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Abstract – In this paper, a newsboy model is developed under uniformly distributed lead-time and demand 

that is an appropriate assumption in obtaining optimal relief inventory of humanitarian disasters. It is 

noteworthy that limited historical data are in hand on relief operations. Hence, analytical and approximate 

solutions for optimal relief order quantity were derived. The effect of lead-time uncertainty on the optimal 

solution was analytically tested. The approximate solution was numerically evaluated and proper agreement 

with analytical data was achieved with a low variation coefficient of lead-time. The analytical results showed 

that lead-time uncertainty might increase or decrease relief order quantity, depending on the variation 

coefficient of lead-time. 
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I. INTRODUCTION 

Nowadays, humanitarian disasters such as large-scale earthquakes cause changes in demand and communication 

network disruption. On the other hand, existing models of Humanitarian Logistics (HL) originate from Commercial 

Logistics (CL), which are not practical for the real-world humanitarian phenomena. In this regard, recently, HL has 

drawn significant attention. Thomas (2008) studied HL and concluded that it had remained behind CL for thirty years. 

Whybark (2007) argued that HL had not been well studied and understood. According to an internal report of the 

International Federation of Red Cross and Red Crescent Societies (IFRC), the current lead-time during earthquake relief 

operation is unacceptably long. 

Addressing issues related to lead-time uncertainty is challenging, especially in relief operation with long lead-time. 

The majority of the related research shows that a high variation of lead-time has negative effects on inventory 

management. For example, Chopra et al. (2004) studied the effect of lead-time uncertainty on safety stock and found 

that at cycle service levels above 50%, reduction in lead-time uncertainty would decrease the order quantity and safety 

stock. Moreover, reduction in lead-time variation was found more effective than that in mean due to the consequent 

dramatic decrease in the safety stock. Movahed & Zhang (2015) investigated the effect of lead-time uncertainty on 

optimal ordering as well as inventory policy and concluded that it would increase cost and order variation. Rahdar et al. 

(2018) proposed an inventory control model for uncapacitated warehouses in a manufacturing facility under demand 

and lead-time uncertainty to minimize total system cost. 

The effect of lead-time uncertainty on optimal relief order in a newsboy problem is investigated in this paper. The 

main contributions of this study include the following: 
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1)  An HL is modeled under stochastic uniform demand and lead-time. The newsboy model is used to determine 

optimal relief order in order to minimize inventory cost. To our knowledge, this is the first research to obtain 

optimal relief inventory under stochastic demand and lead-time. 

2)   A closed-form solution for optimal order quantity is derived under uniform distribution of demand and lead-time. 

An approximate solution for optimal inventory, effective with a low coefficient of variation (the ratio of the standard 

deviation to the mean of a random variable), concerning stochastic lead-time (CVl) is also offered. 

3)   For managerial insights, in comparison with the existing studies, the advantage of stochastic lead-time in optimal 

inventory is shown. Lead-time uncertainty results in decreased or increased inventory such that the inventory under 

stochastic lead-time is less than that under constant lead-time when CVl is less than a given threshold and vice versa. 

The remainder of this paper is organized as follows. The next section contains a review of the related literature. In 

Section III, the newsboy problem under stochastic demand and lead-time is introduced. A closed-form solution for 

optimal order quantity is derived with uniform distribution of lead-time and demand. Section IV features an 

approximate solution for optimal order quantity using a triangular approximation. Numerical studies are carried out in 

Section V. Finally, in Section VI, a summary of the research is presented and future studies are suggested. 

II. LITERATURE REVIEW 

A significant body of literature exists associated with disaster operation management. Galindo & Batta (2013) 

performed an extensive review of recent developments in the field of disaster operation management. Samani et al. 

(2018) proposed a multi-objective mixed-integer linear programming model of designing an integrated blood supply 

chain network for disaster relief under uncertain demand for blood products. Cao et al. (2018) introduced a multi-

objective programming model of relief distribution for a sustainable disaster supply chain to reduce victims suffering 

under uncertain demand. Altay & Green III (2006) provided a comprehensive review of mathematical inventory 

modeling in disaster inventory management. Song et al. (2018) studied supply chain operations for rescue kits in 

disaster reliefs in a real-world application to minimize the total and peak tardiness of product delivery under demand 

uncertainty. Hu et al. (2017) presented a two-stage stochastic programming model for integrating decisions on pre-

disaster inventory levels under uncertain demand and disaster type in humanitarian relief. Adhikary et al. (2019) studied 

a newsboy problem under bi-random demand in disaster relief operation to find the optimal order quantity that would 

maximize total expected profit. Although there is considerable research in the field of HL inventory management, e.g., 

Whybark (2007) and Kovács et al. (2009), few studies focus on inventory modeling in this context. On the other hand, 

most inventory models assume either demand or lead-time as a deterministic parameter. While studies on stochastic 

demand with constant lead-time are a popular research area in inventory modeling (Kouvelis et al., 2012; Moinzadeh & 

Nahmias, 1988), studies on constant demand with stochastic lead-time have received less attention (Zipkin, 1986). 

Lead-time uncertainty, together with demand uncertainty, makes managing inventory more challenging and 

complicated for decision-makers (Chandra & Grabis, 2008; Hsieh, 2011; Pan et al., 2009). Pan et al. (2017) obtained 

optimal medical resource inventory for emergency preparation under uncertain demand and stochastic occurrence time 

considering different risk preferences at the airport. Many inventory optimization models ignore stochastic 

characteristics of production time and focus only on stochastic demand to hedge against demand variability (Birge & 

Louveaux, 2011; Dangl, 1999; Sting et al., 2014). Kamyabniya et al. (2017) presented a bi-objective location-allocation 

robust possibilistic programming model for designing a two-layer coordinated organization strategy in multi-type 

blood-derived platelets under demand uncertainty. Rodriguez et al. (2014) performed non-linear programming with 

stochastic demand to find the optimal inventory. Yongheng et al. (2014) developed a Lagrangean decomposition 

algorithm to decide on the optimal inventory in the electric motor industry under stochastic demand and constant lead-

time. Kaya et al. (2014) developed a robust optimization method for optimal safety stock planning under stochastic 

demand and return in a closed-loop supply chain. Karimi & Ghodratname (2019) studied the effect of lead-time and 

demand uncertainty to determine optimal flexible and dedicated capacity in the newsboy problem and presented an 
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approximation method to overcome complexities. Ho & Fang (2013) studied the inventory allocation of multiple 

products under uncertain demand and recommended that the inventory holding cost, the shortage cost, the loss of excess 

production, and market demands should be considered to discover the optimal inventory allocation concerning multiple 

products. Sun and Guo (2017) studied an inventory optimization of the newsboy model with fuzzy random demand to 

minimize total expected cost and used numerical methods to solve the problem. Adhikary et al. (2018) introduced a 

distribution-free newsboy problem in a fuzzy-random environment to obtain the optimal order quantity. They assumed a 

distribution-free model in which the mean and variance of the demand were known and the associated probability 

distribution was unknown. 

In numerous studies, lead-time reduction has been viewed as an investment strategy (Bookbinder & Cakanyildirim, 

1999). Christensen et al. (2007) conducted a survey involving manufacturers that consisted of 1264 individuals from the 

Institute of Supply Management. They concluded that lead-time variation had greater effects on the financial 

performance of a firm than on the lead-time mean and the average lead-times had no direct impact on the financial 

performance. He et al. (2011) also observed that lead-time uncertainty affected the cost and ordering policy more than 

the lead-time mean. Thorsen & Yao (2017) proposed a general methodology based on robust optimization for an 

inventory control problem subject to uncertain demands and uncertain lead-times in a finite horizon inventory problem. 

Reviewing literature related to inventory management reveals that newsboy problems have attracted significant 

attention of members of the academic community. Ould-Louly & Dolgui (2002) studied the newsboy model in 

assembly systems in which demand was constant and lead-time was stochastic. They found that the optimally planned 

lead-time of the component could minimize total cost. Lodree et al. (2004) considered a newsboy model under 

stochastic demand to find the optimal order quantity and processing time by which response time and total expected 

cost could be minimized. Lodree et al. (2004) considered a newsboy problem under uncertain demand in which a 

Poisson distribution was followed. The adopted an approximation method to approximate the demand distribution. 

Dutta (2010) studied a newsboy problem under fuzzy demand and storage space constraint for the maximization of the 

total expected profit using a numerical algorithm to determine the optimal order quantity. Su & Pearn (2011, 2013) 

considered newsboy problems in which demand was assumed to follow a normal distribution. Huang (2013) developed 

a newsboy model under stochastic lognormal demand and constant lead-time for Poisson-type deterioration products. 

He discovered the optimal ordering policy that maximized the total expected profit. Similarly, Zhu et al. (2013) used a 

numerical algorithm for investigating an optimal newsboy problem with outsourcing, nonzero constant lead-time, and 

budget constraints to identify the optimal outsourcing policy. Kamburowski (2014) considered a distribution-free 

newsboy problem under worst- and best-case demand scenarios. Finally, Ding & Gao (2014) estimated demand based 

on uncertainty theory and found an optimal (a, S) policy for an uncertain multi-product newsboy problem to maximize 

expected profit. None of the previous studies in the literature has considered both demand and lead-time as uncertain 

parameters due to the high complexity of obtaining analytical results, especially for newsboy problems, in calculating 

product probability distribution function of lead-time and demand. On the other hand, considering both demand and 

lead-time as uncertain parameters leads to unexpected results. With this in mind, in this paper, it is attempted to find 

optimal relief order with a particular focus on large-scale earthquake disasters in which demand and lead-time are both 

stochastic.  

III. PROBLEM STATEMENT AND FORMULATION 

HL is a branch of logistics that specializes in organizing the delivery and warehousing of supplies during natural 

disasters or complex emergencies to the affected area and people. In reality, it is far more complicated and includes 

forecasting and optimizing resources, managing inventory, and exchanging information. In comparison with CL, 

demand is highly variable in terms of timing, location, and products in HL. Also, lead-time is variable due to unknown 

locations, poor infrastructure, and unexpected events. The newsboy problem is a good choice to sustain reasonable 

inventory before the occurrence of any disaster. Therefore, a newsboy problem with stochastic demand and 

replenishment lead-time is considered in this paper. An order quantity is determined to satisfy the demand within the 

https://en.wikipedia.org/wiki/Logistics
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replenishment lead-time. It is assumed that both demand and lead-time follow uniform distribution. Once the demand 

and the lead-time are realized, an inventory cost occurs if the inventory level is more than the demand during the lead-

time. Otherwise, penalty costs are incurred for unsatisfied demands. Schematic view of the problem is detailed as 

follows: 

 

 

 

 

 

 

Fig. 1. Schematics of the described problem 

Three demand distribution types have generally been used in literature, namely uniform distribution, normal 

distribution, and Poisson distribution (He et al., 2011). The Poisson distribution cannot represent relief demand 

characteristics since it calculates the gap between two discrete events. In contrast, the normal distribution requires a 

large amount of data to define its shape and parameters (mean and standard deviation). As there is limited historical 

data on HL, the normal distribution is not an appropriate analysis method for HLIM. 

Given that, a uniformly distributed relief demand parameter is the most reasonable model to apply to the lead-time 

after an earthquake disaster. It is evident that the lead-time after a large-scale earthquake cannot be predicted quickly. 

However, uniform distribution parameters can be easily estimated by efficiently assessing local knowledge since the 

parameters are subjective estimates of the minimum and maximum values. Furthermore, it is assumed both demand and 

lead-time are stochastic, uniform, and independent. 

Before developing the models, the notation utilized throughout the present paper is listed below: 

Parameters: 

D  Stochastic demand for relief products, which follows a uniform distribution D ~ U (a, b) 

L  Stochastic lead-time, which follows a uniform distribution L ~ U (c, d) 

Lc  Constant lead-time 

p  Selling price per unit of product 

w  Unit production cost per unit of product 

h  Inventory holding cost of excessive production per unit of product 

v  Penalty cost per unit shortage of product 

Decision variables: 

Ss  Order quantity under stochastic lead-time 

Sa  Approximated order quantity under stochastic lead-time 

Sc  Order quantity under constant lead-time 
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The expected profit function is formulated as follows: 

     
0

[ ( )] [ ( )] ,
S

DL DL
S

S px h S x f x dx pS v x S f x dx wS


       
 

(1) 

             

where ( )DLf   is the Probability Density Function (PDF) of the demand during the lead-time. Using the Leibniz rule, 

the objective function (1) can be rewritten as: 

       
0

,
S

x DLS p v w S v p h v F x dx        
 

(2) 

            

where ( )DLF   is the Cumulative Distribution Function (CDF) of the demand during the lead-time. Based on objective 

function (2), ( )S  is strictly concave on S because: 
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Furthermore, the demand variation is assumed to be larger than the lead-time variation. PDF of the demand is obtained 

during the lead-time as follows (Glen et al., 2004): 
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CDF of the demand during the lead-time is obtained as: 
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The lead-time follows a uniform distribution with a mean of 
2

c d



  and variation of 

2
2 ( )

.
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Subsequently, 3 , 3c d       , and .lCV



  The optimal order quantity under stochastic and 

constant lead-times can be derived from Propositions 3.1 and 3.2, respectively. 

Proposition 3.1. Under stochastic demand and lead-time, optimal order quantity can be achieved as follows: 
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0 1( ), ( )W x W x
 are the values of the Lambert W function introduced by Corless (Corless et al., 1996), whose 

definition is provided in Appendix A. 

Proof. Objective function (1) is concave in (3a), (3b), and (3c) because: 
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Hence, the optimal solution for the objective function (1) in the given CDF piecewise using the first-order derivative 

from Eq. (2) is obtained. 
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By substituting FDL in Eq. (5), according to Eq. (3a), the following is obtained: 
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According to Eq. (3b), the expression below is derived. 

   
* .

 ln  3  ln  3
s

z a
S

n n 




  
 

(7) 

         
*

sS  in Eq. (7) is in 
* . sad S bc  Then, by substituting 

*

sS  

 
 

1

0

0

1

1 1
.

3 3



 






 
  

     
  
  
 

au

b
u

auu

b

au au
W e

W ue u b b

W ue u au au
W e

b b




 

Based on Eq. (3c), 
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sS  in Eq. (8) is in 
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When the lead-time variation is zero, that is, the lead-time is constant, it is set as the mean of the uniform lead-time 

( , )U c d  mentioned above equal to ( ) / 2.cL c d   Demand during the lead-time also follows a uniform 

distribution, i.e., ~ ( ( ) / 2, ( ) / 2).DL U a c d b c d   Therefore, the PDF and CDF of the demand during the 

constant lead-time are: 
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Under constant lead-time, the objective function (2) is formulated in the following quadratic form: 
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Proof in proposition 4.1. 

Proposition 3.2. Under constant lead-time, optimal order quantity and profit can be found as: 
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Proof. Note that ( )c cS  is concave in Sc since Ac is always negative. The optimal order quantity is obtained by setting 

its first-order derivative to zero. Then, the optimal profit can be obtained by substituting S in Eq. (2) with 
*.cS  

Although lead-time uncertainty normally increases optimal order quantity, it is observed that order quantity under 

stochastic lead-time is lower than that under constant lead-time when CVl is smaller than a given threshold. Moreover, a 

high lead-time variation decreases order quantity under specific conditions. 

Proposition 3.3. 
*

sS  in Eq. (4b) is always smaller than 
*.cS  That is, by substituting 3c     and 

3d     into Eq. (4b) and 
*

cS , respectively, the following inequality is attained: 
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Proof. 
*

sS  in Eq. (4b) is strictly decreasing with 0   because 
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Therefore, 
*

sS  in Eq. (4b) is always smaller than 
*.cS  

Proposition 3.4. A threshold   is: 
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if lCV  , order quantity under stochastic lead-time is always lower than that under constant lead-time: 

Proof. Based on Proposition 3.3, Proposition 3.4 can be proven by comparing 
*

sS  in Eq. (4c) and 
*.cS  

Proposition 3.5. A threshold   is: 
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where t is defined in Eq. (9). If lCV  , optimal order quantity decreases by increasing .  Otherwise, if lCV   , 

optimal order quantity increases by increasing .  

Proof. The proposition can be shown by differentiating 
*

sS  in Eq. (4a) with respect to .  

IV. APPROXIMATE SOLUTION 

Although the optimal order quantity under stochastic lead-time can be obtained based on Proposition 3.1, the 

identification of the optimal order quantity is not very convenient, because evaluation of the Lambert W function value 

is not easy. Thus, an approximate solution for the optimal order quantity has been presented through a triangular 
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approximation method by Areeratchakul & Abdel-Malek (2006), which can be used to approximate triangle-shaped 

CDFs, such as uniform, normal, and exponential distributions. 

This method is used to first, estimate the area under the CDF function of demand during the lead-time. Based on 

(3a), (3b), and (3c), the following is obtained: 

    

    21
( ) ,

2

t

DL
ca

U t F x dx t ca   
 

(10) 

             
where   is the slope of the approximated line obtained as (Areeratchakul & Abdel-Malek, 2006): 
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Fig. (2) shows the real (solid line) and the corresponding approximated distribution functions (dashed line) based on 

the sample data in Section V. 

 

 

 

 

 

 

 

 

 

      
Fig. 2. Estimated vs. original distribution functions for Problem No. 1 shown in Table I  

 

Using the triangular approximation, the approximation error of the area under the curve is estimated as: 
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Fig. (3) shows the approximation error using Eq. (12) when t bd .  
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Fig. 3. Approximation error of the area under the curve in Fig. (1) 

       
*

sS  can then be approximated accurately based on Proposition 4.1. 

Proposition 4.1. Optimal order quantity is approximated as: 
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Proof. Given that the CDF of the demand during lead-time is triangular-based (see Fig. (1)), the integration of the CDF 

can be approximated via the triangular approach introduced by Areeratchakul & Abdel-Malek (2006). By substituting 

at S  and 
( )( )

4
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  into Eq. (10), objective function (2) can be rewritten in the following quadratic 

form: 
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Also,   is the slope of the approximated line introduced in Eq. (11). With ( )a aS  as strictly concave in Sa because 

0aA  , maximum ( )a aS  is obtained using its first-order derivation, thereby fulfilling the proof. 

By utilizing the approximation method, it is not necessary to calculate the value of the LambertW function for 

obtaining optimal order quantity. While the approximation reduces the accuracy of the optimal order quantity, 

numerical analyses provided in the following section show that the approximation is effective when CVl is low. 

V. NUMERICAL EXPERIMENTS 

In this section, a set of numerical experiments are conducted to demonstrate the influence of lead-time variation on 

the optimal order quantity. Problems reported in Table I are sorted based on  . 

Table I. Sample data  

Problem a b 3    c d p v h w 

1 100 600 6 30 24 36 200 20 30 30 

2 100 600 7 30 23 37 200 20 30 30 

3 100 600 8 30 22 38 200 20 30 30 

4 100 600 9 30 21 39 200 20 30 30 

5 100 600 10 30 20 40 200 20 30 30 

6 100 600 11 30 19 41 200 20 30 30 

7 100 600 12 30 18 42 200 20 30 30 

8 100 600 13 30 17 43 200 20 30 30 

9 100 600 14 30 16 44 200 20 30 30 

10 100 600 15 30 15 45 200 20 30 30 

11 100 600 16 30 14 46 200 20 30 30 

12 100 600 17 30 13 47 200 20 30 30 

13 100 600 18 30 12 48 200 20 30 30 

14 100 600 19 30 11 49 200 20 30 30 

15 100 600 20 30 10 50 200 20 30 30 

16 100 600 21 30 9 51 200 20 30 30 

Problems are sorted in ascending order based on lead-time variation 
      

Using MATLAB software, results can be calculated as reported in Table II and illustrated in Fig. (3). In the sample 

data, the lead-time mean is 30   and the threshold ( )  is 0.222 based on Proposition 3.4. At 0.222,lCV    

the newsboy problem under stochastic lead-time identifies lower order quantity than that under constant lead-time. 

Therefore, lead-time variation does not necessarily increase the order quantity and it may either increase or decrease it. 

Table II. Profit and order quantity stock under stochastic and constant lead-times 

Problem CVl 
S  

(constant LT) 

S  

(stochastic LT) 

*

aS   

(stochastic LT) 

Profit  

(constant LT) 

Profit  

(stochastic LT) 

1 0.1155 15000 14812.24 15286.07 1485000 1459759.4 

2 0.1347 15000 14797.82 15417.44 1485000 1450837.9 

3 0.154 15000 14810.25 15564.25 1485000 1441024.3 

4 0.1732 15000 14843.78 15723.06 1485000 1430509.9 

5 0.1925 15000 14894.3 15891.41 1485000 1419431.1 
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Continue Table II. Profit and order quantity stock under stochastic and constant lead-times 

Problem CVl 
S  

(constant LT) 

S  

(stochastic LT) 

*

aS   

(stochastic LT) 

Profit  

(constant LT) 

Profit  

(stochastic LT) 

6 0.2117 15000 14958.79 16067.51 1485000 1407888.5 

7 0.2309** 15000 15034.95 16249.97 1485000 1395958.6 

8 0.2502 15000 15121 16437.72 1485000 1383700.9 

9 0.2694 15000 15215.52 16629.9 1485000 1371162.6 

10 0.2887 15000 15317.35 16825.8 1485000 1358381.6 

11 0.3079 15000 15425.57 17024.85 1485000 1345389 

12 0.3272 15000 15539.4 17226.55 1485000 1332210.6 

13 0.3464 15000 15658.19 17430.49 1485000 1318867.8 

14 0.3657 15000 15781.4 17636.28 1485000 1305378.9 

15 0.3849 15000 15908.57 17843.6 1485000 1291759.2 

16 0.4041 15000 16039.28 18052.13 1485000 1278022.1 
      

**This value exceeds the threshold 0 = 0.222; hence, the order quantity under stochastic lead-time is larger than that 

under constant lead-time.  

 

 

 

 

 

 

 

 

 

           
Fig. 4. Comparison between order quantities under stochastic and constant lead-times based on CVl 

Fig. (5) shows the profit under stochastic and constant lead-times. The former is found to constantly reduce the total 

profit of the firm. 

Figs. (6-7) show approximated and exact optimal order quantities and approximation errors, respectively. The 

approximation error is estimated using 

* *

*

s a

s

S S
e

S


 . As shown in the figures, the approximation method provides a 

reasonable estimation when CVl is low. 

The results of the numerical example reveal that the introduced approximation method is useful when the coefficient 

of variation is low. On the other hand, it shows that optimal order quantity may decrease or increase by increasing CV, 

depending on the threshold value presented in proposition 3.4. This conclusion has never been discussed in the previous 

studies in the literature. It has always been concluded that order quantity increases on demand variation. It is suggested 

that this unexpected chaos is the effect of considering both demand and lead-time together as uncertain parameters. 
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Fig. 5. Comparison between profits under stochastic and constant lead-times based on CVl 

         

 

 

 

 

 

 

 

                
Fig. 6. Comparison of order quantities using the approximated and exact solutions 

    
 

 

 

 

 

 

 

                   
Fig. 7. Order quantity approximation error based on CVl 

VI. CONCLUSION 

This paper considers relief inventory modeling using a newsboy ordering policy under uncertainty in both demand 

and lead-time. Relief operations are highly challenging and diverse and require extensive effort. Using a uniform 

distribution for both demand and lead-time allows us to compute the probability distribution of the shortage and excess 



Journal of Quality Engineering and Production Optimization  / Vol. 4, No. 2, Summer & Autumn 2019, PP. 31-48 45 

 

relief inventory. The model presented here was a stochastic optimization model based on first-order differential 

equations that attempted to determine the optimal order quantity. This necessitated preventing relief disruption for a 

given demand probability. This is the most appropriate way for decision-makers who do not know the actual lead-time 

demand curve. Exact and approximate solutions for optimal order quantities were derived. While high lead-time 

variation reduces HL performance and decreases total profit, it was found that it would decrease or increase the optimal 

order quantity, a finding never recorded in the previous literature. Moreover, a threshold associated with CVl was 

determined. When CVl was lower than the threshold, order quantity under stochastic lead-time was lower than that 

under constant lead-time. 

Several future research directions are outlined in the following. In the proposed model, demand and lead-time are 

assumed to follow a uniform distribution. Therefore, considering other probability distributions such as normal 

distribution, which requires estimating the distribution parameters, is a major step towards developing more realistic 

models. Furthermore, while the approximation in this study is effective when CVi is low, more accurate estimations are 

needed to extend the proposed model with a high lead-time variation. The approximation of the LambertW function is 

also an interesting topic for future studies. 
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APPENDIX 

LambertW is the solution to the following equation 

   W x
x W x e

 
(A1) 
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This function is double-valued in 
1

0.
e

x


    1W x  is defined for 1W    and 
0( )W x  for 1.W    

Fig. (A1) shows 
0( )W x  and  1W x  for 

1
0.

e
x


   Some values of 

0( )W x  and  1W x  are also provided in 

Table A1. 

 

 

 

 

 

 

 

 

Fig. A1. Function ( )W x  for 
1

0x
e


 

 

Table A1. Values of the LambertW function for 1
0x

e


   

x  0 ( )W x  1( )W x  

-0.3679 

-0.3495 

-0.3311 

-0.3127 

-0.2943 

-0.2759 

-0.2575 

-0.2391 

-0.2207 

-0.2023 

-0.1839 

-0.1655 

-0.1472 

-0.1288 

-0.1104 

-0.092 

-0.0736 

-0.0552 

-0.0368 

-0.0184 

0 

-1 

-1.3554 

-1.5318 

-1.6832 

-1.8244 

-1.9613 

-2.0973 

-2.235 

-2.3764 

-2.5235 

-2.6783 

-2.8436 

-3.0223 

-3.2188 

-3.4392 

-3.6926 

-3.9943 

-4.3724 

-4.8897 

-5.7439 

0 

-1 

-0.713 

-0.6083 

-0.5327 

-0.4717 

-0.4199 

-0.3745 

-0.3339 

-0.2971 

-0.2633 

-0.232 

-0.2028 

-0.1754 

-0.1495 

-0.1251 

-0.1018 

-0.0797 

-0.0585 

-0.0382 

-0.0187 

  

 


