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Abstract – Double sampling plan is an examination with a certain parameter, so it cannot decide about 

manufactured products whose portion parameter ( ) is not certain. The main goal of this survey is to 

introduce double variable plan when   is indefinite to examine manufacturing products when concerned 

characteristics are normally distributed. Plan parameters are achieved by an optimization manner. Sum of 

fuzzy customer and producer’s risks and contract’s commitments are assumed as a goal function and 

restrictions, respectively, in this manner. Optimum values of parameters are provided to be employed in 

industry for variant compositions of demands. A simulation study is also conducted to represent that the 

presented approach becomes traditional one as   is not imprecise. In addition, conclusions display that the 

proposed method is more economical than the existing scheme. At the end, an industrial example is given in 

real situations. 
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I. INTRODUCTION 

Acceptance sampling ‎plans are usually employed to check if a submitted lot should be allowed. Acceptance 

sampling schemes are graded into attribute and variable. An essential preference of variable sampling scheme is that it 

gets equivalent operating characteristic (OC) curve using less sample information. So, it may be convenient to palliate 

assessment cost inexpensive conditions (Montgomery, 2012; Schilling & Neubauer, 2017). 

Other procedure to group the sampling plans is derived from the type of taking a sample containing single, double, 

sequential, multiple, etc. Among these, variable single sampling plan (VSSP) and double variable sampling plan 

(DVSP) are favorites among users. Although VSSP is more common material than DVSP due to its easiness in practice, 

DVSP uses less average sample number (ASN) to assess the submitted lot. Also, DVSP provides a second chance to 

recheck the lot before refusal (Sommers, 1981). Fallahnezhad et al. (2015) designed an optimum double sampling plan 

with a model applied to recognize the optimum tolerance bounds and sample size. Some studies on DVSP can be seen 

in some related articles )Butt et al., 2019; Razmkhah et al., 2017).  

Mostly, the process quality   is supposed a precise value to plan customary sampling schemes. But in practice, it 

may not be recorded certainly. So, it should be described based on fuzzy logic. Chakraborty (1992) investigated ‎single 

plans based on fuzzy ‎optimizing. A plan was introduced by Tong & Wang (2012) when one deals with quality 

characteristics measured uncertainly. Baloui Jamkhaneh et al. (2011) represented attribute fuzzy single sampling plan 
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(FSSP). A plan by applying a sequential sampling method was displayed by (Baloui Jamkhaneh & Sadeghpour Gildeh, 

2013). Fuzzy multiple deferred state attribute approach was introduced by Afshari et al. (2017) as the inspection is not 

perfect. Also, Afshari & Sadeghpour  Gildeh (2017a) provided tables of optimum parameters for fuzzy multiple 

deferred state plan by ‎applying‎ ‎two-point strategy. Afterward, Afshari & Sadeghpour Gildeh (2018) extended fuzzy 

attribute multiple deferred state plan to the status in which quality characteristics are measurable, and they also 

proposed fuzzy variable single sampling plan (FVSSP) to compare their suggested methods. To obtain more 

information about fuzzy schemes refer (Kahraman et al., 2016; Divya 2012; Baloui Jamkhaneh & Sadeghpour Gildeh 

2012; Turanoglue et al., 2012; Afshari et al., 2018; Afshari & Sadeghpour Gildeh, 2017b; and Venkateh & Elango, 

2014). 
           

Although classical DVSP uses small ASN to test submitted lot, it is not helpful to assess manufactured productions 

whose quality is not certain. Hence in this paper fuzzy DVSP (FDVSP) is studied to examine manufactured productions 

with normal-distributed quality characteristics. We survey the conditions as ‎standard deviation is known or not. 

Besides, it is illustrated that introduced plan is an extension of existing DVSP by implementing an extensive simulation 

study. Further, comparisons between the introduced plan and existing FVSSP are made. 

 The rest of the paper is organized as follows. In a further section, we remind several statements of fuzzy sets theory. 

We fuzzify DVSP in section III and provide optimum plan parameters. Section IV deals with fuzzy ASN. Analysis and 

comparison of the new plan with the existing FVSSP are made in section V. An industrial example is demonstrated in 

section VI. Finally, section VII represents the conclusions. 

II. CONCEPTS 

Now, several notions of fuzzy sets are remembered (see Dubois & Prade, 1978). 

   

Definition 1. Fuzzy subset  ̃ of real line, with membership function   ̃  → ,   - is a fuzzy number if (a)  ̃ is normal, 

(b)  ̃ is fuzzy convex, (c)   ̃ is upper semi-continuous and (d) support( ̃) is bounded. 

   

Definition 2. A trapezoidal fuzzy number  ̃ is a fuzzy number whose membership function is determined by four 

values,             so that: 

   

  ̃( )  

{
  
 

  
 

                   
    

     
                

                              
    

     
                 

                     

 

   
A trapezoidal fuzzy number  ̃ with       is called triangular fuzzy number shown by  ̃  (        ). 

Definition 3.  -cut of a fuzzy number   ̃(  ,   -) is a non-fuzzy set defined as  ̃, -  *      ( )   +, so that 

 ̃, -  ,  , -   , --, where   , -     *      ̃( )   +  and    , -     *      ̃( )   + . 

    
Definition 4. Let  ̃, -  ,   , -      , -- and  ̃, -  ,   , -      , -- be  -cut of two fuzzy numbers  ̃ and  ̃, 

respectively. ‎In one way of ordering fuzzy numbers‎,  ̃  ̃  ̃ if and only if      ,   -    , -    , -  
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III. OPERATING PROCEDURE OF FUZZY DVSP 

Assume that interesting quality characteristic follows normal distribution with unknown mean   and standard 

deviation  , so that it has upper specification limit  . In Appendix A, the operating method of DVSP is recalled in 

customary case. Here, authors want to study DVSP in a fuzzy case when nonconforming proportion   is ambiguous. In 

order to be simple in computation, let   be a triangular fuzzy number   ̃  (        ).      ,   - , the  -cut of  ̃ is: 

(1) 
 ̃, -  ,   (     )     (     ) -                                                                                                     

     

A. Known standard deviation case 

Operating procedure in known standard deviation fuzzy DVSP (KSD-FDVSP) is similar stages displayed in 

Appendix A. Thus, KSD-FDVSP is identified by three parameters     ,     and   . By employing relation (A-2) and 

Buckley’s‎manner (Buckley 2003; 2006),  -cut of lot acceptance fuzzy probability is 

     

 ̃  ( ̃), -  * (  )   (  ) |      ̃, -+  [   
 , -    

 , -]       (2) 

      

in which,     
 , -      ̃  ( ̃), - and    

 , -      ̃  ( ̃), -. 

          

Example 1. Consider KSD-FDVSP with               ,          and  ̃  (                 ). According 

to (2), we have  ̃  , -  ,             -  ̃  , -        . That means for every 10000 submitted lots, nearly 9108 

ones are accepted. Fig. 1 indicates plots of member functions of  ̃ and  ̃    

Example 2. Assume all hypotheses in the previous example. Authors want to draw  OC curve of proposed plan that 

plots lot acceptance probability against proportion of defective items (Montgomery, 2012). To draw OC curve of  KSD-

FDVSP,  ̃  (        ) is rewritten by  ̃  as  

     

 ̃  (           )                                  (3) 

      

where          (     ) and   ,      -. Then  

         

 ̃ , -  ,           (     ) -                                                                                                                     (4) 

      

Let  ̃  (                 ), then by using (3) it results  ̃  (                 )    ,       -. Therefore, 

for   ,   -,  ̃ , -  ,                       -  By using  ̃  for  ̃ in (2), the   –cuts of lot acceptance fuzzy 

probability is computed for some values of t when     and 1. The obtained values are given in Table I. From Table I, 

it results lot acceptance fuzzy probability decreases as the proportion of defective items (t or equivalently  ̃ ) increases, 

such that lot acceptance probability approximately equals 1 when the process quality becomes large (or t closes to zero). 

Fig. 2 presents OC curves plotted by applying (2) for different values of   (=0, 0.2. 0.6, 1). Since proportion of 

nonconforming goods or process quality ( ̃ ) is vague, lot acceptance probability is imprecise. Thus, as observed in Fig. 

2, the plotted OC curves appear like a band with lower and upper bounds. Then, one should name it fuzzy operating 

characteristic (FOC) band. From Fig. 2, we conclude that quantity of uncertainty of the proportion parameter ( ) 

impresses on the width of FOC band. By comparing Figs. 2(a)-(d), it is clear that the bandwidth of FOC band becomes 

less as   increases. Fig. 2(d) presents that lower and upper bounds coincide together for     (or when process quality 

is crisp). As a result, proposed plan results existing KSD-DVSP by reducing amount of uncertainty of process quality.  
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Each fuzzy sampling plan prepares at least lot acceptance probability    ̃ as  ̃ is at    ̃ level, and it also prepares 

at most probability of lot acceptance  ̃ when  ̃ is at    ̃ (   ̃ and    ̃ are fuzzy acceptance and limiting quality 

levels, in order.  ̃ and  ̃ are fuzzy manufacturer and customer’s‎risks,‎in order (Afshari & Sadeghpour Gildeh, 2018)). 

Hence, for defined    ̃ and    ̃, parameters of KSD-FDVSP are detected under these conditions: 

        

   ̃   ̃  (   ̃)        ̃  (   ̃)   ̃.                                                                                                                      (5) 

 

 

 

 

 

 

 

        

Fig. 1. Membership functions (a)  ̃  (                 ), (b)  ̃   at   ̃. 

       

TABLE I.  -CUTS OF LOT ACCEPTANCE FUZZY PROBABILITY AS  =0, 1 FOR KSD-FDVSP 

t  ̃   ̃  , -  ̃  , - 

0.000 (0.000,  0.001,  0.002) [1.0000,  1.0000] 1.0000 

0.001 (0.001,  0.002,  0.003) [1.0000,  1.0000] 1.0000 

0.002 (0.002,  0.003,  0.004) [1.0000,  1.0000] 1.0000 

0.003 (0.003,  0.004,  0.005) [0.9997,  1.0000] 0.9999 

0.004 (0.004,  0.005,  0.006) [0.9987,  0.9999] 0.9996 

0.005 (0.005,  0.006,  0.007) [0.9961,  0.9996] 0.9986 

0.006 (0.006,  0.007,  0.008) [0.9906,  0.9985] 0.9958 

0.007 (0.007,  0.008,  0.009) [0.9808,  0.9955] 0.9901 

0.008 (0.008,  0.009,  0.010) [0.9653,  0.9896] 0.9800 

0.009 (0.009,  0.010,  0.011) [0.9430,  0.9791] 0.9640 

0.010 (0.010,  0.011,  0.012) [0.9131,  0.9627] 0.9412 

0.011 (0.011,  0.012,  0.013) [0.8755,  0.9393] 0.9108 

0.012 (0.012,  0.013,  0.014) [0.8306,  0.9084] 0.8726 

0.013 (0.013,  0.014,  0.015) [0.7792,  0.8697] 0.8272 

0.014 (0.014,  0.015,  0.016) [0.7229,  0.8239] 0.7755 

0.015 (0.015,  0.016,  0.017) [0.6631,  0.7717] 0.7188 

0.016 (0.016,  0.017,  0.018) [0.6016,  0.7148] 0.6589 

0.017 (0.017,  0.018,  0.019) [0.5401,  0.6547] 0.5973 

0.018 (0.018,  0.019,  0.020) [0.4800,  0.5931] 0.5359 

0.019 (0.019,  0.020,  0.021) [0.4226,  0.5317] 0.4759 
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We may get a class of KSD-FDVSP contenting mentioned circumstances. Across these schemes, one chooses an 

individual scheme involving minimum sum of risks for given    ̃ and    ̃. Then, optimization subject to recognize 

parameters is formulated as follows: 

minimize  ̃ 
   ̃ 

 , 

subject to: 

   ̃   ̃  (   ̃)        ̃  (   ̃)   ̃  
      

                
          

here,  ̃ 
     ̃  (   ̃) and  ̃ 

   ̃  (   ̃). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. FOC in  KSD-FDVSP for (a)    , (b)      , (c)      , (d)    . 

 

   To solve nonlinear optimization issue function‎ ‘fmincon’‎ is‎ used through the article. The obtained optimum 

parameters    ,     and    are reported in Table II for various couples (   ̃     ̃) when  ̃ and  ̃ almost equal 0.05 

and 0.1, in order.  

B. Unknown standard deviation case 

Operating algorithm in unknown standard deviation fuzzy DVSP (USD-FDVSP) is like USD-DVSP explained in 

Appendix A. Then, by applying relation (A-6)‎and‎Buckley’s‎manner it results: 

        

 ̃  ( ̃), -  * (  
 )   (  

 ) |      ̃, -+  [   
 , -    

 , -] ,                                                                                        (6)    

so that,     
 , -      ̃  ( ̃), - and    

 , -      ̃  ( ̃), -. 
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Applying the same procedure explained in subsection A, optimum parameters of USD-FDVSP,         and    are 

obtained that are also recorded in Table II. For example, if the design points are set in    ̃  (                   ) 

and    ̃  (                  ) when the manufacturer and customer’s‎risks‎are‎approximately‎0.05‎and‎0.1,‎then‎

from Table II the optimal parameters are obtained as (          )  (             ) and (          )  

(            ) under the operation of USD-FDVSP and KSD-FDVSP, respectively. It means that by applying USD-

FDVSP to decide about the manufacturing lot, lot is passed if, under-sample information with size 101,  ̂      , but 

this lot is not admitted when  ̂      . Otherwise, if       ̂      , second sample is taken to achieve ultimate 

intention. The lot is admitted if, under the second sample of size 101,  ̂      , otherwise the lot is rejected. 

From Table II, two appealing trends are seen in the behavior of optimum values. (i) Required sample size decreases 

by increasing the distance between     ̃ and    ̃ in both known and unknown standard deviation cases. It means that 

one needs less sample information to decide about the production lot when the gap between the rejectable and 

acceptable quality levels becomes large. (ii) The required sample size to make an accurate decision about productions 

for USD-FDVSP is more than KSD-FDVSP. 
      

TABLE II. OPTIMUM PARAMETERS AS   ̃ AND  ̃ ARE ALMOST 0.05 AND 0.1, IN ORDER. 

  KSD-FDVSP USD-FDVSP 

   ̃    ̃                       

(0.0009, 0.001, 0.0011) (0.0149, 0.015, 0.0151) 10 2.49 2.61 30 2.46 2.83 

 (0.0199, 0.02, 0.0201) 7 2.43 2.58 25 2.41 2.64 

 (0.0249, 0.025, 0.0251) 6 2.36 2.53 20 2.35 2.61 

 (0.0299, 0.03, 0.0301) 5 2.28 2.56 16 2.28 2.64 

 (0.0349, 0.035, 0.0351) 5 2.28 2.42 15 2.26 2.52 

 (0.0399, 0.04, 0.0401) 5 2.28 2.34 15 2.26 2.41 

 (0.0499, 0.05, 0.0501) 4 2.15 2.33 11 2.15 2.45 

(0.0024, 0.0025, 0.0026) (0.0199, 0.02, 0.0201) 12 2.31 2.49 43 2.31 2.50 

 (0.0249, 0.025, 0.0251) 10 2.27 2.41 34 2.26 2.43 

 (0.0299, 0.03, 0.0301) 8 2.2 2.41 25 2.18 2.5 

 (0.0349, 0.035, 0.0351) 7 2.15 2.38 22 2.15 2.41 

(0.0049, 0.005, 0.0051) (0.0249, 0.025, 0.0251) 19 2.18 2.29 56 2.16 2.37 

 (0.0299, 0.03, 0.0301) 14 2.12 2.28 43 2.11 2.33 

 (0.0349, 0.035, 0.0351) 12 2.09 2.22 37 2.08 2.24 

 (0.0399, 0.04, 0.0401) 10 2.04 2.22 28 2.02 2.31 

 (0.0499, 0.05, 0.0501) 8 1.97 2.16 21 1.95 2.26 

(0.0099, 0.01, 0.0101) (0.0249, 0.025, 0.0251) 47 2.08 2.21 - - - 

 (0.0299, 0.03, 0.0301) 40 2.04 2.1 98 2.02 2.2 

 (0.0349, 0.035, 0.0351) 28 2.01 2.07 70 1.98 2.16 

 (0.0399, 0.04, 0.0401) 19 1.94 2.13 55 1.94 2.13 

 (0.0449, 0.045, 0.0451) 16 1.9 2.12 44 1.9 2.13 

(0.0149, 0.015, 0.0151) (0.0399, 0.04, 0.0401) 37 1.89 2.02 101 1.89 2.02 

 (0.0449, 0.045, 0.0451) 28 1.85 2.02 75 1.85 2.02 
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Continue TABLE II. OPTIMUM PARAMETERS AS   ̃ AND  ̃ ARE ALMOST 0.05 AND 0.1, IN ORDER. 

  KSD-FDVSP USD-FDVSP 

   ̃    ̃                       

 (0.0499, 0.05, 0.0501) 26 1.84 1.92 62 1.82 1.98 

 (0.0599, 0.06, 0.0601) 18 1.77 1.90 45 1.77 1.91 

 (0.0699, 0.07, 0.0701) 14 1.72 1.87 33 1.71 1.91 

(0.0199, 0.02, 0.0201) (0.0449, 0.045, 0.0451) 48 1.81 1.96 - - - 

 (0.0499, 0.05, 0.0501) 38 1.78 1.91 98 1.78 1.91 

 (0.0599, 0.06, 0.0601) 27 1.73 1.84 63 1.72 1.88 

 (0.0699, 0.07, 0.0701) 20 1.67 1.82 46 1.67 1.84 

 (0.0799, 0.08, 0.0801) 15 1.62 1.83 35 1.62 1.82 
                 

Note: Main assumption to make introduced method is that distribution of interesting quality characteristic must be 

normal, which might not be valid in practical world. To solve this problem, Box-Cox conversions are helpful in 

modifying non-normal data to normal.  

IV. FUZZY AVERAGE SAMPLE NUMBER 

Fuzzy average sample number (   ̃) specifies inexact average number of samples taken from lot to assess it. In 

existing FVSSP (see Afshari & Sadeghpour Gildeh, 2018), sample size is fixed, whilst in introduced FDVSP, sample 

size to make final decision depends on entering lot quality. Firstly, assume known standard deviation case. Hence, 

average sample size for KSD-DVSP equals product of the first sample size (  ) in probability of existing one sample 

(  ), plus size of the combined samples (     ) times probability of existing a second sample (1-  ). Consequently, 

according to Buckley’s‎way,  -cut of    ̃ of KSD-FDVSP (   ̃ , -) is equal to: 

      

   ̃ , -  *     (     )(    )  |         ̃, -+  ,    
 , -     

 , --                                                            (7)           

                                                                               

in which,      
 , -        ̃ , -,      

 , -        ̃ , -   

           

and       .(      )√  /   ((      )√  ). Identically,  -cut of    ̃ of USD-FDVSP (   ̃ , -) is  

         

   ̃ , -  *     (     )(    )  |         ̃, -+  ,    
 , -     

 , --                                                              (8)            

                                            

in which,  

      

(

 (      )√
  

  
   
    

 

)

   ((      )√
  

  
   
    

 

). 

Example 3. Consider the KSD-FDVSP and USD-FDVSP with their parameters (          )  (            ) 

and (          )  (            ), respectively. We want to sentence the submitted lot under the operation of above-

mentioned plans when the incoming quality is equal to  ̃  (                  ). By using Eqs. (7) and (8), we have: 
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   ̃ , -  ,           -        ̃ , -       , 

      

   ̃ , -  ,           -        ̃ , -       . 

      

It means that one needs a sample of size approximately 13 in average to decide about the considered lot under the 

operation of KSD-FDVSP, while it increases to approximately 48 as the standard deviation is unknown. 

V. ANALYSIS AND ANALOGY OF INTRODUCED SCHEME 

This part, we indicate that presented fuzzy plan includes an existing customary double variable sampling plan 

(DVSP). Moreover, an analogical study is made between the introduced and available plans in terms of ASN.  

A. Description of FOC band  

In section III, the authors derived that introduced scheme converts to the existing conventional double sampling plan 

when the process quality ( ) is not vague (see Example 2). But a simulation study is needed to investigate whether the 

obtained result is valid or not in general. To this, we do a simulation study for the reported plans in Table II. In the 

simulation method, we consider that     and    . Under these conditions, the standard deviation is obtained by 

equation (A-1). The following steps are conducted for each sampling plans in unknown standard deviation case with 

fixed values of  ,  ̃,  ̃,    ̃,    ̃,   ,     and    . 

TABLE III. RESULTS ON  ̃ 
  AND  ̃ 

  FOR THE PROPOSED KSD-FDVSP WITH  ̃  (                  ) AND 

 ̃  (                 ) 

  KSD-FDVSP 

   ̃    ̃  ̃ 
   ̃ 

  

(0.0009, 0.001, 0.0011) (0.0149, 0.015, 0.0151) (0.0259, 0.0295, 0.0332) (0.0962, 0.0971, 0.0980) 

 (0.0199, 0.02, 0.0201) (0.0375, 0.0416, 0.0457) (0.0976, 0.0982, 0.0988) 

 (0.0249, 0.025, 0.0251) (0.0344,0.0379, 0.0415) (0.0987, 0.0991, 0.0996) 

 (0.0299, 0.03, 0.0301) (0.0333, 0.0363, 0.0395) (0.0970, 0.0992, 0.0978) 

 (0.0349, 0.035, 0.0351) (0.0328, 0.0358, 0.0389) (0.0979, 0.0982, 0.0985) 

 (0.0399, 0.04, 0.0401) (0.0324, 0.0354, 0.0384) (0.0968, 0.0970, 0.0973) 

 (0.0499, 0.05, 0.0501) (0.0283, 0.0307, 0.0331) (0.0993, 0.0995, 0.0997) 

(0.0024, 0.0025, 0.0026) (0.0199, 0.02, 0.0201) (0.0420, 0.0445, 0.0470) (0.0978, 0.0986, 0.0995) 

 (0.0249, 0.025, 0.0251) (0.0440, 0.0463, 0.0487) (0.0957, 0.0963, 0.0969) 

 (0.0299, 0.03, 0.0301) (0.0428, 0.0449, 0.0469) (0.0974, 0.0978, 0.0983) 

 (0.0349, 0.035, 0.0351) (0.0410, 0.0428, 0.0447) (0.0980, 0.0984, 0.0988) 

(0.0049, 0.005, 0.0051) (0.0249, 0.025, 0.0251) (0.0421, 0.0438, 0.0454) (0.0959, 0.0968, 0.0976) 

 (0.0299, 0.03, 0.0301) (0.0445, 0.0460, 0.0475) (0.0984, 0.0991, 0.0997) 

 (0.0349, 0.035, 0.0351) (0.0465, 0.0479, 0.0493) (0.0983, 0.0988, 0.0993) 

 (0.0399, 0.04, 0.0401) (0.0458, 0.0471, 0.0484) (0.0970, 0.0974, 0.0979) 

 (0.0499, 0.05, 0.0501) (0.0440, 0.0451, 0.0462) (0.0989, 0.0992, 0.0996) 

(0.0099, 0.01, 0.0101) (0.0249, 0.025, 0.0251) (0.0467, 0.0483, 0.0498) (0.0950, 0.0964, 0.0979) 

 



Journal of Quality Engineering and Production Optimization  / Vol. 4, No. 2, Summer & Autumn 2019, PP. 83-98 91 

 

 

Continue TABLE III. RESULTS ON  ̃ 
  AND  ̃ 

  FOR THE PROPOSED KSD-FDVSP WITH  ̃  (                  ) 

AND  ̃  (                 ) 

  KSD-FDVSP 

   ̃    ̃  ̃ 
   ̃ 

  

 (0.0299, 0.03, 0.0301) (0.0349, 0.0360, 0.0371) (0.0970, 0.0980, 0.0990) 

 (0.0349, 0.035, 0.0351) (0.0472, 0.0484, 0.0496) (0.0966, 0.0974, 0.0981) 

 (0.0399, 0.04, 0.0401) (0.0477, 0.0487, 0.0497) (0.0983, 0.0989, 0.0995) 

 (0.0449, 0.045, 0.0451) (0.0457, 0.0465, 0.0474) (0.0974, 0.0979, 0.0984) 

(0.0149, 0.015, 0.0151) (0.0399, 0.04, 0.0401) (0.0457, 0.0466, 0.0475) (0.0953, 0.0961, 0.0970) 

 (0.0449, 0.045, 0.0451) (0.0469, 0.0478, 0.0486) (0.0964, 0.0971, 0.0978) 

 (0.0499, 0.05, 0.0501) (0.0470, 0.0478, 0.0486) (0.0966, 0.0971, 0.0977) 

 (0.0599, 0.06, 0.0601) (0.0461, 0.0467, 0.0474) (0.0989, 0.0993, 0.0997) 

 (0.0699, 0.07, 0.0701) (0.0475, 0.0481, 0.0487) (0.0980, 0.0984, 0.0987) 

(0.0199, 0.02, 0.0201) (0.0449, 0.045, 0.0451) (0.0476, 0.0485, 0.0493) (0.0964, 0.0974, 0.0983) 

 (0.0499, 0.05, 0.0501) (0.0475, 0.0483, 0.0491) (0.0979, 0.0986, 0.0993) 

 (0.0599, 0.06, 0.0601) (0.0477, 0.0483, 0.0490) (0.0976, 0.0981, 0.0986) 

 (0.0699, 0.07, 0.0701) (0.0446, 0.0451, 0.0456) (0.0987, 0.0991, 0.0995) 

 (0.0799, 0.08, 0.0801) (0.0486, 0.0491, 0.0496) (0.0978, 0.0981, 0.0984) 

 

 

1.   Generate two sets of random samples with size    from normal distribution with zero mean and standard deviation 

equivalent to AQL and LQL by (A-1). 

2.  Using the sample information, compute the estimation of statistics  ̂  and  ̂ . Then, according to the introduced 

operating algorithm, check how the submitted lot is accepted or rejected by the corresponding     and     . 

3.  Repeat the above steps for 100000 times. Based on the  ̂(  
 )  ̂(  

 ) and also relation (6), compute the empirical 

producer‎and‎consumer’s‎risks‎ ̃ 
  and  ̃ 

 . 

Note: In case of known standard deviation, three above simulation steps are done based on the sample of size    and 

critical values     and     to obtain‎the‎empirical‎producer‎and‎consumer’s‎risks‎ ̃ 
  and  ̃ 

  by applying relation (2). 

To save the capacity of the paper, the obtained results are reported in Tables III and IV for some combinations of 

requirements when pre-specified risks are  ̃  (                  ) and   ̃  (                 ) as the standard 

deviation is known and unknown, in order. From Tables III and IV, it concludes that all the sampling plans meet the 

pre-specified risks well. Tables III and IV display both empirical risks ( ̃ 
   ̃ 

 ) and ( ̃ 
   ̃ 

 ) are smaller than the pre-

specified risks  ̃ and  ̃. For example, when    ̃  (                  ) and    ̃  (                  ), from 

Table IV we notice that the empirical risks are  ̃ 
  (                    ) and  ̃ 

  (                    ) 

which are smaller than the pre-specified risks  ̃ and  ̃.  
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TABLE IV. RESULTS ON  ̃ 
  AND  ̃ 

  FOR THE PROPOSED USD-FDVSP WITH  ̃  (                  ) AND 

 ̃  (                 ) 

  USD-FDVSP 

   ̃    ̃  ̃ 
   ̃ 

  

(0.0009, 0.001, 0.0011) (0.0149, 0.015, 0.0151) (0.0406, 0.0452, 0.0499) (0.0979, 0.0988, 0.0998) 

 (0.0199, 0.02, 0.0201) (0.0403, 0.0444, 0.0486) (0.0985, 0.0991, 0.0997) 

 (0.0249, 0.025, 0.0251) (0.0420, 0.0459, 0.0498) (0.0976, 0.0981, 0.0986) 

 (0.0299, 0.03, 0.0301) (0.0425, 0.0461, 0.0497) (0.0988, 0.0991, 0.0995) 

 (0.0349, 0.035, 0.0351) (0.0424, 0.0458, 0.0493) (0.0990, 0.0993, 0.0996) 

 (0.0399, 0.04, 0.0401) (0.0418, 0.0452, 0.0486) (0.0986, 0.0988, 0.0991) 

 (0.0499, 0.05, 0.0501) (0.0420, 0.0451, 0.0481) (0.0980, 0.0982, 0.0984) 

(0.0024, 0.0025, 0.0026) (0.0199, 0.02, 0.0201) (0.0440, 0.0465, 0.0491) (0.0979, 0.0988, 0.0996) 

 (0.0249, 0.025, 0.0251) (0.0449, 0.0472, 0.0496) (0.0980, 0.0986, 0.0992) 

 (0.0299, 0.03, 0.0301) (0.0444, 0.0464, 0.0485) (0.0988, 0.0992, 0.0997) 

 (0.0349, 0.035, 0.0351) (0.0455, 0.0474, 0.0494) (0.0982, 0.0986, 0.0990) 

(0.0049, 0.005, 0.0051) (0.0249, 0.025, 0.0251) (0.0450, 0.0466, 0.0483) (0.0976, 0.0985, 0.0993) 

 (0.0299, 0.03, 0.0301) (0.0454, 0.0469, 0.0484) (0.0971, 0.0977, 0.0984) 

 (0.0349, 0.035, 0.0351) (0.0455, 0.0469, 0.0483) (0.0984, 0.0989, 0.0994) 

 (0.0399, 0.04, 0.0401) (0.0472, 0.0485, 0.0498) (0.0977, 0.0981, 0.0986) 

 (0.0499, 0.05, 0.0501) (0.0476, 0.0487, 0.0499) (0.0992, 0.0995, 0.0999) 

(0.0099, 0.01, 0.0101) (0.0299, 0.03, 0.0301) (0.0422, 0.0433, 0.0445) (0.0976, 0.0987, 0.0998) 

 (0.0349, 0.035, 0.0351) (0.0477, 0.0488, 0.0499) (0.0976, 0.0983, 0.0991) 

 (0.0399, 0.04, 0.0401) (0.0473, 0.0483, 0.0493) (0.0978, 0.0984, 0.0990) 

 (0.0449, 0.045, 0.0451) (0.0474, 0.0483, 0.0492) (0.0978, 0.0983, 0.0989) 

(0.0149, 0.015, 0.0151) (0.0399, 0.04, 0.0401) (0.0474, 0.0484, 0.0493) (0.0975, 0.0984, 0.0993) 

 (0.0449, 0.045, 0.0451) (0.0480, 0.0489, 0.0497) (0.0977, 0.0984, 0.0991) 

 (0.0499, 0.05, 0.0501) (0.0471, 0.0478, 0.0486) (0.0968, 0.0974, 0.0979) 

 (0.0599, 0.06, 0.0601) (0.0484, 0.0491, 0.0498) (0.0984, 0.0988, 0.0992) 

 (0.0699, 0.07, 0.0701) (0.0479, 0.0485, 0.0491) (0.0971, 0.0974, 0.0977) 

(0.0199, 0.02, 0.0201) (0.0499, 0.05, 0.0501) (0.0477, 0.0485, 0.0492) (0.0981, 0.0988, 0.0996) 

 (0.0599, 0.06, 0.0601) (0.0482, 0.0488, 0.0495) (0.0978, 0.0984, 0.0989) 

 (0.0699, 0.07, 0.0701) (0.0482, 0.0488, 0.0493) (0.0975, 0.0979, 0.0983) 

 (0.0799, 0.08, 0.0801) (0.0478, 0.0482, 0.0487) (0.0989, 0.0992, 0.0995) 
                 

Fig. 3(a) and 3(b) illustrate the  -cuts of FOC band for USD-FDVSP and KSD-FDVSP, respectively, when  ̃   

(0.0499, 0.05, 0.0501),  ̃  (0.0999, 0.1, 0.1001),    ̃  (                  ) and    ̃  (                  ) 

for             and 1. In addition, Fig. 3(a) and 3(b) include the OC curve for classical USD-DVSP and KSD-

DVSP, respectively, under the above-mentioned circumstances. According to Fig. 3, one can see that the lower and 

upper bounds of FOC band approach together when   increases (or when the amount of ambiguity of nonconforming 

proportion gets smaller) such that these bounds come closer as  →   and coincide with the OC curve of the traditional 

DVSP. This means that the bandwidth of FOC band of the proposed plan becomes narrower when uncertainty value of 
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process quality decreases, and FOC band is in a crisp state as ambiguity level of process quality is equal to zero (or 

   ).  

 

 

 

  

 

 

 

 

Fig. 3. OC curve of DVSP and   -cuts of FOC band of the proposed FDVSP for               (a) Unknown standard 

deviation, (b) Known standard deviation. 

  

B. Comparative study  

ASN function that indicates the relation between the number of items required to be examined and the incoming 

quality, is widely applied as a measure to judge between sampling schemes. The plan with less ASN is preferred to 

another. As it was mentioned in section IV, although the needed sample size is fixed under the operation of the existing 

FVSSP, it depends on if one requires the information of the second sample or not for the proposed FDVSP. 

TABLE V.  1-CUT OF ASN OF INTRODUCED PLAN AND FVSSP (Afashari and Sadeghpour Gildeh, 2018) 

  Known Standard Deviation UnKnown Standard Deviation 

   ̃    ̃ FVSSP FDVSP Reduction% FVSSP FDVSP Reduction% 

(0.0024, 0.0025, 0.0026) 

(0.0199, 0.02, 0.0201) 15 13 13.33 58 48 17.24 

(0.0249, 0.025, 0.0251) 12 11 8.33 44 37 15.90 

(0.0349, 0.035, 0.0351) 9 7 22.22 31 24 22.58 

(0.0049, 0.005, 0.0051) (0.0249, 0.025, 0.0251) 23 20 13.04 - 64 - 

 (0.0299, 0.03, 0.0301) 18 15 16.66 60 49 18.33 

 (0.0349, 0.035, 0.0351) 15 13 13.33 48 41 14.58 

(0.0099, 0.01, 0.0101) (0.0249, 0.025, 0.0251) 64 54 15.62 - - - 

 (0.0299, 0.03, 0.0301) 43 40 7.50 136 115 15.44 

 (0.0349, 0.035, 0.0351) 32 29 9.37 100 81 19.00 

 (0.0399, 0.04, 0.0401) 26 21 19.23 78 63 19.23 

 

Table V demonstrates some 1-cuts of ASN values of introduced FDVSP and available FVSSP (introduced in 

Afshari & Sadeghpour Gildeh, 2018) when standard deviation is known or unknown for some combinations of 

(   ̃    ̃) as  ̃ and  ̃ are approximately set 0.05 and 0.1, respectively. From Table V, the presented scheme has 

preferable implementation compared to FVSSP in terms of ASN. For instance, when    ̃  (                  ) 

and    ̃  (                  ), ASN of FVSSP is approximately equal to 18, while it approximately equals 15 

under the operation of FDVSP (16.66% reduction) in known standard deviation case. Similarly, in unknown standard 
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deviation case, ASN of FVSSP approximately equals 60, while the required sample size in average is approximately 

equal to 49 (18% reduction) under the operation of FDVSP. According to Table V, it concludes that the proposed plan 

in both cases is more desirable than FVSSP in terms of ASN needed to inspect the submitted lot. 

Fig. 4(a) and 4(b) show  -cuts of ASN of introduced plan and FVSSP when     and 1, respectively, as    ̃  
(                  ) and    ̃  (                  ) in unknown standard deviation case. According to Fig. 4, 

it results introduced plan is always better than FVSSP besides when arriving quality is neither good nor bad. Since 

when entering quality is well, lot acceptance probability gets bigger at the first stage, hence one does not require the 

second sample. But then, when incoming quality is poor, probability of lot rejection grows at the first stage. That is, 

there is no demand for extra knowledge obtained from second sample to judge about lot. Consequently, proposed 

manner is better than existing plan due to saving lot inspection time and expense.  

      

 

 

 

 

 

 

Fig. 4.  -cut of ASN in introduced FDVSP and available FVSSP for (a)    , (b)    . 

VI. INDUSTRIAL APPLICATION 

TABLE VI. 98 OBSERVATIONS FOR COLOUR STN DISPLAYS 

11692.3 11722.6 11674.7 11681.3 11800.8 11705.9 11705.8 11705.8 11722.6 

11797.2 11664.2 11664.2 11775.5 11775.5 11769.1 11667.9 11589.8 11729.2 

11636.4 11722.9 11666.2 11700.2 11721.7 11647.2 11744.1 11625.6 11705.8 

11726.4 11726.4 11729.2 11633.6 11721.7 11681.1 11633.6 11655.3 11757.5 

11625.6 11769.1 11710.1 11726.4 11636.4 11692.3 11647.2 11633.6 11769.1 

11674.7 11780.7 11655.3 11655.3 11710.1 11728.4 11636.4 11743.3 11769.1 

11589.8 11712.7 11728.4 11680.5 11743.3 11636.4 11664.2 11705.8 11666.2 

11698.0 11816.7 11712.7 11698.0 11797.2 11677.0 11775.5 11754.2 11773.1 

11698.0 11775.5 11692.3 11728.4 11760.6 11589.8 11712.7 11655.3 11797.2 

11695.9 11722.6 11671.8 11731.2 11773.1 11745.4 11705.9 11633.6 11722.9 

11674.7 11775.2 11700.2 11692.3 11786.1 11727.7 11727.7 11731.2  
      

Here, we discuss an industry data of colour STN (super-twisted nematic) displays applied by Aslam et al. (2013). 

The quality characteristic has upper specification limit        . Assume that one would like to make a decision 

about the lot of mentioned products under the purchasing agreement     ̃  (                  ),    ̃  

(                  ),  ̃   (0.0499, 0.05, 0.0501) and  ̃  (0.0999, 0.1, 0.1001). Because of the unknown population 

standard deviation, USD-FDVSP is employed to assess products. From Table II, it derives      ,          and 

       . To examine the productions, a with size 98 is chosen from the submitted lot. These data are reported in 

Table VI. Discovered conclusion from Shapiro-Wilk test displayed                    , it means the data are 
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not from a non-normal society, then USD-FDVSP can be performed here to evaluate whether the submitted lot is 

accepted or rejected. Hence, to execute USD-FDVSP, we selected a sample with size 98 and calculated  ̅          , 

         and    
              

     
, because             , submitted lot is passed at the first stage.  

Eventually, it is worth to the point that by using FVSSP (introduced in Afshari & Sadeghpour Gildeh, 2018) to make 

decision about colour STN displays lot, one requires a sample of size 136, 15.44% more than ASN (=115) of the 

proposed FDVSP. That is introduced scheme is preferable than available FVSSP because of saving examination cost 

and time.  

VII. CONCLUSION 

Although traditional DVSP requires a small ASN to inspect productions in comparison with the available single 

sampling scheme, it is not an appropriate selection to decide as some plan parameters are imprecise. Here, we 

developed usual DVSP to a situation where the proportion of defective items is. For industrial application, optimum 

plan parameters were derived by considering the optimization issue. Moreover, An extensive simulation study was 

implemented to show that the introduced plan in a fuzzy environment includes the existing traditional one. Also, a 

numerical instance was given to explain how to use the proposed manner in the industrial world. We concluded that the 

proposed plan is more inexpensive and timesaving than the existant FVSSP. For further directions, the proposed 

FDVSP can be discussed when the process has multiple quality characteristics.   
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APPENDIX 

A. The operating algorithm of customary DVSP 

 

Here, DVSP is briefly explained in a classical case. Assume that quality characteristic follows a normal distribution 

with unknown mean   and known standard deviation  , and it also has upper specification limit  . The operating 

procedure in known standard deviation DVSP (KSD-DVSP) is as follows: 

Step 1. Select a sample with size   from given lot (           ) and calculate    (   ̅ )  , where  ̅  

∑   
  
     ⁄ .  

Step 2. If        , then pass the lot, and if       , then refuse the lot, otherwise, choose another sample with size 

   (  
    

       
 ) and calculate    (   ̅ )  , in which  ̅  ( ̅   ̅ )  ⁄  and  ̅  ∑   

   
     ⁄ , then go to Step 

3 (   is an index to sentence the submitted lot by applying the information of both samples which are taken in Steps 1 

and 2).  

Step 3. If        , then accept the lot. Otherwise reject the lot (   and   are estimated values of    and   , 

respectively. Moreover,     and     are acceptance and rejection numbers under KSD-DVSP and           ). 

Thus, KSD-DVSP is defined by three parameters     ,     and   . Consider that   is given as  

   (   | )     ((   )  ⁄ )                                                                                                                (A-1) 

     

in which,  ( ) shows cumulative distribution function of standard normal variable. From Sommers (1981), lot 

acceptance probability is solved as follows  

      

     (  )   (  )                                                                                                                                               (A-2) 

           

where,  

      

 (  )   ((      )√  )                                                                                                                                  (A-3)      

                   

 (  )  
√ 

  
  ∫ ∫  (     )       

√  (      )

√  (      )

√   (      )

  
                                                                                            (A-4) 

and   (     )   
 (  

  
 

√ 
       

 )
 and    is the (   )th quantile of normal standard distribution that is obtained by 

        

      (   )                                                                                                                                                       (A-5) 

        

If we meet unknown standard deviation DVSP (USD-DVSP), then the symbols         and    are used for    ,     

and   , in order. When standard deviation is passive, sample standard deviation is applied instead of  . In this case, the 

plan implements similar to known standard deviation position, and one uses    (   ̅ )    and    (   ̅ )    

instead of    and    in Steps 1 and 2, respectively, where   
  

 

    
∑ (    ̅ )

   
    and   

  
∑   

   
    ∑   

    
        ̅ 

  

     
. 

According to Sommers (1981), the lot acceptance probability of USD-DVSP is obtained by 
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     (  
 )   (  

 )                                                                                                                                               (A-6) 

             

where,  

 (  
 )   

(

 (      )√
  

  
   
    

 

)

                                                                                                                          (A-7)    

                  

 (  
 )  
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  ∫ ∫  (     )       

  

  

  

  
                                                                                                                   (A-8) 

    

in which    √
   

  
   
    

 

(      ) and    √
   

  
   
    

 

(      )  


