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Abstract— Surface integral equation formulations of periodic structures 

have received attention because of the inherent efficiency of surface 

unknowns and automatic satisfaction of radiation condition through the 

problem's Green's function. These formulations employ the periodic 

Green's function (PGF); the addition of potentials from all point 

sources as observed in the unit cell. Unfortunately, the resulting series 

(1) has slow convergence when direct summation (DS) is employed, 

which makes its usage in MoM codes rather costly. In this paper a new 

closed form is derived for efficient computation of the linear one-

dimensional and planar (two-dimensional) periodic Green’s function at 

small source to observation points' distances. When combined with an 

accelerated modal (Floquet-wave) expression for more distant 

observation points, an efficient form is obtained for all distances. The 

efficiency of the proposed formulations have been shown through 

numerical computation. 
 

Index Terms— Computational electromagnetics, Green function, computationally efficient 

forms, Periodic structures. 

 

 

I. INTRODUCTION 

urface integral equation formulations of periodic structures have received attention because of the 

inherent efficiency; for the following reasons: Integral equation solvers are much more stable than 

differential equation solvers (e.g. in solvers such as the Method of Moment; MoM). Also, the number 

of unknowns and hence memory requirements are far less in surface-based integral equations because 

the  unknowns  are restricted  to  the  surface  as  compared  with  the  many  volume  unknowns in the  
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Fig.1. The assumed periodic array of point sources. The plane wave denotes graphically an inter-element 

delay of 
.
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conventional differential equation solvers (such as FDTD). Finally, automatic satisfaction of radiation 

conditions is guaranteed through the problem's Green's function [1-2] which alleviates the need for 

complicated boundary conditions; esp. for free space.  

 These formulations employ the periodic Green's function (PGF); the addition of potentials from all 

point sources as observed in the unit cell. Unfortunately, the resulting series (1) has slow convergence 

when direct summation (DS) is employed, which makes its usage in MoM codes rather costly. 

Among the many acceleration techniques that have been applied to this problem [3] the modal 

(Floquet-Wave; FW) expression is a common practice. The PGF and the modal expression are given 

by (1) and (2) for a linear periodic array [3], with an inter-element phase increment of cos xkX kX 

; 
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where 2 2y z    and   2 2

q xqk k k k    under the condition Im 0qk
     due to the radiation condition at 

infinity. For    1 1; .max 1 , 1q Q Q X             the modes are evanescent away from the array axis, 

which is why (2) is quite efficient [4] for observation points that lie sufficiently away (    for 

1Q Q ) from the array axis. Unfortunately, the modal expression (2) is not efficient for all 
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observation points, since it requires the summation of prohibitively many additional evanescent 

modes when the observation point lies in the proximity of array axis (   1Q nQ for n  ) and 

even more so when approaching a source element. This adversely affects the accuracy of MoM matrix 

coefficients for self and near-self term interactions. The possibility of accelerating (2) near and on the 

array axis by means of repeated Shanks transform has been successfully shown [5], however, the 

computational cost for observation points near a point source still rises demandingly. This paper 

suggests a new accurate closed form for such special cases, thereby extending the applicability of the 

method to all observation points. To the best of the authors’ knowledge, such a formulation has not 

been investigated previously. 

 

II. ACCELERATED COMPUTATION OF THE LINEAR PGF 

A. Formulation 

One way of overcoming the complication for closer (e.g. self and near self-term) interactions is to 

use the direct summation for near and self-term interactions, i.e. within a range 2 2

0 proxR x L   .  

However, a closed form expression can be found analytically for such cases, which significantly 

increases self-term accuracy while reducing computational cost. To elaborate, consider the condition 

0 1kR , 
mR mX

 
and (1) can be rewritten as: 
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The expression in (4) is the desired closed form, and can be used together with (2) to compute the 

periodic Green's function efficiently for all the source to observation points' distances. Specifically, 

the Shanks-accelerated version of (2) can be used for 0 proximR L  and (4) can be used for 0 proximR L . 

The parameter proximL  is to be adjusted for optimal efficiency. A maximum relative error of 

410G   is  
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considered as sufficient for many applications [6]. 

B. Numerical Results 

To experimentally evaluate the performance of the proposed accelerated form for a comprehensive 

set of observation points, we consider: 
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and x=0 (First test path) or x=X/2 (second test path). For each path, the number of points in every 

decade of (5) is approximately squared from the previous one, thereby simulating the distribution of 

source-observation points distances for a typical surface mesh. Consequently, the total computation 

time for all points in (5) can be taken as an estimation of matrix computation time in an actual Method 

of Moments problem. Figure 2 depicts the relative error versus distance and the total computation 

time of several approaches for an array with 1.2 , 0X    . The exact evaluation of the PGF for 

error calculations has been performed using (1) with repeated Shanks transforms. It is observed that 

the proposed hybrid formulation achieves optimal performance for all distances with /100proximL  . 

For /10  , no Shanks transform is needed if 10 1Q Q is chosen. 

 

 

 
Fig. 2.  Comparison of methods in terms of accuracy and computation time (normalized to that of DS): FW refers to (2) with 

, DS refers to (1) with M=1000 (a) and 5000 (b). S3.FW stands for triple shanks transform of the Floquet-waves 

expression, The Hybrid method assumes  Lproxim = λ/100 and stands out in terms of efficiency. (a) First path with x=0, (b) 

second test path with x=0.5. The curves have been down sampled for clarity of the illustrations. 
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 Fig. 3. Graphical representation of the planar array of point sources 

 

III. ACCELERATED COMPUTATION OF THE PLANAR 2D PGF  

A. Formulation 

   The assumed geometry for the array of point sources in this case is shown in Fig. 3. 

Here again, we aim at developing the most efficient method of computation for all (near and far) 

source to observation distances. We will show that summation of  Floquet modes is the most efficient 

for far distances, and for points near the source plane (xy-plane), interpolation over pre-stored tables 

of values of Green’s functions would be efficient. We shall also describe the quantitative meaning of 

near and far distances. 

   Four methods are described and compared below: Direct summation, Floquet modes summation, 

and two novel combinations of the first two methods. For direct summation, we simply sum the 

potentials from all point sources at  ˆ ˆ
mnL mX x nY y  in Fig. 3, or 

                                                      

(6) 

   This performs best (converges with a small number of summations) at small source-observation 

distances, by increasing distance (z) its efficiency reduces drastically since all sources placed on any 

circle around the observation on the source plane can contribute almost equal amplitudes to the 

observed potential. Nevertheless, the convergence and accuracy of the direct summation method can 

be acceptably improved using conventional acceleration techniques such as the shanks transform. 

Here we have first converted the two-dimensional summation to a one-dimensional summation by 

summing over sources lying on squares around the observation point on the source plane. The results 

of this stage has been used to quantify the errors of the fast methods proposed. 

The Floquet summation for a two-dimensional array leads to:  

 
 cos sinexp

,
4

inc inc

mn

m n mn

jk R mX nY
G r

R

   




 

 

      

X 

x 

z 

y 

Y 
mn

R



6                                                                                        Efficient computation of the free-space periodic Green's functions  

 

                                                                                (7) 

This performs best at far source-observation distances.  
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Fig. 4. Comparison of methods in terms of accuracy and computation time (normalized to that of DS): An array 

with sx = sy = 0 is assumed and period of X = Y = 1.2 wavelength. the DS results are obtained by taking 200 x 200 

point sources into account.  Points above (x = y = 0) (top) and above (x = 0.5X, y = 0.5Y) (bottom). 
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B. Numerical Results 

   For comparison of the four methods, we evaluate the PGF on two paths as shown in Fig. 4. Each 

path extends from z = 0 to z = 10. For an array with and , Summation of one to 

several modes has satisfactory accuracy down to . Achieving the same accuracy down to z = 

0.01 requires a ten-fold increase in the number of modes, To use the Floquet modes summation 

adaptively (FW-Adapt in Fig. 4), we have segmented the z axis into the following intervals: (1, 

10), (0.1,1), (0.01,0.1), (0.001, 0.01) and use 2,20,200 and 2000 modes fore them 

respectively. 

    For the third method (FWDS in Fig. 4), we combine DS and FW by using DS over z:(0.001, 0.1] 

with M = 1000 and FW over z : (0.1, 10] with 20 modes. The fourth method (FWTAB in Fig. 4) 

uses FW for far points and for near pints, the direct summation in (6) is decomposed into two parts: 

for source points nearer to the observation M,N < Nsep , (6) is used directly, for  M,N  >  Nsep , (6) will 

lead to a smooth function in the unit cell around observation (above the origin in Fig. 3). This part is 

calculated once a’priori and stored as a table for sample points within the unit cell in the plane z = 0. 

This is the unit cell in which possible observation points will reside, or with slightly higher z. For 

every actual observation point (x, y, z), the evaluation of this second part is found by interpolation 

between samples in the table. Based on experience, 50 samples per wavelength can be sufficient in the 

unit cell in the z = 0 plane. 

    The parameters of the FWTAB method are selected as Nsep = 15, Q = P = 30X/ and tables are 

made for M = 1409 and two consecutive shanks transformations.  

IV. CONCLUSION 

We have presented a simple expression for accurate and efficient evaluation of one-dimensional 

periodic Green's function in the near-source region. Combined with an accelerated modal expression, 

it can provide for efficient computation of the periodic Green's function for all source to observation 

points’ distances. For two-dimensional PGF, the far field is again computed by the Floquet wave 

summation. For the near field, the direct summation method is divided into two parts: point sources 

near the observation (which is almost on the plane z = 0) are computed by direct summation. Source 

points farther away result in a smoother function in the unit cell of observation. Consequently, their 

contribution can be tabulated on a set of sample points prior to the solution of the actual problem, and 

found by interpolation for every observation point afterwards. This method gives the fastest and most 

accurate results. 

X  0x ys s 

z 
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