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1. Introduction  

 

Parkinson's disease (PD) is a common 

neurodegenerative disorder of the elderly 

and is clinically characterized by the 

motor symptoms of tremor, bradykinesia, 

and rigidity. The pathological hallmark 

of PD involves the presence of Lewy 

bodies, resulting in degeneration of dopamine (DA) 

neurons in substantia nigra pars compacta (SNc) and 

subsequently, the striatum. The pathological process 

begins in the dorsal motor nucleus, proceeding in an 

ascending fashion to the midbrain (including caudal 

raphe nuclei) and forebrain (1). Growing lines of 

evidence suggest that PD is not solely a DA-ergic 

disease but that there is a more diffuse pathology 

involving other, non-DA neurotransmitter systems, 

such as the serotonergic. Serotonin (5-HT) neurons in 

the dorsal raphe nuclei project mainly to the basal 

ganglia, particularly the striatum, but also to the 

frontal cortex and the limbic system. The serotonergic 

system is thought to be involved in the modulation of 

various cognitive and physiological processes, such 

P 

Abstract 
Background and Objective: Anti-inflammatory property of nobiletin (NOB) is proven and neuroinflammation 

is involved in triggering and progression of neurodegenerative disorder such as Parkinson's disease (PD). PD is a 

neurodegenerative disorder characterized by motor and non-motor features including psychiatric symptoms such 

as depression and anxiety. The purpose of this study to investigate whether oral nobiletin administration at a dose 

of 10 mg/kg has the ability to alleviate non-motor behavioural changes including depression and anxiety-like 

behaviors in LPS-induced model of PD in rat. 

Materials and Methods: For this purpose, 32 male Wistar rats (195-245 g) were divided into four groups (n=8) 

as follows: Sham-operated group, nobiletin-treated sham-operated group (sham+NOB), lesion group (LPS) and 

nobiletin-treated lesion group (LPS+NOB). LPS (5 µg/kg) rat was unilaterally injected into the SN of rat brains 

through standard stereotaxis, according to the atlas of Paxinos and Watson (to generate a neuroinflammatory 

model of PD), with or without NOB (10 mg/kg administrated daily for 1 week after surgery, via gavage). 

Behavioral assessment was carried out one week after surgery by assessment of performance in forced swimming 

and elevated plus maze tests.    

Results: NOB-treated LPS group showed significant decrease in immobility time and insignificant increase in 

the percentage of open arm spending time as compared with LPS group which demonstrate the anti-depressant 

like effect of NOB in inflammatory model of PD in rats. 

Conclusion: Taken together, this study demonstrated that nobiletin as an anxiolytic and anti-depressive agent in 

the LPS-induced rat model of Parkinson’s disease. 
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as, mood, emotion, sleep, and appetite; thus altered 

serotonergic neurotransmission is likely to be 

implicated in both motor and non-motor disturbances 

observed in PD (2). PD is considered to be due to the 

combination of genetic and environmental factors (3, 

4). The prevalence of PD increases with age (5) and 

the lifetime risk of PD is 20% for men and 1.3% for 

women (6). It is now well-recognized that the vast 

majority of individuals with Parkinson's disease (PD) 

suffers from non-motor systems that can be as 

disabling as motor symptoms, if not more so non-

motor symptoms can be a harbinger of disease, hasten 

disease progression and mortality, lead to nursing 

home placement, and significantly diminish quality of 

life. This in turn affects care partners, including their 

stress and burden, and negatively impacts their health 

and mental status (7). Depression and anxiety are 

some of the most common comorbidities arising in 

patients with PD (8). Although the pathogenesis of PD 

remains to be elusive, cumulative evidence supports a 

pivotal role for oxidative stress and 

neuroinflammation in initiation and progression of 

nigral dopamine neuronal loss. Several neurotoxic 

molecules such as 6-hydroxydopamine (6-OHDA), 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

etc., that have been utilized to develop PD models, 

elicit an inflammatory response, but it is difficult to 

delineate whether neuroinflammation is the cause or 

consequence of injured dopaminergic neurons. 

However, the LPS induced PD model has provided us 

with an important tool to delineate the precise 

contribution of various pro-inflammatory and 

neurotoxic factors to dopaminergic neurodegeneration.  

LPS is a gram-negative bacterial endotoxin that 

activates microglia through the toll-like receptor-4, 

leading to the production of inflammatory cytokines 

and chemokines (9, 10). Microglia are the major 

players in the inflammatory process that mediate 

inflammation lipopolysaccharide (LPS)-induced 

neurotoxicity (11-15). Activated microglia produce a 

variety of pro-inflammatory factors, including nitric 

oxide (NO) (12, 16-21), tumor necrosis factor α (TNF-

α) (20, 22, 23), interleukin-1β (IL-1β) (20, 24, 25), 

prostaglandin E₂ (PGE₂) (26-28) and reactive oxygen 

species (ROS) (29-31), all of which serve immune 

surveillance functions by removing foreign 

microorganisms (32). 

Nobiletin, one of the major components of 

polymethoxyflavone family in citrus fruits, has been 

reported to have anti-inflammatory activity (33, 34). 

Nobiletin produces rapidly acting antidepressant-like 

responses in the chronic unpredictable mild stress 

model of depression (CUMS) through BDNF-TrkB 

pathway (35). Nobiletin treatment improves both 

motor and cognitive deficit observed in MPTP-treated 

mice, an effect maintained for 2 weeks after nobiletin 

withdrawal (36). Depression is a psychological feature 

of PD (37) and nobiletin reportedly has an 

antidepressant-like effect via stimulation of the 

serotonergic, noradrenergic and dopaminergic system 

(38). Dopamine replacement therapies, particularly L-

DOPA treatment, have been highly successful in 

improving motor function in PD (39). However, 

treatment can also promote problems with dyskinesia 

and L-DOPA administration becomes less effective 

over time (40, 41). 

The present assay evaluated the effect of nobiletin on 

performance of rats in forced swimming and elevated 

plus maze tests in intranigral lipopolysaccharide (LPS) 

rat model of PD. 

3. Materials and Methods  

Adult male Wistar rats (195-245 g; n=32) (Shahid 

Beheshti University, Tehran, Iran) were housed three 

to four per cage in a temperature-controlled colony 

room under 12 h light/dark cycle with food and water 

available ad libitum. The animals were held in the 

colony room for at least one week before being tested. 

The animals were randomly divided into four groups: 

Sham-operated group, nobiletin-treated sham-operated 

group (sham+NOB), lesion group (LPS) and 

nobiletin-treated lesion group (LPS+NOB). All 

behavioral experiments were carried out between 11 

a.m. and 4 p.m. Protocols of the present investigation 

for all the animal studies were approved by the Ethical 

Committee of Shahed University and carried out in 

accordance to National Institutes of Health Guidelines 

for the Care and Use of Laboratory Animals (42). 

2.1. Surgical procedures for the infusion of 

LPS into the SN 

To achieve unilateral lesions of the nigrostriatal 

system, rats received LPS injection into the right 

substantia nigra. Rats were anaesthetized by i.p. 

injection of a combination of ketamine and xylazine 

(100 and 10 mg/kg, respectively) and placed into a 

stereotactic frame with nose and ear bars specially 

adapted for rats. LPS (Sigma Chemical Co, St. Louis, 

Mo, USA) was dissolved at a dose of 2.5 mg/1 ml of 

normal saline. The injection needle was lowered 

through a drill hole 5.30 mm posterior, 2 mm lateral 

and 7.6-7.7 mm ventral to the bregma for the 

substantia nigra, according to atlas of Paxinos and 

Watson (43). Two µl (5 µg) from the stock solution of 

LPS was delivered using Hamilton syringe over a 

period of about 2 min and after each, the needle was 

left in situ for an additional 5 min to avoid reflux 

along the injection track and then withdrawn at a rate 

of 1 mm/min. The lesion group received a single 

injection of 2 µl of 0.9% saline containing 2.5 µg/µL 

of LPS (5µg). The sham group received an identical 

volume of 0.9% normal saline. The LPS+NOB group 

received the neurotoxin in addition to nobiletin 

(Cayman, USA) p.o. (using rodent gavage) dissolved 

in Cremophor at a dose of 10 mg/kg. NOB was daily 

administered with an interval of 24 h. 
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2.2. Behavioral tests 

Battery of behavioral experiments were carried out 

one week after LPS injection. 

2.2.1. Immobility as a behavioral response The 

forced swimming test (FST) was originally introduced 

in 1977 by Porsolt and has been implemented and 

analyzed in several different ways (44, 45). In any 

form, the test is based on the observation that when 

rodents are forced with an inescapable aversive 

situation they can elect different strategies of coping 

that can be scored as either active or passive. Active 

strategies (climbing and swimming) predominate in 

the initial exposure to the swim but these are typically 

replaced over time with the appearance of a passive 

strategy (floating). The key observation that brought 

the test into widespread use was the discovery that 

effective antidepressants in humans had the ability to 

increase the amount of active strategies adopted by the 

animal in the FST. Thus, the major advantage of the 

FST has been its predictive validity: a drug's 

effectiveness in promoting active coping in the FST 

had potential to predict its efficacy as an 

antidepressant. This was a particularly important 

observation because it yielded a simple screen in 

animal models to identify similarly acting drugs (46, 

47). Forced swimming test is a well-established 

measurement for evaluating the effects of 

antidepressants and the assessment is highly reliable 

to predict the validity of antidepressants. The 

procedure comprised two sections (the pretest and the 

test). Rats were individually placed in glass cylinders 

(height 40 cm, diameter 20 cm) containing water for a 

height of 25 cm maintained at 25˚ϲ. During the pretest 

session, rats were forced to swim for 5 min. The 

procedure was repeated 24 h later in a 5 min swim 

session (test session). The total duration of immobility 

(time spent floating with the minimal movements to 

keep the head above the water) was recorded during 

the testing period. An animal was judged immobile 

whenever it ceased all active behaviors (i.e., 

struggling, swimming, diving, and jumping) and 

remained floating in the water in hunched but upright 

position and making only the movements necessary to 

keep its head above water. After each pretest and test 

session, the rats were taken out of the water and 

allowed to dry across heaters before being returned to 

their home cages. The cylinders were cleaned between 

animals. 

2.2.2. Time spent on the open arms as 

behavioral response 

The elevated-plus maze (EPM) test was performed to 

evaluate anxiety-like behavior in PD models (48). 

Behavior in the EPM is utilized to measure 

exploration, anxiety and motor behavior. The EPM 

consists of four arms, 49 cm long and 10 cm wide, 

elevated 50 cm above the ground. Two arms were 

enclosed by walls 30 cm high and the other two arms 

have no walls. On the 10th day of experiments, 30 min 

after drug administration, each rat was placed at the 

juncture of the open and closed arms and the amount 

of time spent on the open arms was recorded during a 

90 s period. After each assay, the maze was carefully 

cleaned with wet tissue. Trial (2) 24 h after trial (1) 

was carried out in the same testing room. Time spent 

on the open arms is an index of anxiolytic effects of 

drugs (49). 

2.3. Statistical analysis 

The animal’s behavioral activities in EPM task and 

FST were statistically analyzed with one-way analysis 

of variance (ANOVA). All results are expressed as 

mean ± SEM. P values < 0.05 were regarded as 

statistically significant. Significant differences 

between individual groups were determined using 

pair–wise comparison TUKEY post-hoc test. 

Graphical representation was performed using 

Microsoft Excel 2013. 

3. Results 

3.1. The antidepressant and anxiolytic-like 

effect of oral nobiletin treatment in rats 

Percent time spent in open arms of Elevated Plus 

Maze as a measure of anxiety level in rats has been 

shown in Fig. 1. A significant decrease in percent time 

in open arms in LPS group compared to Sham group 

was obtained that is indicative of higher anxiety and 

higher fear behavior. In contrast, animals in LPS 

group treated with NOB showed insignificantly higher 

percentage of open arms time versus LPS group 

(p>0.05).  

In addition, immobility time was measured in FST. 

Rats in LPS group showed significantly higher 

percentage of immobility duration versus sham group 

(p < 0.05). In contrast, animals in LPS group treated 

with NOB showed a significantly lower immobility 

time versus animals in LPS group (p < 0.05). 

 

Figure 1. Characterization of Se NPs. A) The 

hydrodynamic size of Se NPs. TEM images of B) bare 

and C) BSA coated Se NPs. 
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3.2. Effects of Se NPs in two-dimensional 

microenvironment on the behavior of PC12 

cells 

Five days after treatment with 250 µg/mL dose of Se 

NPs, PC12 cells were spread out and neurite 

outgrowth was found that was not significant  

 

Figure 1. Data is presented as % time spent 

(Mean±SEM). Rats in LPS group showed significant 

lower percentage of open arms time versus sham 

group (** P<0.01). In addition, animals in LPS group 

treated with NOB showed insignificantly higher 

percentage of open arms time versus LPS group. 

Figure 2. Representative results of the effects of 

nobiletin (one-week oral treatment) on immobility 

time as an index for depression-like behavioral 

changes in the FST. Rats in LPS group showed 

significant higher percentage of immobility time 

versus sham group (* P<0.05). In addition, animals in 

LPS group treated with NOB showed significantly 

lower immobility time versus animals in LPS group (# 

P<0.05). 

4. Discussion 

Anxiety and depressive disorders are common 

neuropsychiatric complications of Parkinson's disease 

(PD) (8) and there is dysfunction of both dopamine 

and serotonin systems and their interaction in the 

brain, contributing to development of complications 

(50). Our present observations demonstrated that 

bilateral injection of LPS (5 µg/rat) into the substantia 

nigra of the rat brain can simulate depression and 

anxiety-like behavior in PD. The elevated plus maze 

(EPM) is considered to be an etiologically valid 

animal model of anxiety because it uses natural 

stimuli (51). An anxiolytic agent increases the time 

spent in open arms in this test. This biologic activity 

could be explained by an anxiolytic-like effect of the 

nobiletin in treated animals. The forced swimming test 

has been validated as a suitable tool for predicting the 

antidepressant properties of drugs (52, 53). When 

rodents are forced to swim in a confined space, after 

an initial period of struggling, they would become 

immobile, resembling a state of despair and mental 

depression. This inescapable stressful situation can be 

evaluated by assessing different behavioral strategies 

(54). By assessment of performance of rats in elevated 

plus maze (EPM) test, it was demonstrated that 

percentage of time spent in the open arms in nobiletin-

treated sham-operated group (sham+NOB) is 

insignificantly lower than Sham-operated group and in 

lesion group (LPS) rats as compared to Sham-operated 

group, it was significantly lower. Furthermore, rats in 

nobiletin-treated lesion group (LPS+NOB) showed an 

insignificant increase in this parameter versus lesion 

group (LPS). Although intranigral LPS could 

stimulate anxiety-like behavior in rats but the 

anxiolytic effect of oral administration of nobiletin (10 

mg/kg) was not significant in this model, but on the 

other hand as increasing in percentage of time spent in 

the open arms, it will be probably significant if the 

dose of nobiletin or treatment duration or the number 

of rats in each group will be increased. In the present 

study, after oral administration of nobiletin (10 mg/kg) 

for 7 consecutive days, there was no significant 

differences between sham-operated group and 

nobiletin-treated sham-operated group (sham+NOB) 

in terms of immobility time, but this parameter in 

lesion group (LPS) versus Sham-operated group was 

significantly increased and moreover significant 

decrease in the immobility time of the nobiletin 

treated LPS lesion rats was seen compared to lesion 

group (LPS) (Fig. 2).  

To conclude, these results suggest an anti-depressant-

like effect of the nobiletin in response to an 

inescapable stress in experimental LPS-induced model 

of PD in the rat and proper supplementation with 

nobiletin may protect against the neurodegeneration 

involved in PD. 
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