dxxTmT . Taking the same procedure for the second and first terms in 

(13) and (15) and let )](
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[),( wv1wv NARFNxA zR     

(wv is up or dn), one may derive 
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 (19) 

Equations (17), (18) and (19) are in form of 1-D discrete convolutions that can be, efficiently, 

implemented by FFT. Appendix A derives a closed-form expression for the sequences )(mTI  and 

)(mS I ; but ),( mRI  is found by numerical integration. 

  The sequence ),( Nmz  in (17) and (18) is finite size, i.e. 21 MmM  . Thus, the exact 

implementation of (17) and (18) is possible by expanding ),( Nmz  to xMMM 2)(2 12   points 

by zero padding and using FFT. However, neither ),(wv NmAz  nor ),( mRI  is finite to compute 

(19), similarly. Equation (A7) shows sequence ),( mRI  is the integral of derivative of Green 



Journal of Communication Engineering, Vol. 9, No. 1, January-June 2020 115 

 

 

 

function over ])2/1(,)2/1[(  mm . Consequently, this sequence, rapidly, approaches zero as 

m  is increased and it may, approximately, truncate to a finite sequence. The problem arisen from such 

a truncation is the recursion in (13), which makes )(
~

1

up NAz  at  11' Ny  (the bottom line of ) be 

multiplied by  )''(exp),(
~

12

)( 12 yyjR
NN


   to obtain )(

~
2

up NAz  at  22' Ny  (the top 

line of ). The same argument is true for 
dn~
zA  as well. The length of truncation should, therefore, be 

obtained with respect to decay speed of   )''(exp)'',( 12

1

12 yyjFyyxR     that is less 

than that of ),( xR . In order to specify the truncation length tx , we apply a criterion on energy of 

)'',( 12 yyxR   as follows 
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x

dxyyxRdxyyxR ')'','(')'','(
2

12
0

2

12   (20) 

where 1 . Using (20), Appendix B gives  tt Mx  for two cases of lossless and lossy 

background media.  

  Regarding the above explanations, the algorithm prescription to obtain scattered field in (1) is as 

follows: the sequences )(mTI , )(mS I  and ),( mRI  are computed at )(2 tx MM   points and 

),( Nmz  is zero padded to expand it to the same number of points; Then, calculating FFT of these 

sequences, the discrete versions of (13) and (15) are implemented. There are 
yN  sequences 

),( Nmz , whose 1-D FFT requires total  )(2log)(2 2 txtxy MMMMN   complex 

multiplications and the same number of operations is needed to obtain inverse FFT of 

)(
~

)(
~

)(
~ dnup NANANA zzz  . The computation of the each term in (13) or (15) requires 

)(2 txy MMN   complex operations and considering the (13) and (15) share the calculation of the 

second and third terms, the total operations would be )(8 txy MMN  . Therefore, the computational 

cost for calculation of zA  in (1) gives rise to 

  )(8)(2log)(4 21 txytxtxyDFFT MMNMMMMNN   (21) 

Comparison of (21) and (4) reveals the use of Eq. (13) and (15) could improve efficiency if tM  keeps 

under a limit. Appendix B (relations (B4), (B5) and (B7) ) indicates tM  is descending function of b  

(or generally loss tangent bb   of the background medium) and ascending function of 
yN  (i.e. 

the thickness 12 yy   of region  ). As a result, the computational efficiency is enhanced for narrow 

embedding regions   (
xy MN  ) and/or lossy background media.  
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B. Recursive Formulation for TE Problem  

The 1-D Fourier transform of the scattering field in (2) with respect to x  yields 
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Using (11) in (22) and putting  Ny , we get ),(
~
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~ upup  NENE qq  . Then, if )1(

~ up NEq  is 

found, the recursive relations for TE problem will be 
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in which ),(
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S  and )(
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T  are given in (14) and )2/exp(
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downward wave, one can, similarly, obtain 

 
 

 
  )](

~
)1(

~
[)(

~
)(

~
2)2/,(

~
)(

~

)1(
~

)(
~

2)2/,(
~

)1(
~

),(
~

)(
~

)](
~

)1(
~

[)(
~

2)(
~

1)2/,(
~

2)1(
~

)2/,(
~

),(
~

)1(
~

),(
~

)(
~

2

2dndn

dndn

NNWNRTk

NSkRNERNE

NNWNR

NRRNERNE

xxyb

ybyy

yyx

xxx

















 (24) 

The discussion for the discrete implementation of (13) and (15) can be, equally, applied to Eq. (23) 

and (24). Consequently, we require the sequences )(mS I , )(mTI , ),( mRI , )2/,( mRI  (dealt in 

Appendix A) and sequence 





)2/1(

)2/1(
')'()(

m

m
I dxxWmW . Considering )(xW  is derivative of 

),( yxg (i.e. A1) with respect to x , )(mWI  is exactly obtained as 

    25.0)5.0(25.0)5.0(
4

)( 2)2(

0

2)2(

0 


 mkHmkH
j

mW bbI  (25) 

The computational cost for TE problems would be, nearly, twice of (21). That is because there are two 

field components. 

IV. NUMERICAL EXAMPLES 

This section provides several examples to demonstrate the merits of the proposed recursive 

formulas and compare its application with that of the conventional formula. The stabilized 
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biconjugate-gradient FFT (BCGSFFT) [16] is used to solve 2-D TM and TE scattering problems. The 

scattered field is obtained for known induced source at each iteration of BCGSFFT using 

conventional 2-D FFT and the novel 1-D FFT formulas, referring the combination as BCGSFFT2D 

and BCGSFFT1D methods, respectively. The BCGSFFT2D is implemented in accordance with [1] to 

compute qA  by 2-D FFT, and then, utilize the central finite differencing [20] to 

calculate .)( operator if the problem is TE. 

The incident field is a unit amplitude plane wave with z  component for TM case and with x  

component for TE case, traveling in y  direction. The permeability b  is equal to 0  (free-space 

permeability), the discretization width   is set to 5 mm, and parameter   in criterion (20) acquires 

value 5 in all examples. The iteration process in BCGSFFT is terminated when relative residual error 

Err  satisfies the following criterion 

01.0)(  incincLErr EEE  (26) 

where  denotes L2-norm and )()()]([ 2
rrr zbzz AkEEL   for TM incident and 

 )(.)()()]([ 2
rArArErE  bkL  for TE incident. Because of stopping rule (26), the number of 

iterations for BCGSFFT2D ( D
IteN 2 ) and BCGSFFT1D ( D

IteN1 ) algorithms can be different and, 

therefore, the ratio 
D

Ite

D

Ite NN 12
is provided to compare the convergent speed of two algorithms. The 

improvement in the computational efficiency can be judged according to the efficiency gain that is the 

ratio of numbers given by (4) and (21), i.e. DFFTDFFTeff NNG 12 . 

We, first, apply BCGSFFT2D and BCGSFFT1D to 2-D problems with circular scatterers, for which 

the analytical solution is available and can serve as a reference to obtain the accuracy of the methods. 

The quantitative measure of accuracy is the relative error defined as 

analalganalalg
EEE re  (27) 

Field anal
E  is the scattered field yielded by the analytical solution and alg

E  indicates the scattered field 

from either BCGSFFT2D (alg = 2D) or BCGSFFT1D (alg = 1D). Tables 1 and 2 list the results for 

different scenarios. Note that rb  and r  denotes the relative permittivity of the background medium 

and the object, respectively, and d  is the diameter of the circular objects. 

For TM incident, it can be observed the BCGSFFT2D presents better accuracy, especially for lossless 

media. Although the accuracy of BCGSFFT1D may be increased if   in (20) acquires large values, 

our experiences show that the accuracy improvement needs the significant deterioration of the 

efficiency. As b  becomes larger, the BCGSFFT1D provides more accurate results, which is because  
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Table 1: The accuracy and efficiency of BCGSFFT2D  

and BCGSFFT1D methods for 01  brb σ,ε  

 cm20,0,4  dr   cm40mS/m,50,8  dr   

Frequency (MHz) 500 2000 500 2000 

TM 

D
re2

 0.0109 0.0582 0.0028 0.0412 

D
re1  0.0916 0.0655 0.0309 0.0753 

D
Ite

D
Ite NN 12  1.00 1.03 1.00 1.24 

effG  1.08 1.08 1.13 1.13 

TE 

D
re2

 0.0924 0.1436 0.0604 0.3113 

D
re1  0.1106 0.1309 0.0627 0.2177 

D
Ite

D
Ite NN 12  1.25 1.04 1.00 0.97 

effG  1.05 1.05 1.10 1.10 
 

 

 

Table 2:  The performance of BCGSFFT2D and  

BCGSFFT1D for mS/m500,4  brb    

 cm20,0,4  dr   cm40mS/m,50,8  dr   

Frequency (MHz) 500 2000 500 2000 

TM 

D
re2

 0.0247 0.0580 0.0217 0.0735 

D
re1  0.0565 0.0780 0.0282 0.1121 

D
Ite

D
Ite NN 12  1.00 1.00 1.00 1.00 

effG  1.62 1.70 1.82 1.90 

TE 

D
re2

 0.1521 0.0787 0.0655 0.0879 

D
re1  0.1283 0.0674 0.0702 0.1196 

D
Ite

D
Ite NN 12  0.89 0.91 1.00 1.33 

effG  1.59 1.65 1.77 1.84 
 

 

),( mRI  resembles better a finite sequence. The results of TE incident indicate the both methods 

have more or less the same accuracy, though BCGSFFT1D becomes superior for some cases. We 

speculate this is due to the exact treatment of .)( operator in k-space to derive the recursive 

formulas (23) and (24). Considering the true efficiency gain is 
D

Ite

D

Iteeff NNG 12 , the tables indicate 

the computational cost of BCGSFFT1D is less than BCGSFFT2D for the examples satisfying 

40 xy MN  and 5 . The larger is the problem (large 
yN  and xM ), the more efficient is 

BCGSFFT1D algorithm. It is pointed out in Subsection III.A the computational efficiency of  
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Fig. 2. The scattered fields of a rectangle for TM incident at 1500 MHz. The sides of the rectangle in x  and y  directions 

are 60cm and 20cm and it has mS/m100,5  r
 with the background 0,1  brb  . The performance parameters 

are 1 2

1 0.0388 , 0.0374D D

re e  , 96.012 D

Ite

D

Ite NN  and 81.1effG . 

 

 

BCGSFFT1D is enhanced when the background medium becomes lossy. The tables confirm the 

efficiency is ascending function of background losses ( b ). 

   Equation (B7) implies the improvement of BCGSFFT1D efficiency for narrow embedding regions 

  (i.e. 
xy MN  ). To demonstrate this, we obtain the field scattered from a solid rectangular object 

having 60 cm side in x  direction and 20 cm side in y  direction. It has the parameters 

mS/m100,5   r  and the background medium is free space ( 0,1  brb  ). Since the 

analytical solution for rectangles is not available, we use the results from ComSol software as a 

reference to judge the accuracy for this example. The TM results of BCGSFFT2D and BCGSFFT1D 

and simulation results with ComSol at 1500 MHz are compared in Fig. 2, where the magnitude of the 

scattered field is shown at the center of the rectangle in x  and y  directions. The closeness of the  



120                                                                                                 Solution of 2-D Electromagnetic Problems using 1-D FFT 

 

 

 

 

Fig. 3. The illustration of applying the novel method to 90º rotated version of the rectangle described in Fig. 2 for TE 

incident. Performance parameters are 0.0635re  , 96.012 D

Ite

D

Ite NN  and 75.1effG . 
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results is quantified by 
comsolalgcomsollg

EEE a

re in analogy with (27). Fig. 2 illustrates good 

resemblance of the resultant fields of the methods. Regarding the computational efficiency, the 

simulations are carried out for two limiting squares of cm20cm20   and cm60cm60  , having the 

same electromagnetic parameters as the aforementioned rectangle. The relative accuracy is obtained 

according to 
2D1D2D

EEE re . The performance parameters are as follows: 

2 1

20cm 20cm Square: 0.0260

1.00 , 1.08

r

D D

Ite Ite eff

e

N N G

 

 
 

16.1,90.0

0126.0:Squarecm60cm60

12 



eff

D

Ite

D

Ite

r

GNN

e
 

 

Comparing the results of Fig. 2 with the above, it can be concluded that narrowing the object (region 

 ) improves the efficiency of BCGSFFT1D over BCGSFFT2D. The efficiency of our novel method 

is enhanced even if   is narrow in y  direction as well. Under such condition, BCGSFFT1D acts on 

the object rotated 90º (note that the incident wave is, correspondingly, rotated). Using BCGSFFT1D 

method this way, Fig. 3 shows the outcomes of 90º rotated version of the previous rectangle (i.e. a  

rectangle having 20 cm side in x  and 60 cm side in y  directions). It is evident the improvement of 

BCGSFFT1D efficiency is achieved even for narrow   in y  direction. 

V. DISCUSSION AND CONCLUSION 

  To solve 2-D scattering problems using 1-D FFT, novel recursive formulas have been derived. For 

lossy background media and TE problems, numerical examples illustrate the use of the new formulas 

provides a comparative accuracy in contrast to the conventional method employing 2-D FFT. When 

the background medium is lossless and dealing with TM problems, the usage of the recursive 

formulas introduces less accuracy, which could be tolerated in many practical applications.  

The theoretical and numerical results show that the computational efficiency of our novel formulas is 

enhanced with the increase of background medium loss, narrowing any side of embedding region 

( xy MN  ) and expansion of the problem scale. To have a quantitative view of the efficiency gain, 

(B7) suggests 
yt NM   that gives 

  2)(2log)(

)4(log2

2

2






yxyx

xyxx

eff
NMNM

MNMM
G


 (28) 

If region   is square ( KNM yx  ), (28) is simplified to 

  2)1(2log)1(

1)2(log4

2

2






K

K
Geff


 (29) 
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Setting 5  and being the background lossless, Eq. (29) concludes 1effG  if 15K . Clearly, the 

efficiency gain would be larger for lossy background and/or when the minimum of xM  and 
yN  is 

greater than 15. That means the recursive formulas have efficiency superiority over the conventional 

method for all practical cases. In case the background medium poses significant losses (i.e. 0 ) 

and the problem is large scale, effG attains value 4. These all justify the use of our proposed 

formulas. 

   For the case of 3-D problems, Green function may be represented by [21] 

  
 

yxyx

b

dkdk
zzj

yykxxkj
j

kj
g









'exp
)'()'(exp

8

'4

)'(exp
)',(

2












rr

rr
rr

 (30) 

Therefore, one can take the same procedure in this paper and derive a method that solves 3-D 

electromagnetic problems using 2-D FFT instead of 3-D FFT. 

APPENDEX A. 1-D CONVOLUTIONAL FUNCTIONS 

  According to (5), the Green function for 0y can be written as 

 








d

yj
xj

j
yxg 








exp
]exp[

4
),(  (A1) 

The integral of ),( yxg  in terms of y  within interval ]2/,0[   results in 




 










 





djxjxT 1)

2
exp(

2

1
)exp(

2

1
)(

2
 (A2) 

that is inverse Fourier of )(
~
T  as it is concluded from Eq. (14). Being ),( yxg  an even function 

with respect to x  and y , )(mTI  is given by 

 













)2/1(

)2/1(

2/

2/

)2/1(

)2/1(
),(

2

1
)()(

m

m

m

m
I dxdyyxgdxxTmT  (A3) 

The above double integral has equivalent volume solution as [22] 




















 








 



0,)(
4

0,
2

1

4
)(

)2(

01

2

)2(

1

mkmHkJ
k

j

m
k

kH
k

j

mT

bb

b

b

b

b
I









 (A4) 

where 1J  and 
)2(

1H  are order one Bessel function and Hankel function of the second kind 

respectively. We may, also, drive 
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





2/

002/
),(),(),()( dyyxgdyyxgdyyxgxS  (A5) 

which results in 

)(
4

1

2
)( 2)2(

01 mTmkH
k

J
k

j
mS Ib

b

b

I 


















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

 





 (A6) 

Taking the derivative of (A1) with regard to y , we have 

   rkH
r

ykj
yjFyxR b

b )2(

1

1

2
)exp(),(


    (A7) 

where 
22|| yxr  r . The integral 






)2/1(

)2/1(
),(),(

m

m
I dxyxRymR cannot be found 

analytically. Thus, the numerical integration, such as adaptive Simpson quadrature, is employed to 

compute ),( ymRI . 

APPENDEX B. EVALUATION OF THE TRUNCATION LENGTH 

The solution of inequality (20) yields the truncation length tx . Using the large argument form of  

)2(

1H , it follows from (A7) 

  4/3exp
2

2
),( 





 rkj

rkr

ykj
yxR b

b

b
 (B1) 

Setting 12 '' yyy  , the large argument approximate is valid because )''( 12 yykrk bb   and 

)''( 12 yykb   is large for many problems. The substitution of (B1) into the criterion (20) provides 


 




t

t

x

I
x

I dx
r

rk
dx

r

rk
30 3

)2(exp)2(exp
  (B2) 

where Ik  denotes the imaginary part of bk . Changing variable from x  to 
22 yxr   (that gives 

22 yxr tt  ) and integrating by part, the left side of (B2) becomes 

drrk
r

yr

y

k
rk

ry

yr
I I

r
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I
tI

t

t t

)2exp(
2

)2exp(

22

22

22

1 





   (B3) 

The term )2(exp rk I  in the right integral of (B3) acquires its minimum at trr  , i.e. min11 II   so 

that 

)2exp(sec
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22

22

min1 tI

t

t
I
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With regard to (B3), one may obtain the following limit for the right integral of (B2) denoted by 
2I . 

2

22

max2max22

)2exp(
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y
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yr
III tI

t
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











 
  (B5) 

The inequality max2min1 II   clearly implies the inequality (B2). Let yru t , the equality 

max2min1 II   results in 

0]sec1[21)1( 122   uuuuyku I   (B6) 

In case the background medium is lossless ( 0Ik ), the inequalities (B4) and (B5) becomes 

equalities, i.e. the integrals in both side of (B2) can be precisely obtained, and we have 

 21)1( losslessu  that is the solution of equal part in inequality (B2). Generally, the root u  

of (B6) should be obtained by root finding algorithms like Newton method. Looking into (B5) and 

(B6), the increase of Ik  reduces tr  to meet max2min1 II   and, hence, the root of (B6) would be in 

interval  losslessu,1 . After the evaluation of u , the truncation length is obtained as 

1)''( 2

12  uyyxt  and the division by   yields 

]1[ceil 2  uNM yt  (B7) 

where )(ceil x  indicates the smallest integer value greater than x . 
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