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Abstract – This paper presents an economic production quantity (EPQ) model with a periodic order quantity 

(POQ) policy, product reliability and periodic demand. The machine reliability has decreased over time; 

therefore, the rates of perfect and defective products reduce and increase over time, respectively. A fixed 

percentage of these products are reworked while the rest is wasted. Some equipment in their early days 

operates with excellent efficiency, but its performance deteriorates over time; therefore, operating costs 

increase. It is assumed the machine is inspected and repaired at the end of each production cycle; then, the 

machine returns to its original state. The demand for the final products is discrete, periodic and constant for 

each period. We use the POQ policy to meet customers' demand. In POQ procedures, orders for 

replenishment occur at fixed intervals. A Mixed Integer Non-Linear Program (MINLP) model is suggested. 

Then, a computational experiment is presented to discuss the optimally of the profit function. By analyzing 

the data, it is found that under different conditions, the manufacturer can use either Single Setup Single 

Period (SSSP) or Single Setup Multi-Period (SSMP) policy.  
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I. INTRODUCTION 

The EPQ model has some assumptions which sometimes are not applicable in the real system. In some real systems, 

the quality of the final product is dependent on the technology, quality of raw material and labor. The quality of raw 

material directly affects perfect products. The low quality of raw material decreases the number of perfect products in 

each period. 

The EPQ model was developed by (Harris, 1913). One of the assumptions of EPQ models is that the annual demand 

is continuous and constant. However, in the real system, the demand may be periodic, dynamic or uncertain. A number 

of researches have studied the inventory systems with multi-period demands (Wagner & Whitin, 1958) discuss the 

multi-period lot sizing problem in which the demand is discrete and periodic. Sajadi et al. (2009) consider the single 

item dynamic lot size model without allowing the backlogging. They improved Wagner Whihin's solution method. 

Sakaguchi (2009) considers a multi-period inventory model with varying continuous demand. Heibatolah Sadeghi 
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(2019) studies economic production quantity with a periodic demand. He used a proposed mathematical model and 

heuristic method to achieve the optimal solution, but he did not consider the periodic order policy (POQ) for EPQ 

models. He assumed that the production rate is constant and operation and maintenance costs are negligible.  

 

One of new interesting researches in the economic production models is the reliability of products. In classical EPQ 

model, it is assumed that all produced items are of perfect quality, but at real systems the reliability of a product is 

dependent to some items such as raw materials, technology being used and manpower. Low quality of raw material 

reduces the reliability of products. Perfect manpower increases the number of items in control. The major literature in 

this area is described as follows.  

 Tripathy (2003) considered the economic order quantity model with defective products while taking into account 

the reliability of the production process. The defective products are not reworkable and thus are discarded. Also, it is 

assumed that the reliability is inversely related to the demand rate and shortage is not allowed. Sana (2010) used a 

product reliability and imperfect production process for an EPQ model with reworkable defective items. He also 

assumed that the shortage is not allowed, and time horizon is infinite. Sarkar (2011) considered a single-product EPQ 

model in which the demand depends on time, and the production rate depends on time and reliability. They also used a 

reworkable defective item. Sarkar and Sarkar (2013) developed an EPQ model with stochastic deterioration rate of 

product, where the demand is dependent on the time and time horizon is finite. The raw material cost is directly related 

to the reliability. Manna et al. (2017) employed an economic production model with demand dependence the 

advertisement and production rate dependent defective rate. They modeled the problem in an infinite time horizon and 

assumed that the production rate is variable because of the quality of raw material, labor experience, etc. Khara et al. 

(2017) utilized an EPQ model with an imperfect production process. They assumed that the demand is dependent on the 

reliability and selling price. They developed a mathematical model considering the reworking the out of control items. 

Among others, inventory models of supply planning items with dependent demand system. Cunha et al. (2018) 

examined the EPQ inventory model with partial backordering and discount for defective items. The defective items are 

not reworkable, and it is assumed that the planning horizon is finite. Tsao et al. (2019) developed economic production 

quantity (EPQ) models considering the imperfect items, the reworking of defective products and predictive 

maintenance.  

Shah and Naik (2020) considered the inventory production model dealing with the product’s sell price-stock as well 

as reliability-dependent demand; also, they assumed that the production process is imperfect and during the production 

time some of products are perfect quality and the imperfect products undergo the reworking process owing a cost to 

become a perfect product. 

Pasandideh et al. (2013) developed a multi-product economic production model considering the defective and 

reworkable items and limited orders. They supposed that a fixed percent of the production items is defective with a 

possibility to be reworked and the demand is constant. A mathematical model is suggested, and a meta-heuristic 

algorithm is used to achieve the optimal solution. Gouiaa-Mtibaa et al. (2018) employed an integrated maintenance-

quality policy for the manufacturing system assuming that the random failure rate is increased over the time and 

propose reworking activities for defective items. 

 Polotski et al. (2019) analyzed the corrective maintenance in a failure-prone manufacturing system under a variable 

demand. They assumed the demand is varying periodically over time. This is often the case for repeated variations in 

seasonal demands. The production rate in this paper is constant, and backordering is not allowed. 

Periodic Order Quantity (POQ) is an order policy which can be used all over the supply chain levels. This policy is 

so useful when the demand is periodic. By applying this policy, orders for replenishment occur at fixed intervals. In 

other words, the periodic order quantity is a standard number of units to be ordered over a fixed period of time. 

(Haibatolah Sadeghi, Makui, & Heydari, 2013) considered a multi-stage production system that lead time at each stage 

is a random variable. They suggested an MRP approach using a Periodic Order Quantity (POQ) policy. The analyzed 
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results of this paper show that the fixed setup cost is low and the result of POQ policy and Lot-For-Lot is the same, but 

by increasing the fixed setup time, the POQ policy provides a better result. Haibatolah Sadeghi et al. (2014; 2016) 

considered a multi-period and multi-level supply planning model with lead-time uncertainties based on the POQ policy. 

They proposed a mathematical model using the MRP approach. 

Louly and Dolgui (2013); Louly et al. (2012) utilized the Material Requirement Planning (MRP) under 

uncertainties. They used the MRP approach and Periodic Order Quantity (EOQ) policy in the proposed model. Ben-

Ammar et al. (2019) proposed a single-stage and multi-period supply planning under stochastic lead times and a 

dynamic demand. They used the Lot-For-Lot policy to model the purposed problem. Also, a genetic algorithm (GA) is 

developed to find the optimal solution and minimize the expected cost. 

This paper uses an inventory control system with the POQ policy to find the optimal replenishment. It is assumed 

that the quality of the product depends on the raw materials, the type of technology and the manpower skill. The higher 

the quality of the raw material used, the lower the number of imperfect products. Nonetheless, the cost of higher quality 

raw material will be more expensive. Moreover, the more skilled the manpower, the human error is reduced, and as a 

result, the imperfect products will be reduced although the skilled manpower wages will be higher. Using equipment 

increases their operating costs over time. This paper assumes that at the end of each production cycle, the machine will 

be inspected and the necessary repairs are carried out on the machine; thus, the machine is restored to its initial state. 

Corrective maintenance reduces the operating cost. Because of the reduced reliability of the product over time, the 

imperfect product increases over time. A fixed percentage of these products are reworked, and the rest is wasted. 

The objective of the proposed system is to optimally determine how many items should be produced in each cycle. 

According to the knowledge, there is no inventory model in the related literature addressing the item reliability, discrete 

demand, and POQ policy, simultaneously, in an EPQ system. The shortage for final product is not allowed and the 

planning horizon is considered infinite. The contributions of the paper are briefly described as follows:  

a)   Formulating a production-inventory system through the POQ policy and the reliability of items,  

b)   Proposing an optimal framework which addresses the discrete and periodic demand, and 

c)   The operation cost increased by the time 

The rest of the paper is organized as follows. Definition of the problem is provided in Section 2. In Section 3, the 

mathematical model of the production system with the POQ policy and the periodic demand are formulated. Section 4 

examines the effectiveness of the model through numerical experimentation. And, finally, Section 5 provides 

conclusions and opportunities for future research.   

II. PROBLEM DEFINITION 

This paper considers a single-machine production system with the reliability of the product and POQ order policy. 

The demand for final products is periodic and constant. The rate of the perfect product is decreased over the production 

system because the machine performance deteriorates over time as do the efficiency of machines, technology, the skill 

of labor and quality of raw materials. The better quality of raw material decreases the imperfect product. A fixed 

percentage ( ) of imperfect items is reworkable, and the rest is sold at a lower price less than the unit production cost 

of a product. 

 Fig. (1) shows the inventory level of the system. The manufacturer has used a POQ policy to fulfill his request. By 

applying this policy, the manufacturer meets the need for the next k  periods. In addition to the unit production cost 

denoted by Pr( , )t r , dependent on the raw material quality, skill of labor and manufacturing system and operation cost. 

The operating cost increases when the machine is used. To reduce the operating cost of the machine at the end of each 
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production cycle, it is inspected and, according to the corrective repair policy, the defects are repaired and the machine 

returns to its original condition. The operating cost is denoted by ( , )C r t , where r is the reliability of the final product. 

The manufacturer used the push system; therefore, the manufacturer forecasts the demand for each cycle based on the 

previous data. Since the demand variation is very low, the manufacturer decides to use the push system to meet 

customer needs. The other assumptions and notations are as follows. 

   Assumptions and notations 

The mathematical model of the inventory production system here is based on the following assumptions: 

a) Lead time is zero. 

b) Shortages are not allowed. 

c) Demand for the final product is discrete and periodic. 

d) The manufacturer employs a POQ policy. 

e) The reliability of the machine decreases over time. 

f) The imperfect units can be rejected, reworked, refunded or sold at a lower price. 

g) The operating cost increases over time. 

   Notations 

  The reliability parameter of the system 

1 r  Present of imperfect items  


 Production Rate 

D Demand rate for each period 

( )I t
 On hand inventory level at time t 

   Percentage of defective products that can be reworkable 


 Rework cost per unit product 

h Unit holding cost 

T Inventory cycle length 

. ( )R M r
 

The raw material cost 

. ( )P C r
 

The production cost 

  Unit selling price for perfect items 
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1  Unit selling price for defective items 

( )K
 

Total annual profit 

c(t) The operating cost per unit time at time t after replacement. 

Independent design Variable 

K Periodic order quantity (decision variable) 

Dependent Design Variable 

Q The Production quantity for each cycle 

pt  Production cycle length 

dt  The time between two sequence demand 

III. MATHEMATICAL MODEL 

This paper considers the production system with the reliability of the product and a POQ policy. The reliability of 

the production system decreases over the production system. Therefore, to prevent the degradation in reliability, we 

consider a development cost. The development cost is increased over time because the machine maintenance costs 

increase. The demand for the final product is periodic and constant. The order policy adopted is a periodic order 

quantity policy. In the POQ policy, the manufacturer produces the final product to meet the needs of next periods 

acquiring customer requirements.  

This paper assumes that the production machine is inspected and repaired at the end of each production cycle and 

then returns to its original state. When new, some equipment operates with excellent efficiency, but as it ages its 

performance deteriorates, increasing the machine operating costs over time. Fig. (1) shows the inventory level of the 

manufacturer versus time. 

At this system, when the manufacture starts to produce products, a certain fraction (1 r ) present of items is 

defective because of the efficiency of machines, technology, skill of labor and quality of raw materials. A fixed 

percentage ( ) of the defective item can be reworkable, and the rest is sold at a lower price less than the unit 

production cost of a product. The reliability decreases over time. We used 
te  
 to show the reliability rate. The 

production rate is  , the in-control production rate is 
te    and the rate of out-of-control production is 

(1 )te     , where  is defined as follows:  

number of defective items

Total number of produced items within a time interval
   

       

The reliability of the product is dependent on raw material, manufacturing system and skill of labor. So raw material 

with better quality is increased the reliability rate of production system; therefore raw material is dependent on the 

reliability. This paper considers the raw material cost for increasing function of the reliability. 
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Fig. 1: Inventory level of the manufacturer vs. time 
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(1) 
            

where 1R , 2R  and 3R  are fixed parameters independent of the time. 

The operating cost increases over time and depends on the reliability of the machine. 

1 2( , ) tC r t C C e    

 

(2) 

      

The production cost includes raw material, operation and manpower cost. Therefore the production cost for per unit is 

as follows: 

3

1 2 1 2
0 0

( ) ( , )
Pr( , )

      
     

R tR R e C C eMC r C r t
r t P P

Q Q Q Q
 (3) 

     

where 0P  is a time-independent fixed parameter. 

The differential equation for this model at production time is 
( )I t

r
t




 


 and for non-production time demand rate 

is discrete and constant. By solving the differential equations for this model at production time, the inventory rate with 

boundary conditions (0)I =0 is as follows:  

(0) 0( )
( ) (1 )It tI t

r e I t e
t

 
 



   
      


 (4) 

         

The manufacturer should meet the need of K periods, so concerning the boundary conditions ( )pI t K D  , the 

production time is found as follows, 

1( ) (1 ) (1 )Pt t

PI t e K D e K D  

 

          
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1
1P

K D
t Ln



 

  
   

 
 (5) 

      

In order to derive the profit function, the system costs and revenue earned by sales should be accounted. 

a)  Holding cost 

The holding cost for production time is given as follows: 

1

0

1 1
(1 )

 

   

  



  
          

  

p

p

t

tt

p

t

TC h e dt h t e  (6) 

       

The holding cost of the non- production time is given by 

    
 

2

1
1 2 ...

2

   
             

d

d d d

D t K K
TC h K D t K D t D t h  (7) 

     

Then by summarizing Eqs. (7)and (8), the total holding cost of each cycle is obtained: 

3

1 1 ( 1)

2



  

    
           

  

pt

p d

K K
TC h t e D t h  (8) 

         

b)   Production cost 

The production cost per unit of the product is calculated using Eq.(3). The production time at each cycle is 
p

t , 

therefore, the total production cost is given by Eq. (9). 

 3 3 2
1 2 1 2 1 1 2

4 0 0

0

1


 

 


 
             

         
       


pp

tt R Rt

p

C eR R e C C e R R R e
TC P dt P t

k D k D k D k D
 (9) 

        

c)   Reworking cost 

To rework the unit imperfect product, the manufacture pays  unit of cost. The imperfect product is produced by 

rate (1 )te    at the time and   is the percent of its reworkable product; therefore the total reworkable cost per cycle 

time is as follows: 

5

0

1
(1 ) ( 1)

     


    
           

 

p

p

t

tt

pTC e dt t e  (10) 

        

d)   Revenue sale of perfect products  

The selling price of unit perfect product is  , the perfect product is produced at each cycle by a rate of  
te     and 

  is the percent of the reworkable imperfect product; therefore the revenue of the perfect product at each cycle is as 

follows: 
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   
0 0

1
) (1 ) 1 1

p p

p p

t t

t tt t

pe dt e dt e t e
   

       
 

      
   

                    
   (11) 

       

e)   Revenue sale of imperfect products  

 1   percent of imperfect product is not reworkable; therefore it will be sold by a salvage value price, the unit price 

of which is 1 . 

     1 1

0

1
1 (1 ) 1 1

p

p

t

tt

pe dt t e
     



  
   

                 
  (12) 

A. TOTAL PROFIT  

The total profit for each cycle time is the difference between revenue sale and the system costs and given as follows: 

   

   

 3

1

2
1 1 2

0 0

1
Pr 1 1

1 1 1
1 1

1( 1)

2

1
(

 

 







   

 


  

   




  

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

 

 
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 

    
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    
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    
 
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p

Total ofit e t e

t e A h t e

C eR R R eK K
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 
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 
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The annual demand is 

d

D

t
. Therefore, the total profit is as follows: 

       

 

3

1

1 1 2
0
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1
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
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  




  
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 
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   
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              
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 
 
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By replacing the production cycle length ( pt ) in Eq. (14), the total profit is modified as follows: 

3
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0 1 1
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Therefore, the total profit will be summarized as follows: 
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Although the objective function can be differentiated, the resulting equation is mathematically intractable; that is, it is 

impossible to find the optimal solution in explicit form. Thus, the model will be solved approximately by using a 

truncated Taylor series expansion for the exponential term, i.e 
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With the above approximation, the annual net profit function can be rewritten as 
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(18) 

B. SOLUTION ALGORITHM: 

To solve the problem of primitive consideration of the constraints, the problem is solved, and its optimal solution is 

determined. Given the concatenation of the profit function, it can be expected that integer solutions are around the 
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optimal point obtained in the continuous state. Therefore, based on the proposed algorithm, we try to search for those 

values of decision variables around the continuous optimal solution. In the following, first, the proof of the concavity of 

the total profit function is expressed. Then a heuristic algorithm is used to determine the discrete optimal solution. 

Theorem 1: the profit function is concave. 

Proof 

The first and the second derivatives of ( ) K with respect to K  are: 
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and  
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If 2 2( ) 0   dA Dt B C  then 
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K
  for all positive K is not positive. Therefore, ( ) K is concave if 

2 2( ) 0   dA Dt B C .  

 

the ( ) K is a concave function of K , and there exists a unique value K , which maximizes ( ) K  as follows: 
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*K is a positive value (

* K R ), therefore  2 2  dA Dt B C is a positive. 

Note that the periodic order quantity (K) is an integer number, therefore if the optimal value of K achieved from 

( )
0

K

K





 is not integer, the optimal value of K is equal to 

* *

1K K     or 
* *

2 1K K    . If 

* *

1 2( ) ( )K K  , then 
*

1K  is the optimal solution; otherwise, 
*

2K is the optimal solution. 

Based on the above properties, the following solution algorithm is developed to determine the optimal solution of the 

approximate model. 

Solution algorithm 

Step 1: Determine 
*K  from (21). If 

*K  is an integer value, go to Step 3, else go to Step 2. 

Step 2: 
* *

1K K     and 
* *

2 1K K    , and if 
* *

1 2( ) ( ) K K , then 
*

1K  is the optimal solution; and replace 

*K   by 
*

1K ; otherwise, 
*

2K is the final optimal solution and replace 
*K   by 

*

2K . 
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Step 3: Replace 
*K  in Eq. (15) and find the optimal total profit. 

IV. NUMERICAL EXAMPLE 

In the following, a numerical experiment has been carried out to illustrate the performance of the synchronized 

cycles algorithm. Assume that a producer has an annual production rate of 3500 units and the customer's weekly 

demand rate for the manufacturer products is 40 units.  

It is assumed that the price function of raw material is dependent on the reliability which set of 
(10 )100 50  e  $ 

and that the operation cost is an increasing function over time in the form of 
( )200 40 tt e     . Therefore, the unit 

production cost equals 
(10 ) ( )100 50 200 40

50
       

 
te t e

Q Q
$ per unit product. Other parameters are set as 

follows: 

   Selling price per unit of a perfect and nonreworkable products equals $350 and $30, respectively.  

   80% of the defective product is reworked to convert into perfect.  

   The cost per unit reworkable product is $40.  

   The setup cost is $1000.  

   

If the reliability parameter of the system is 0.05, the unit holding cost is $50. The optimal production quantity should 

be found to achieve the maximum profit. 

Solution  

Step 1: Determine 
*K  from (21). 
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Fig. 2: Relationship between the total profit and the periodic order quantity 



144 Sadeghi, H.  / A forecasting system by considering product reliability, POQ policy, and periodic demand 

  

 

Step 2:  

* *

1 6   K K ,   
*

1( ) 605842.0184 K   and    
* *

2 1 7    K K ,       
*

2( ) 605891.7114 K  

* *

2 1( ) ( ) K K  then 
*

2K  is the optimal solution;  

Fig. (2) shows the relationship between the total profit and the periodic order quantity. It is clear that the profit function 

is concave for the proposed example.  

A. ANALYSIS OF RESULTS 

This section studies the effects of changes in the system parameters including reliability parameter (), setup 

cost(A) and unit holding cost(h) on optimal values of 
*K  and the optimal total profit 

*( ) K . The sensitivity analysis 

is performed by changing each of the parameters by +75%, +50%, +25%, +10%, −10%, −25%, −50%, and else, taking 

one parameter at a time and keeping the remaining parameters unchanged. The results based on the proposed example 

are shown in Tables I-III. 

As shown in Table I, by increasing the reliability parameter (), the optimal periodic order quantity (K) and the 

optimal order quantity are increased. When the value of the reliability parameter is very small, it means that it needs 

better quality of the raw material and more skilled manpower; therefore lower reliability parameter imposes a higher 

cost on the system. On the other hand, the lower reliability reduces the number of defective products and increases 

perfect products. 

It is shown that the system revenues and costs vary for different reliability parameter values. The question is what 

kind of raw material and technology should be used for manufacturing products? 

Fig. (3) shows the relationship between % Change Reliability Parameter and the total profit. As it is illustrated in 

this figure, as the reliability parameter value increases, the earnings trend increases initially and then decreases from one 

value to the next. This is due to the balance between the reliability costs imposed by raw materials and technology as 

well as the number of defective products. 

The results obtained from the proposed model with respect to the amount of reliability parameter are summarized in 

Table I.  

 

 

 

 

 

 

 

 

 

           
Fig. 3: Relationship between % Change Reliability Parameter and the total profit 
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TABLE I: SENSITIVITY ANALYSIS OF THE RELIABILITY PARAMETER OF THE SYSTEM. 

Parameter % Change Value 
Periodic order 

quantity (K) 

Optimal order 

quantity (K×D) 

Production cycle 

length (tp) 

Inventory cycle 

length (T) 

Optimal profit 

(y) 

re
li

ab
il

it
y
 p

ar
am

et
er

 (


) 

−75% 0.0125 7 280 0.0800 0.2143 605646.0013 

−50% 0.025 7 280 0.0800 0.2143 605798.8019 

−25%, 0.0375 7 280 0.0801 0.2144 605944.3317 

−10%, 0.045 7 280 0.0801 0.2144 606027.7453 

00%, 0.05 7 280 0.0801 0.2144 606081.5817 

+10%, 0.055 7 280 0.0802 0.2144 606133.9121 

+25%, 0.0625 7 280 0.0802 0.2144 606209.4079 

+50%, 0.075 7 280 0.0802 0.2145 606326.5133 

+75% 0.0875 7 280 0.0802 0.2145 606431.4271 

+100% 0.1 7 280 0.0803 0.2146 606522.4821 

+150% 0.125 8 320 0.09196 0.2454 606731.9069 

+200% 0.15 8 320 0.0921 0.2455 606890.1374 

+300% 0.2 9 360 0.1039 0.2765 607001.0888 

+400% 0.25 10 400 0.11595 0.3077 606812.0886 

+500% 0.3 12 480 0.1400 0.3702 606228.984 
             

The sensitivity of results to the reliability parameter has been tested to provide more confidence in the model. The 

result of this model is dependent on the setup cost and unit holding cost. The results obtained from the proposed model 

with respect to the amount of Unit Holding Cost are summarized in Table II. 

Table II: SENSITIVITY ANALYSIS OF UNIT HOLDING COST 

Parameter % Change Value 
Periodic order 
quantity (K) 

Optimal order 
quantity (K×D) 

Production cycle 
length (tp) 

Inventory cycle 
length (T) 

Optimal profit 
(y) 

U
n
it

 H
o
ld

in
g
 C

o
st

 (
h
) 

−75% 12.5 16 640 0.1837 0.4905 617012.0424 

−50% 25 10 400 0.1146 0.3064 612229.5424 

−25%, 37.5 8 320 0.0916 0.2451 608837.1929 

−10%, 45 8 280 0.0802 0.2144 607659.0003 

00%, 50 7 280 0.0801 0.2144 606081.5817 

+10%, 55 7 280 0.0802 0.2144 605063.3231 

+25%, 62.5 6 240 0.0687 0.1838 603696.0925 

+50%, 75 6 240 0.0687 0.1838 601550.1665 

+75% 87.5 5 200 0.0572 0.1531 599676.6213 

+100% 100 5 200 0.0572 0.1531 597930.301398 

+150% 125 4 160 0.0458 0.1225 594706.4187 

+200% 150 4 160 0.0458 0.1225 592012.76273 

+300% 200 3 120 0.0343 0.0918 586886.6408 
     

When the unit holding cost is low, the manufacturer will favor producing for more periods to avoid paying the high 

holding cost. However, as the cost increases, the tendency to produce for more periods also decreases. Fig. (4) 

illustrates the relationship between % Change Unit Holding Cost and the total profit. As the figure shows, by increasing 

the unit holding cost, total profit will decrease. 
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Fig. 4: Relationship between % Change Unit Holding Cost and the total profit 

The impact of a fixed startup cost on the total profit is similar to the effect of unit holding cost on the total profit. In 

this case, by increasing the amount of fixed setup cost, the total profit decreases. This is a logical result because the 

increase in the order quantity and fixed setup cost results in a lower unit setup cost. Fig. (5) illustrates the relationship 

between % Change Fixed Setup Cost and the total profit. As the figure shows, by increasing the setup cost, the total 

profit will decrease. 

 

 

 

 

 

 

 

 

 

 

        
Fig. 5: Relationship between % Change Fixed Setup Cost and the total profit 

It is clear from the results that if the fixed setup cost is much higher than the unit holding cost, the system tends to 

produce for several periods, which we called it a single-setup multi-period (SSMP).  If this ratio is low, the system tends 

to make for one single period, called single-setup single-period (SSSP). In other words, as this ratio increases, we 

should produce for more periods in each cycle. In Table II and Table III, the proposed example is examined for 

different scenarios of startup to unit holding cost. 

When the A h ratio is low, the manufacturer decides to separately produce for individual periods due to the low 

fixed setup cost and high unit holding cost. However, if the ratio is high, the manufacturer decides to produce the need 

for several periods at one setup time. 
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TABLE III: SENSITIVITY ANALYSIS OF UNIT HOLDING COST 

Parameter % Change Value 
Periodic order 
quantity (K) 

Optimal order 
quantity (K×D) 

Production cycle 
length (tp) 

Inventory cycle 
length (T) 

Optimal profit 
(y) 

F
ix

ed
 S

et
u
p
 C

o
st

 (
A

) 

−75% 250 5 200 0.0572 0.1531 612737.0094 

−50% 500 6 240 0.0687 0.1838 610187.2566 

−25%, 750 6 240 0.0687 0.1838 608014.6375 

−10%, 900 7 280 0.0802 0.2144 606826.4797 

00%, 1000 7 280 0.0801 0.2144 606081.5817 

+10%, 1100 7 280 0.0801 0.2144 605336.6838 

+25%, 1250 8 320 0.0916 0.2451 604262.2471 

+50%, 1500 8 320 0.0916 0.2451 602632.7828 

+75% 1750 9 360 0.1031 0.2757 601070.1919 

+100% 2000 9 360 0.1031 0.2757 599621.7792 

+150% 2500 10 400 0.1146 0.3064 596917.1223 

+200% 3000 11 440 0.1261 0.3371 594435.16274 

+300% 4000 12 480 0.1376 0.3678 589947.5152 
 

V. CONCLUSION 

This paper considers an inventory production system with a (POQ) order policy, reliability, operation cost, and 

periodic demand.  The production cost and the rate of imperfect items are dependent on the reliability of the products. 

The reliability of the product depends on raw material, manufacturing system, skill of labor and operation cost. Thus, 

raw material with better quality increases the reliability rate of the production system. The production rate of the 

product with perfect quality reduces over time, but the operation cost increases. The demand for the final product is 

discrete with constant units and constant times between two consecutive demands. We used the periodic order quantity 

to meet the customers' demand. Also, a concave concept and partial derivatives are employed to find the optimal 

solution. Finally, a numerical example is presented and the sensitivity of the model parameters to the validation of the 

model is analyzed. The results show that if the reliability parameter ( ) is low, the manufacturer uses an SSMP policy 

and produces the product for several periods. Yet, for an increased reliability parameter, the number of periods that 

should be produced by a single setup is decreased. When the reliability parameter is large the manufacturer uses an 

SSSP policy. We analyzed the effect of setup cost and unit holding cost on the result of the model. The result shows that 

if the A h  ratio is very small, the manufacturer utilizes the SSSP policy. If the ratio is large, the manufacturer applies 

the SSMP policy.  

The proposed model can be extended in several ways. In the actual production system, the selling price is affected 

by the raw material price and final demand, so taking this into account can significantly improve the proposed model. 

We could extend the deterministic demand function to stochastic. Finally, we could generalize the proposed model to 

allow for shortages, random break down the machine, quantity discounts, and others. 
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